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A concept of "approximate dynamical symmetry" is formulated by means of which vre are able to produce
approximate solutions to scattering and bound-state problems in a purely group-theoretic manner for
essentially any isotropic potential and to any desired degree of accuracy. This concept forms a natural general-
ization to arbitrary potentials of the familiar Runge-Lenz symmetry of the Coulomb problem and the $U&
symmetry of the harmonic oscillator. The method consists in transforming the dynamical Lie algebra, i.e., the
smallest algebra generated by the Hamiltonian and a complete set of dynamical variables, which is usually
in6nite and simple, into a Gnite, simple Lie algebra as follows. We 6rst transform the dynamical algebra into
another in6nite Lie algebra, but one which contains a "large" ideal, by a process similar to Inonu-%igner con-
traction, the angular momentum acting as the contraction parameter. The factor algebra modulo this ideal
turns out to be a Gnite, simple Lie algebra which still contains some of the dynamical information. The
above two-stage process will be called "truncation. "Ke are able to develop a sequence of such truncations
leading to successively higher dimensional simple Lie algebras whereby we obtain successively better ap-
proximations to energy levels and phase shifts. The solutions obtained involve all powers of the coupling
constant, and the gth-order approximation is at least as good as the Eth-order W.K.B.approximation and
probably better. The special role of the angular momentum in the contraction process enables us to relate
these group-theoretic methods to the Regge formalism in a natural way. In fact we are able, thereby, to
produce exact solutions to dispersion relations for Regge trajectories obtained by including an arbitrarily
large but 6nite set of trajectories in the unitarity relation. As an illustration of the methods developed we
include a calculation to the Grst nontrivial order of energy levels of an anharmonic oscillator and the well-
depth parameter and phase shifts for a Yukawa potential.

I. INTRODUCTION

'T is mell known that the soluble problems of quantum
~ ~ mechanics, such as the harmonic-oscillator and
Coulomb problems, owe their simplicity to the presence
of dynamical synunetries' whereby the determination of
energy levels is reduced to Gnding the representations of
certain I ie groups. For problems where no recognizable
dynamical symmetry exists, such as the Yukawa poten-
tial or the anharmonic oscillator, one is normally com-
pelled to use perturbative methods with the familiar
limitations. It is natural to inquire, therefore, whether
these more general potentials exhibit dynamical sym-
metries in some approximate sense, by which approxi-
mate solutions could be obtained in a purely group-
theoretical manner. Such approximations would relate
to the algebraic form of the interaction rather than its
strength and might provide a useful tool where per-
turbation methods fail.

In this papel wc shall show that lt 1s ln fact poss1blc
for essentially all interesting potentials, to 6nd a
sequence of approximate dynamical symmetries with
the property that the sequence of approximate solutions
to the bound-state and scattering problems obtained
therefrom converge rapidly to the exact solution. The
method that we shall employ is a quantum-mechanical
ana, log of a method erst described for classical systems in
the thesis of Poincare' and subsequently developed for

such systems by BirkhoG, Sternberg, I.ewis, and others. '
A rather remarkable by-product wi11 be that the

approximate solutions obtained by this method auto-
matically plovlde closed cxpI'csslons foI' thc solution of
approximate Regge dispersion relations, i.e., dispersion
relations obtained under the assumption that only a
6nite number of the trajectories are coupled by
unitarity.

As the concept of approximate dynamical symmetry
which we are going to develop bears some resemblance
to the so-called "saturation approximations" presently
being employed in connection with strong1y interacting
current algebras, ' it is possible that the machinery here
developed may throw some light on the meaning of such
approximations.

G. DYNAMICAL SYMMETRY VERSUS SYM-
METRY OF THE HAMILTONIAN

The term "dynamical symmetry" is currently used in
two different ways which it is well to differentiate from
the outset. Consider, for example, a two-dimensional,
isotropic harmonic oscillator:

&s=Pp'+n' V=-:(Cr+s~s) P= s(Pt+sPs).
Ho commutes with

~o= s(P9.'—P'V), J+=s(P"+V") ~ = (P'+V')-—
~ Supported in part by National Science Foundation, Contract

No. GP3221.
~For instance, the Runge-Lenz symmetry for the Coulomb

problem.
H. Poincare, Oegeres 1 (Gautier-villars, Paris, 1928).

LJo,&gj= +&g, P+,& j=2&o, -
' S. Sternberg, J. Math. Mech. 10, 451 (1961). (References to

other work on the classical problem may be found in this paper. )
4 H. %.Lee, Phys. Rev. Letters 14, 676 (1965).
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Hp' —~i ——Jo'+ —,'(J~J +J j+).
The J~, Jp have the algebra of the generators of SU2 and
since Jp= Jpt and J+=J t, one may obtain Hp from the
allowed values of the Casimir operator for unitary
representations of SU2. We shall refer to the presence
of a group with the Hamiltonian as its Casimir operator
as a "symmetry of the Hamiltonian, "and if the genera-
tors, as above, involve transformations in phase space
rather than coordinate space, we shall speak of a
"dynamical symmetry of the Hamiltonian. "

On the other hand, the symmetry of the oscillator
can be viewed somewhat differently. Consider the
operators

p~= (p+iq)(p +iq ), ( = (q+ip)(q+ip )

Then

is given by —i

v(E) =
l

(E V)'I—')

where the integration is carried out around the branch
cut between a pair of turning points. If V(q) is tran-
scendental there will be an infinite number of (complex)
turning points and one cannot extract via Cauchy's
theorem a very clear picture of the relationship between
v and E. One may, however, approach the problem
somewhat differently:

Suppose that the one-particle Hamiltonian H(q, p) is
an entire function of p and q and that H(z, z) is even,
i.e., we can write

H(q, p)= g p„„q"p-, p„.=O
m, n=l

while
l Ho, t~j= m)~ and L&+,( )=2Hp,

&0'—j=Ho'+ 5 (5+5-+5-5+) ~

unless m+I is even. (2)

If H(q, p) happens to have the special form

Thus Ho, ]~ generate the algebra of SU2 but since

g+= —t t we see that they are appropriate generators
for a unitary representation, not of SU2, but of the
Lorentz group with two-space and one-time dimension.

Moreover, Bp now is one of the generators while the
angular momentum perpendicular to the plane of motion

plays the role of Casimir operator. In this form one

solves the problem by selecting a representation of the

(+, +, —) Lorentz group from Bargmann's catalog'
for which Hp is diagonal and the Casimir operator has
one of the allowed angular momentum values. Since,
for the physical case, IIp must have a lowest eigenvalue

&0, then the allowed values of Jp are also determined.
If in any problem we 6nd that the Hamiltonian together
with a complete set of dynamical variables generate a
finite Lie algebra we shall say simply that the problem

possesses a "dynamical symmetry. "
As it will develop, no problems other than the

Coulomb problem and the harmonic oscillator (up to
canonical equivalence) exhibit a dynamical symmetry in

this sense. We shall, however, be able to weaken the
definition somewhat and obtain a useful concept of
"approximate dynamical symmetry" that applies to a
wide class of problems.

Because the existence of such approximations be-

comes most clearly manifest in connection with the so-

called normal form problem in classical mechanics, the
following section is devoted to a brief exposition of this

problem.

III. THE NORMAL-FORM PROBLEM IN
CLASSICAL MECHANICS

The frequency v(E) for a classical particle of mass
M'=- ~i and energy E in a one-dimensional potential V(q)

H(q, p) = Q n, (Hp)', Ho= p'+q', —
s=l

(3)

then, since Hp is a constant of motion, the solution of
Hamilton's equation is

p+iq=C expL'27rip(E)tj,

1(dH
~(E)=

l
=Z ~o.l:Ho(E)j' '

x QHp 11=@
(4)

where Ho is one of the roots of (3) for H= E. The form

(3) is called a "normal form. "
For the general case (2) one may attempt to bring H

closer and closer to normal form by a succession of
canonical transformations A~(q, p). Thus, defining

00

f"'(q,p) =~t' 'f=—Z —(A'"',f}
~=p ~t

where
BA Bf BA Bf

(A"' f)—=f (A"' f) = ——=(AA
Bq Bp Bp Bq

and
(A'"+" f)—= IA"' (A'"' f) I

we seek AN(q, p) such that

H""'= Z ~~.(q'+ p')'+~sr+i(q, p),
s 1

(6)

H f'"'=Z o~ (q'+p')'

where the "error" term eN+i consists of terms q"p with

e+m&2(%+1). We shall refer to

' V. Bargmann, Ann. Math. 48, 569 (1947). as the Eth approximant to the normal form and the
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frequencies of H„f( ) given by (4), as the Sth approxi-
mants to the frequencies of H.

We shall restrict (2) slightly further and assume that
the quadratic part of H is already in the form p'+q'.
This can be accomplished by a trivial canonical trans-
formation provided only that H has a "little" harmonic
oscillator in it to begin with. That is, the quadratic term
may be p'+ oq' for any n/0. In this case H will be sa,id
to be "regular, " the significance of this restriction to be
made clear later. The transformations AN which bring
H into the form

H'""' =q'+ p'+Z ~N. (q'+P')'+~~+)(q, p) ~

are obtained by the following algorithm: Let A «= 1. and
we have n««

——1. Suppose that AN «has been found and
that O,N ««=1 and that AN « is an even function. Then

N—«

H "~ "=q'+P'+ 2 ~~ )(q'+P')-'+~~(q, p),

and c~(q,p) is even. Hence, one may write

N

~~(q,p) = Z 7~((p+~q)"+'(P ~q)" '+~~+)(q,p),/=N

with eN+«even. Let

N

A ~ (q,p) = Q~~—) (—p+iq) "+'(p jq)"—«= —Nl
l&0

Then under AN, H &~N-I& is transformed into

m, e=o
&mnq p ) &mal=0

unless m+)s=2s, 2s+2, 2s+4,

The set of all such series with complex coeKcients will
be denoted R,.E, is closed under the formation of linear
combinations of its elements as well as under taking
the Poisson bracket of its elements. R, is thus an inhnite
Lie algebra. Further one observes that for any s and k, '

U g.+~)&~.+~

so that E.,+q is anidea/in 8, for k=0, 1, 2 . Let

2, g=E,/R, +g,

i.e., the homomorphic image of E., modulo the ideal
R,+~. The E, ~ are clearly 6nite Lie algebras but with
the exception of R«, « they are not semisimple. In fact if
/ is any integer for which

s+k)l)maxi s, (s+k)/2j,

then R)/R, ~(, is an Abelian ideal of R, ),. In the following
we will be solely concerned with the factor algebras of
R) and we denote by f&~) the image in R&,&+)v of any
fER).

Since the Lie bracket is preserved under homo-
morphism it follows that if for HgR), there exists
ACR~ such that

IV. FACTOR ALGZmAS OF CANONrCAL
TRANSFORMATIONS

In the following f„g„h„etc., denote any power series
of the form

q +p + E &N—1s(q +p ) +vNO(q +p )
8=2

+even terms of degree )2S.
Thus

then

H(A) g ~ (qm+P2)s
e=«

H(~ (A) p (r (q2+p2)s H f(N)
8=1

eN8 ——eN «, for s=1, 2, , E—1,
O'NN= +NO.

By induction H can be put into normal form to any
order, and obviously one can drop the subscript Xon the
coeKcients O, N, . The simplicity of this procedure belies
the tedium actually involved. To calculate some H„f( &

one must calculate every H„f&~), M = 1, 2 ~ ~ ~, g—]. to-
gether with all terms of degree &2E in the error terms.
The algorithm thus gives little insight into the con-
vergence of the method. We shall, however, show in the
following two sections that the process of finding ap-
proximate normal forms for both the classical and the
quantum-mechanical problems has a simple group-
theoretic interpretation which both faci1itates the deter-
mination and suggests the conditions under which rapid
convergence may be expected.

with the same coeKcients a, . Thus, to compute the
approximate normal form of order X, we have only to
calculate canonical transformations in the sense of the
Poisson bracket modulo RN+«. Thus, in the given H, we
delete all terms of degree &2Ã and H is now to be
treated as an element of the 6nite algebra R«N+«. The
elements (q'+ p')', s= I, 2, , E generate an Abelian
subalgebra of E«,N+«and it is not diTicult to see that
this is a Cartan, subalgebra of R«,N+«. The existence of
the algorithm of Part III is a consequence of the follow-
ing theorem proved in Ref. 3:

A regular element of a Lie algebra is conjugate via
inner automorphism to some element of any Cartan
subalgebra. (A regular element is one which itself
generates a Cartan subalgebra and it can be shown that

' If one wishes to include odd powers g p", one must exclude
m+n =1 to obtain this result.
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this requires us to have at least a "little" harmonic-
oscillator component in H in the sense described in
Sec. III).

In order now to compute the e, explicitly, we con-
sider the representations of Rj,~+I. For example we

may examine the "adjoint" representation in which

fo)()QR) ~+) operates on the elements of R~,N+~ as a
linear operator fN .

f(~) g(»'=—{f(»4(»)~

all Poisson brackets now being de6ned modulo E~+j.
Then clearly

{f(&)g(») =
I f(&) g(&) 3=f(&) g(&) g(&) f(&)

be stated':

(i) [af+pg j=affj+P(Lgj (a, P complex numbers),

(ii) L«p(aq+Pp) j=«p(aLql+PLpj)
(iii) ll:qj I:Hl=»
from which

exp(ap+Pq) exp(~p+Bq) j= expL —l'&~ —a8»
&exp(aLph+ttiq3) exp(~Lpl+ BLql)

and Iliatchlng powcls 1n an Obvious way onc obta1ns:

8 Bg 8 Bg
Kf3,Lgj I = ~'&

(&'"("' 'f(»)'=&"(") f(»'& "' ' ~

Thus, the approximate normal form problem is solved
if we can 6nd a similarity transformation 8' such that

&'~&vn'&' '=Z a ((p'+q')')'.

1 (ik)t' 8'f 8'g 8'f 8'g
+-I —

IBi(2) Bq' BP' Bq'BP BqBP'

83f 83g 83f 83g-
3 +" (7)

BqBP' Bq'BP BP' Bq'

It is important to point out here that

((p'+q')')'& ((p'+q')')'

In fact, even though all of the ((p'+q')')', s=1, 2,
~ S, mutually commute and, e.g., (p'+q')' can be
tab.en to be diagonal, we may not even conclude that
((p'+q')')' for sA1 are diagonal. The reason is that
Ey,g+y 1S not semisimple. Fol scmis1nlplc algcbI'as lt ls

always possible to diagonalize the elements of the
Cartan subalgebra simultaneously. If it mere possible to
treat the ((p'+q~)')' as a complete set of diagonal

matrices, our problem would then simply be to solve the
eigenvalue problem for the 6nitc dimensional matrix

a(~) and express the diagonal form of H(pg) as a linear
combination of the diagonal matrices ((p'+q')')'. The
classical problem is thus mat of this type.

One observes, however, that in quantum mechanics
the prescription for assigning operators to functions is
such that if (p'+ q') ' are made into quantum mechanical

operators P(p'+q')'$, then for all s these operators are
simultaneously diagonalizable. Thus, we guess that it
may be possi'ble to understand the normal form problem
as an clgcnvaluc problcID 1Il quantum mechanics w1th

A then sct equal to zero to obtain the classical answer.

We shall thus examine next the quantum analog of the
normal form problem. We will see that indeed we do
obtain an algebra which is semisimple, in fact simple,
but for this very reason one cannot directly carry out thc
factoring procedure used above to hand a homomorphic
6nite algebra, which required the presence of ideals.

V. THE DYNAMICAL LIE ALGEBRA OF
QUANTUM MECHANICS

The usual prescription for forming a quantum-
mechanical operator $fj from a polynomial f(p, q) may

It is thus evident that the quantum-mechanical

algebra is not isomorphic to the Poisson bracket algebra

except for k —+ 0. Further, the ideals formed by the even

polynomials do not go over into ideals in the quantum-

mechanical algebra. For example consider: f= q', q= p'.
Then {q4,p') is of degree 6 (i.e., &4) while

[Lq'J, t.'p'3 1=1«&(t:q'p'j —l &'Lqp])

and a term of degree 2 has now crept in. In fact, one may

show that the quantum-mechanical algebra has no non-

trivial ideals, i.e., it is simple. Ke are therefore con-

fronted with thc problem of 6nding some analog of the

factoring process used in IV to obtain a 6nitc algebra.

Ke must first cast the quantum-mechanical algebra

into a different form. We shall henceforth drop the L j
notation, it being understood that f means Lfg for

any f(p„q)
Consider the operators

Jo=—(p'+q') J+= (p+~q)'—
d.Q

1J = (p ~q)',-—
which satisfy

[JO,J~j=wJg, $J+,J )=2JO,

Jo'+-,'(J+J +JM+) = —3/16.

(gb)

(Sc)

' (ii) is the Qf'eyl prescription of symmetrization, e.g., it implies

LP&j=k&fPXel+LvXP3)

Wc are interested in the sct of even-order polynomials

(R)) which is spanned, e.g., by the functions (p—q))'—

(p+iq)" +, k=1, 2, ; m= —k, —0+1, , k.
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From (7):

(p 2~)
k—m (p+2~) 2+m ~ kkt' J &k—m} J kj (9)

where &2k are constants (independent of k).2 Thus, the
LJ &' "'J "j generate the algebra of the operators
associated with the polynomials of E». We denote this
algebra X@M.

It will be very useful now to consider X@M as the
special case 2 3/~6 of a family of algebras, denoted
2;&;+I}, generated by the LJ &"—m},J+kg where J&&, J~
satisfy (Sb) f&ut instead of (Sc) satisfy

J"+ 2(J+J-+J J+)=J'(i+1), (S")

with an arbitrary complex j.It is also convenient to take
foI' thc gcIlcI'RtoI's of Zi~(~+»)

(k+2&2)!
T;(k,2&2) =- LJ &k—m& J kJ (10)

(2k)!(k—2&2)!

for which we have the property

P~,T, (k,m) j= L(km') (k+m+1) j'&'T, (k, IN+1),

LJ&&,T, (k,m) j=mT, (k,2&2).
(11)

Thus, if j=0, +12, &1, , T, (k,2&2) behaves like the
Swath component of R spherical tcnsoI' of rank k.

It is not diS.cult to see from the tensor-like property
(11) that the commutation rela. tions of the T, (k,m) are
of the form

$T;(k&,2&21),T;(k2,2&22)j
=P &-"k, ,k, ,k "'+"'(j(j+1))T&(k,l&2) (12)

where 2}2=2&21+2&22 and where the summation index runs
over

k= kl+k2 1 kl+k2 3 ' ' ' 1 1f kl+ k2 ls eve11

2 If kl+k2 Is od&l,

and that the structure constants Ck, ,k,„2km(j(j+1))
of 2,&;+1} are polynomials in j(j+1) of degree
-', (kl+k2 —k —1). Hence, if one can 6nd a polynomial
expression in j(j+1) for the structure constants which
is known to be valid, e.g., at all suKciently large integer
j, then it will be valid at all coInplex j. Thus the
spherical tensor propexty at the integers may be em-

polyed to obtain, via the signer-Eckart theorem, an
expression for the C's valid at all j(j+1) and in
particular for the quantum mechanical case j(j+1)
= —3/16. This calculation is carried out in Appendix A.

Ke now come to the reason for considering the whole
family of algebras 2;0+») in the first place. In the follow-
ing it is convenient to use the notation jo whenever we
want to restrict j to the values 0, ~~, ~1, ~~,

8 The iterated commutator is de6ned for any A,B as:
PA &'&,B]=B, LA &'&,B]=)A,B], LA &"&,B]= [cf,PA &" ",B]l.

Suppose j takes on one of the values j&&. Then (11)
has a finite dimensional representation obtained by
putting for the J~, && in (10) the familiar spin j&& repre-
sentation of (Sb) and (Sc'). In this representation,
denoted T;,'(k,m), T,,'(k, &&2) =0 for k) 2j&& but not for
k&2jo. Hence we must have

ken+m, 2(j (~ +1))—0
whenever kl and/or k2& 2jo and k&2jo. (13)

But this simply means that the T&, (k,}N) with k=2j&&,

2j&&+1, ~ generate an ideal in 2;,&;,+I}.Thus, while
/@M was simple, the algebra obtained by going from

j(j+1)= —3/16 to a value j&&(j&&+1) is not simple. The
factor algebra modulo the ideal is represented by
T&.,'(k,e), k=1, 2, , 2jp, 2N= —k, , k. From the
tensor property and (10) we see that these T;,'(k,m)
constitute a (2j&&+1)2—1 member set of linearly inde-
pendent, traceless matrices. Hence, they generate the
fundamental representation of the familiar simple I ie
algebra cf2,, (the algebra of generators of the group
SU2;,~1). Thus, the factor algebra is isomorphic to A2, ,
and will be denoted Z;,0,+»)'.

Our program will now be as follows: By taking the
factor algebra modulo the ideals that appear at j(j+1)
= jo(j&&+1) we will be able to construct a 2j&&th-order

approximate normal form at j= jo just as we did in the
classical case. Moreover, since the factor algebras A2, 0

are simple, the determination of the approximate normal
form will reduce to an ordinary (2j&&+1)-dimensional
eigenvalue problem. Ke will then develop an interpola-
tion scheme in order to obtain approximate normal
forms for arbitrary j(j+1) and in particular for
j(j+1)=—3/16(i.e. Zu ).

VI. THE QUANTUM-MECHANICAL NORMAL
FORM PROBLEM

I et a Hamiltonian be given of the form

H =p2+q2+V(q2); V(x) = Q &&&k2&k, &21~ —1. (14)

Then from the identity

~Z—J k&,—J——(gZ—J ~ J )k (J 2J ——J—)k —( q2/k)k

we may expand H in terms of the generators of X&M as

H =4&IIJ&&+&,~-V(—kJ+)&, '-= —242&&IT(1,0)

(2k)!
+Q Q &2k(

—k)k( —

f T(k,2&2). (15)
k(k —m)!(k+m)!)

As in Sec. V we can generalize from ZM to Z, (,+») and
delne a generalized H, QZ; &;+I& as

H, = —2v2AT, (1,0)+p Q nk( k)k-
~ ~

(2k)!
T;(k,m) . (16)

(k —2&2)!(k+2&2)!!&'
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Suppose that there exists an element B;EZ;&;+)) such
that

es~H e s~= Q Pg(j)A'T (k 0) .
k=1

(17)

2$p

with the same coefficients P(, (jo) as in (17).The matrices
T;,'(k 0), k= 1, 2, 2jo form a complete set of diago-
nal, traceless matrices of rank 2jo+1. Thus, to deter-
mine the p), (jo) in (18) it suffices to diagonalize

2jp k

H;,'= —2v2AT;, '(1,0)+P g n), (—k)('

( (2k)!
XI I

T,, (k,m), (19)
k(k —m)!(k+m)!)

and express the resulting diagonal form as a linear
combination of the T,,'(k,0), k= 1, 2, , 2jo and read
off the coeKcients. Thus, for any j=jo, we may de6ne
a "normal form of order 2jo" as the 6rst 2jo terms of
(17), and this can be obtained from the solution of an
eigenvalue problem of a 2jo+1 rank matrix. This
2joth-order normal form has the same structure as that
in the classical case for it is easy to see that the matrices
T;,'(k,p) can be expressed as a linear combination of the
matrices (Ho;, ')", n=0, 1, ~, 2jo where Ho, ,' is the
image of the harmonic-oscillator Hamiltonian.

The matrices T;,'(k,0) span the Cartan subalgebra of
&,,&,,~&)' (i.e. A2;,) so that the existence of the normal
form (18) in fact follows from the conjugacy theorem
remarked in Sec. IV provided that we know B,p' to be
regular. This is simply proved as follows: Let x be an
arbitrary, nonvanishing complex number and consider
the algebra Zj(j+&) obtained from Z, (j+.~) by replacing
T;(k,m) by x'

gT( ,km) Then Z;(;.+g) and Z, (;+u~ are
isomorphic and the image of II; under the isomorphism
is obtained by simply replacing k in (16) by zk. Thus,
for our purposes Ig can be regarded as arbitrarily small

(&0).Hence, H, ,
' can be brought uniformly arbitrarily

close to its terms linear in k (since it is a ffnite matrix),

—jp 0
'This is due to the fact that IIpjp' ——4A '. has distinct

eigenyalues. 0 jp

Then (17) will be called a normal form of H;. Suppose
now that j takes on one of the values jo(2,1 a„)and
let T' denote the image of any element TQZ;«;,+r)
under the homomorPhism of Zjp(jp+$) into the factor
algebra Zjp(jp+g)' described in Sec. V. Then the homo-
morphic property implies

I exp(B;,)H;,exp( —B;,))'
= exp (B,,')H;, 'exp (—B;,')

In Appendix 8 it is shown tha, t for n&W —1 Eq. (20) may
be diagonalized by a similarity transformation and will
moreover have distinct eigenvalues. This suKces to
prove regularity.

Before proceeding further it is important to remark
the following byproduct of the regularity proof: Accord-
ing to a well-known theorem on 6nite matrices, if a
matrix has elements depending analytically on a param-
eter X and eigenvalues which are nondegenerate for some
value )o of the parameter, then the eigenvalues and
eigenmanifolds perturb analytically in any neighbor-
hood of Xo in which they remain nondegenerate. "%e
may therefore conclude that the quantities P&(jo)k',
j&)——k/2, (k+1)/2, are analytic functions of k in
some neighborhood of A=O. As we shall see below the
special form of the algebras Zj(j+~) will imply the
stronger conclusion that Pq(jo) is itself analytic near
6=0.

Ke now turn to the problem of obtaining approximate
normal forms of any order for arbitrary j.As we have
seen Zjo+&) has a 6nite factor algebra only for j= jo and
even in this case we can only hnd a factor algebra by
which the coe6icients of the 2joth-order normal form
may be calculated. In order to generate finite algebras of
arbitrary order and for arbitrary j we therefore resort
to the following device. The Hamiltonian H; is a linear
supelposltlon of tlM quantltles k Tr(k)m)k= 1) 2)
m= —k . k. Heretofore, we have regarded A'merely
as some given number and considered the algebra
Z, &,+u with generators T;(k,m). We now choose to
regard h as an indeterminate and consider a new algebra
which we denote g;&;+u(k) with the generators:

(km, e)—=k"+" 'T, (k,m), (21)

fg=p~~~p'gof2~~o
fact that 2,,&;+()(k) 'is an algebra, i.e., that commutators
of elements (21) are again of the form (21), is a conse-
quence of the fact previously noted that the structure
constants Cq, ,q, ," (j(j+1))of 2,&;+() vanish unless
k=k)+k2 —1, k~+k~ —3, , (1 or 2). The algebra

2, o+u (k) has a number of features in common with the
dynamical algebra associated with the classical problem.
In particular, we note that the set of elements I~ of the
form (21) with k+e—1)E, where X is any non-
negative integer, generate an ideal in 2;&;+q)(k). The
factor algebra

~~ u+~)(") (&)=(~+&)(&)PN

'P This theorem is discussed, e.g., in L. Brown, D. Pi@el, B.%'.
Lee, and R. Sawyer, Ann. Phys. (N. V.) 23, 187 I'4963).

i.e., to the terms:

—k2v2T '(1 0)

+& ) 2 1/2

+((g P I T;,'(1,m). (20)=) ( (1—m)!(1+m)!
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is a 6nite algebra generated by the elements (21) with
k+e—1(X.Moreover, we have

»u+»"'(k)«(+i&"'(k)(-»o+»"'(A)(-" (22)

Thus any of the algebras»(;+»(~& (A) 1V)0, have non-
trivial. ideals and it is quite easy to see that there are
always Abelian ideals so that these finite algebras are
not semisimple.

Referring now to (16) we see that (1/A)II, is an
element of »&;+»(k). Suppose that (1/k)H; possesses
a normal form with respect to». (;+»(k), i.e., suppose
that there exists an element B;(k) of »(;+» (k) such that

JI~
exp(B, (A)) —exp( —B;(A))

Q pz (j)A~'+"T, (k,0). (23)
k=y n=o

Denoting by a superscript (X) the image of any element
of »(,+t&(k) under the homomorphism into the factor
algebra»(;+»(~&(k) we see then that

(+. (Xi

expB & (k)~ — exp( —B & (k))
(, A

N+1 N+1—k
= Z Z ".(j)(k"--T;(k,0})("&. (24)

k=1 n, =o

The elements of the form

ks—i+~T.(k ()) and (ks-t+~T. (k 0))Ov&

generate the Cartan subalgebras of »(;+»(k) and
»(;+»(~&(k), respectively. Thus, as in the classical case,
if the normal form (23) exists the normal form coeK-
cients ps„(j) for k+ts —1&X may be computed by
finding the normal form with respect to the finite algebra
»(,+»(~&(k). Moreover, because of the property (22) it
is a simple matter to modify the algorithm described in
Sec. III used in the classical problem to obtain the
p&„(j) for k+rs —1&% in a finite number of steps. This
algorithm, described in Appendix C, also shows that
because the structure constants Cs, »,~" (j(j+1))are
polynomials in j(j+1)of degree (kt+ks —k —1)/2 that
pk„(j) are polynomials in j(j+1)of degree at most I/2.
Thus, if (23) exists, by returning to the point of view of
(16) and (17), i.e., treating A as just a given number, we
see that we may conclude that Ps(j) has the form

Ps(j)= Z A"p"(j),
+=o

where pz„(j) is a polynomial of degree at most ts/2 in
j(j+1).The properties of the finite algebra»«;, +»'
insure us that the series (25) converges in some neigh-
borhood of A=O for j=k/2, (k+1)/2, . In the
general case the existence of (25} is contingent on the

assumed existence of (23)."If we now write (25} as

Ps(i)= Z A"ps-(i)+o(A"+' ')
n=o

(26)

we see that ps(j) is determined to order k~+t-s by the
solution of the normal form problem with respect to the
6nite algebra»(;+i& (~& (k). Thus, by the solution of this
problem it is always possible to find B,(k)p»(;+»(A)
such that

ay
exp(B;(k))—exp( —B;(A))

N+1 N+1-k

ps (j)k"+' 'T (k,0)+o(k~) (27)
~=o

to which we will refer as a "normal form of II; modulo
PgN+2 &&

Because the algebras»(;~i&& '(k) are not semisimple,
the algorithm for f&nding the pt.„(j) does not directly
reduce to an eigenvalue problem as did the problem of
6nding the coeKcients of the 2jpth-order normal form
for j= jp wherein we encountered the simple algebra
A2;0. However, the fact that we have discovered the
j(j+1)dependence of p(,„(j)as a polynomial of degree
&rs/2 enables us to compute the ps„(j) in (27) by
determining Ps(j) for k= 1, 2, , 1tr+1 at the points
j=k/2, (k+1)/2, , (1&&"+1)/2 and expressing the
result in powers of k as in (26). Thus a knowledge of the
2jth order normal forms for j=2 1 ' jp enables one
to extract the normal forms at arbitrary jmodulo A2&0+'.

Thus defining

we see that

k=1, 2, ~ ~, 2jp
e;,.(j)=t4(j) .j=k/2, (k+1)/2, ' ' ', jo (29)

P;,z(j)=P&(j)+o(k'~' s) all j and k.

"It should be remarked that the knowledge of the convergence
of (25} for the in6nite set of j values k/2, (4+1}/2, ~ ~ ~ does not
insure its convergence at all complex j without some information
roncerning the asymptotic behavior of (25) for large j(j+1).

There remains one great inconvenience in the compu-
tation (28), namely that to obtain &(4(jt) for ji———',,

jp and k= 1, , 2j& we have to solve 2jp different
eigenvalue problems for matrices of rank 2, 3,
2j&&+1, respectively. We shall now, however, show that
it is possible to solve all of these simultaneously by
solving a single eigenvalue problem associated with a
2j&&+1 rank matrix. To do this we first note that we
may, using the signer-Bc%art theorem, express the
matrix elements of the spin- jo representation of T;, in
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(jovI T o'(k, m) Ii o~)

b.,„+~—o;o(km j g+ p I

—kjj j+IJ+—m),
p) p=0 1 2jo, k=1 2 2jp) (31)

where the Clebsch-Gordan coeScient and o-,.~ are dered
for complex j by replacing factorials by gamma func-
tions. The matrices T,;o'(k,m) now have the following
useful properties:

(1) T,;o'(k, m)= T,,'(k,m) for j=jo.
(2) For j/0, —,', 1, , jo—

o there exists a non-
singular matrix U& ~ with elements UI, I, & ' such that

2jp

T;, '(k,m) = Q Uoo. i"iT,'(k, m),

i.e., the matrices T...'(k, iso) generate an algebra iso-
morphic to A»0 for almost all j.The matrix U& ' may be
constructed in an obvious way by using the orthog-
onality properties of the Clebsch-Gordan coefFicients
in (30).

(3) When j takes on one of the values 0, -'„1,
, jo——,

' the matrices T;;,'(k, m) "fragment" in the
following manner: Consider for example T;;,'(k, k), for
which we have from (31)

&jovl T ''(»k)
I jo~&

I'(2j—+1)I'( +k+1)) i

= &,„+A. (32)
I'(2j—v —0+1)I'(v+1))

so that (jovI T...'(k, k) I joii&= 0 when j=-,', 1, , jo——,
'

unless both p, i are greater than 2j. Moreover, if k
exceeds 2j the matrix elements vanish for p, &&2j also.

Making use of (10) a similar conclusion is obtained
for all T...'(k, bio). Thus, at these j values, the (2jo+1)
X (2jo+1) matrices have the form:

the form

&jo ITo'(»~)ljoi &

= &, ,„+ ~,,o(kmj o j—o+pIkj oj o j—o+p+m), (30)

where p, v=0, 1, ~, 2jo, k=1, 2, ~, 2jo and"

(k!)'(2j+k+1)!)'i'~

~

~

~
~

(2j+1)(2~ —k)!J

We next note that if j is an arbitrary complex number
we can define a 2jo+1X2jo+1 matrix with elements

8 block is a 2(jo—j)X 2(jo—j) matrix and the A block
is also zero for k= 2j+1, , 2jo. One observes, in fact,
that the A block is identical with the spin- j representa-
tion of T (k,m). Thus, for these j values the elements
T..o'(k, m) with k=2j+1, , 2jo generate an ideal in
the algebra of the matrices T;;,'(k,m) and the factor
algebra modulo this ideal is the algebra g, U+~~ which is
represented by the A blocks. Thus, while the T;;o'(k,rio)

generate a simple algebra isomorphic to A2;, for j/» 1,~, jo——,', the algebra changes form when j takes one of
these values. (This process of passing from A o;o to a non-
isomorphic algebra by continuing in j from jo to one of
the "singular points" j=-,', 1 jo—-,'is a type of
contraction related to Inonu-Wigner contraction. )

Suppose then that we consider the normal form
problem for a matrix H...' obtained from H,p' by replac-
ing every T;,' by T;;,', i.e.,

2jp k

II,; '—=—262kT;;,'(1,0)+Q Q no( —k)"

H;;, '&"vi= Q Po( jo,j)k'T;,,'(k,p). (3S)

Because of the fragmentation noted above we see that

&o(ji)=po(jo, ji) (36)

for ji———',k, , jo, k=1, 2, , 2jo and hence (28)
becomes

lp

p;,o(j)= 2 po(jo, ji)
j1=k/y

io j(j+1)—j'(j'+1) )X II . . ., ., I. (37)
:',=o!' 2 (2 +1) J (1 +1)&
J Nfl

The approximate energy levels are then computed as
follows: In the approximate normal form

(2k)!
X

I I
T;;,'(k,m) (34)

k(k —m)!(k+m)!)

so that H;;,'=H;, ' for j= jo and fragments at j=—,', 1,~, jo——,
' with an A block identical to H,'. For arbi-

trary complex j we may as above diagonalize H;;,' and
express the diagonal form as a linear combination of
the matrices T;;,'(k, p), i.e., we obtain the normal form
analogous to (18):

2/0

(A 0
T... (k,m)=I

(0 a
(33) 2$p

Z Pi'o(i )k"»(k,p)
&=1

(38)

where the A block is a (2j+1)X (2j+1) matrix and the

"Clebsch-Gordan notation follows A. R. Edmonds, Angular
3fomentum in Quantum 3IIechanics (Princeton University Press,
Princeton, New Jersey, 1957). Note that one usually labels the
matrix elements by p, v= —jp, ~ ~, +jp. It is more convenient
here to redefine p, v relative to —jp so as to have integer values of
p, and v.

we insert the expressions (37) for P,,o with j(j+1)
= —3/16. For T, (k,O) we insert the diagonal matrices
defined by (10) and (8a), i.e., the matrices T(k,O) con-
structed from (10) using the usual quantum-mechanical
representation of J+ and J . The diagonal elements of
the diagonal matrix (38) are then the approximate
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energy levels, and as we have seen are accurate at least
to order 6'&'0. The method thus yields a result at least as
good as 2joth-order WEB approximation in the sense
that it contains the correction to the corresponding
approximate classical normal form to order IE'&0.

In Sec.X we shall indicate a number of tricks whereby
the above calculation can be carried out quite simply
and an example will also be worked out.

VII. THE CONCEPT OF APPROXIMATE
DYNAMICAL SYMMETRY

We shall now collect the ideas developed in the pre-
vious section into a formal definition of approximate
dynamical symmetry.

Let the Hamiltonian and a complete set of dynamical
variables generate an algebra Z. We shall say that 4
admits a "natural analytic extension" if the structure
constants C;;~(i, j, k= 1, 2, . ) of 2 possess the follow-
ing property: For each i=i, 2, there exists an
integer s(i) such that

(a) 0&s(1)&s(2) &s(3)&
39

(b) s(i)+s(j))s(k) whenever C;,"HO.

If we then consider the one parameter family of Lie
algebras 2, with structure constants:

we see that 2 is isomorphic to 2 for all x&0 and that
C;,~(x) are analytic in x for all x. One may regard the
family , as a single Lie algebra by treating x as an
indeterminate, i.e., we consider an algebra Z(x) with
generators:

(r),k) —=x"+'(")L)„I=0,1, 2, ; k= 1, 2, , (40)

in which the I.k are generators of Z. Commutators of the
elements (40) are then of the form:

L(rs(, k)), (m2, k2)]= P R)„„,)„„,'"(ii,k),
k, n

where

kn /il'+1 ~2+2 + ('+1+'+2+8(~1)+~(~2) &()~)) ~li2 ' (41)

The algebra 2(x) is mapped homomorphically into any
Z„by

()i,k) —) xo"+'(')L), (42)

i.e., that mapping which returns us to the point of view
of x as a fixed number xo. Thus, g(x) may be regarded
as the "parent" algebra of the family 2,. The im-
portance of Z(x) is that it possesses a sequence offinit,
homomorphic images. For, letting A be any positive
integer, the elements (40) for which e+ s (k))X
generate an ideal I))((x) in Z(x) and the factor algebra

Z & "&(x)—=2 (x)/I~(x) (43)

is a finite algebra generated by the elements with
ii+s(k) &X. Note that (39) was essential in obtaining

this result. The sequence of algebras Z (~) (x)X= 1, 2,
are "nested" in that each is contained in and is in fact
a factor algebra of its successors. Moreover,

z(x) = "lim" 2(")(x),
N~co

(44)

"Perhaps one of the most important problems is to topologize
this notion effectively.

~4It should be remarked that the problem does reduce to a
triangularization problem followed by expansion in terms of the
triangular matrices of the Cartan subalgebra. This, however,
complicates matters considerably.

in the sense that any finite set of elements of Z(x) is
contained in Z(~) (x) for all suKciently large X.)3 The
approximation of Z (x) by Z(~) (x) consists in neglecting
powers of x greater than the Xth. That is, the occurrence
of a natural analytic extension enables one to introduce
a natural expansion parameter for approximating the
infinite algebra 2 by a sequence of finite algebras. In the
case of Z(@M) with the structure constants C~, ,~, ,~

we found the function s(k,m) = k satisfying (39) while
the role of x above was played by h. We may conjecture
that natural analytic extensions are always associated
with fundamental physical constants which then may
be used as natural expansion parameters. This is the
algebraic structure underlying the WEB method.

The difficulty in using Z(~) (x) as approximations to
Z(x) arises from the fact that they are not, in general,
semisimple and hence do not have a very intelligible
Cartan geometry. (This is because the natural metric,
the Killing form, becomes degenerate. ) A practical
consequence was that we could not regard the normal
form problem, the solution to which is required to find
approximate energy levels, as a diagonalization prob-
lem. '4 We should like, therefore, to relate Z(~)(x) to
finite simple Lie algebras in such a way that all calcula-
tions can be done using these algebras which have a
complete geometry. Suppose then that we can find a set
of 6nite, simple I.ie algebras S))(($) (f indexes the set)
and mappings &)(((() of 2 onto S)((($) such that Cartan
subalgebras of S~($) are the images of a Cartan sub-
algebra in and such that the normal form of any
regular XgZ with respect to Z(~) (x) Li.e., the normal
form in Z(~) (x) of the image of K in Z(N) (x) under the
homomorphism of 2 into Z(~) (x)j is determined by the
normal forms in S)((($) of the image of BC in S))(($) under
&())(($). (By "determined" we mean of course that the
rule for determination be independent of the particular
element BC.) If the S))(($) are all isomorphic to a single
semisimple algebra S)(( we shall say that Z(~)(x) is
"geometrically completed" by SN.

We are now in a position to state our definition of
approximate dynamical symmetry.

Let the Hamiltonian K be a regular element of a Lie
algebra 4 generated by K and a complete set of dynami-
cal variables. If 2 admits a natural analytic extension
Z(x) the factors 2(~)(x) of which are geometrically
completed by simple algebras SN we shall say that 3'



1228 DAN I EL I. F I V EL

admits Sz as an approximate dynamical symmetry to
order x~.

In this language we have proved that one-dimensional
Hamiltonians of the form (14) in Z'@ & admit Rip as
approximate dynamical symmetries to order A~ for
X=1, 2, ."We also found that these algebras were
generated from Z&&~& by embedding X&@M' in a family
of Lie algebras Zi, (X=j(j+1)),analytically continuing
in X to certain singular points (j=-„1, ) and taking
the factor algebras modulo the ideals which appeared
thereat. This process, which we shall call "truncation, "
bears certain striking similarities to the process of
"contraction" which has been discussed extensively in
the case of finite algebras. " We are thus tempted to
conjecture that truncation can be understood in a
completely algebraic manner forming some sort of
generalization of the classical algebraic process of
homomorphism. In the next section we shall see
that the truncation parameter has a simple physical
interpretation.

VIII. EXTENSION TO TWO AND THREE
DIMENSIONS

We shall now show that the results of Sec. VI carry
over to two and three dimensions with the result that
the angular momentum 1 incorporates itself into the
Casimir operator of the dynamical algebra, and that
analytic continuation in l to the singular points may
serve to generate the truncations. In e dimensions we set

1 n 1 n

Jo=—Z(P'+v'), J~=+—Z(P.+pc.)' (45)
4' s=s 4' a=i

is integral. Thus if for 2 dimensions we put 1.'= (l+ p)'
and for 3 dimensions put 1.'= l(l+1) with /=0, 1, 2, ~ ~,
then (46) in either case becomes

Jp'+-', (JpJ +J J+)= pl(l+1) —3/16= j(j+1), (47)

where
I) 1 or j 1) 3

The one-dimensional case is simply /= 0.
In the method of Sec. VI we were able to give a

prescription for obtaining approximate energy levels
of H for all complex values of j.Hence for the two- and
three-dimensional problems we need only take as the
physical case the algebra corresponding to j(j+1)
= ~l(t+ 1)—3/16 where l is fixed by the angular
momentum of interest. Note that for / integral or half-
integral, j does rot take on integral or half-integral
values. That is, the physical algebras are free of ideals,
i.e., are simple just as in one dimension.

The method of Sec. VI involved an extrapolation in

j from its physical value to the integral and half-
integral values. In virtue of (47) we see that this is
equivalent to extrapolating in the angular momentum.
Thus already we begin to see the basis of a connection
with Regge methods which will be elucidated later on.

IX. EXTENSION OF THE APPROXIMATION
TECHNIQUE TO YUKAWA-LIKE

POTENTIALS

We shall now modify the ideas developed above to
deal with spherically symmetric potentials with a 1/r
singularity at the origin. Thus we write

Then Jp, J+ still obey (Sb) while (Sc) becomes

e(N —4)
Jp'+-,'(JgJ +JM+) = +-,'I,',

16
(46)

where
I'(~) = g/r+ (G/~) N(r),

N(r)= g y„r"
n=].

(48)

where

I'=p Z I i' I. (ciPi—P ei)
s, t=1

sgt

If in the radial Schrodinger equation

O' fi l(l+1)4"+ I'+
2m 21n r2

(49)

and I.' commutes with Jo, J+, J .
Any potential of the form V(gP+g&'+ +g„') in ip

dimensions can then be expanded in terms of the tensor
operators (10) where the Jp, J+ still satisfy (Sb) but
(Sc) is replaced by (46). The coefficients in the expan-
sion then depend only on the functional form of V and
not on the number of dimensions which shows up only
in determining the allowed values of the Casimir

operator. Thus, for 2 dimensions, the angular mo-

mentum I. is half-odd integral while for 3 dimensions it

I6 It is amusing to note the parallelism between the nesting
of the 2(+)(x) and that of the Dynkin diagrams o, o —o,
o —o —o, ~ ~ ~ of the algebras A~ which geometrically complete
them."E, J. Saletan, J. Math. Phys. 2, 1 (1960). (Other references
may be found in this paper. )

we make the substitutions

~=y' 4 (~) = y"'p (y),
we obtain

A2

pp"+ -,'Ky'+4Gu(y')+
2m 2m y'

O' li(ii+1)

where

pp= py, (50)

~= —4g and X= 2l+-,'
Thus, by this substitution, the dynamical problem for
a potential of the type (48) changes into that for a
potential of the type (14) in which: (i) the coupling
constant becomes the constant (energy) term except
for a factor, (ii) the energy becomes a spring constant,
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and (iii) the angular momentum value changes as
indicated. Thus, a solution of the energy eigenvalue
problem of (50) to yield p as a function of the other
parameters in particular E, will give an expression for
the coupling constant g as a function of the energy for
the problem {49)at the shifted angular momentum. We
shall refer to Eq. (50) as the "conjugate" to (49). Thus,
e.g., the harmonic-oscillator problem is conjugate to the
Coulomb problem. "With the scale change y= (2/E)'~'s
(assuming 840) the —',Ey' term becomes just s', and the
potential in (50) is exactly of the form (14). The
regularity condition then takes the form

Approximate expressions for the coupling constant
are now obtained from the normal forms exactly as the
approximate energy levels were computed in Sec. VI
(see, e.g., 386).This will yield expressions for the values
of the coupling constant for which a bound state may
appear at a given energy. These must then be inverted
to obtain the energies at which a bound state may
appear for a given coupling constant. Complex solutions
are then resonances. The form of these expressions will

become clear in the next section in which an example is
worked out.

pic E/G. (51)
X. PRACTICAL TECHNIQUES FOR CALCULA-

TION AND EXAMPLES
Thus, e.g., for a Yukawa potential ge &'/r, p&0, this
means

(52)

Since we are here considering only the bound-state
problem where E(0 and g(0, (52) is automatically
satisfied.

Now we apply the methods of Sec. VI to the potential
in (50). The only essential change is in the relation
between the Casimir operator value j and the given
angular momentum /. From (47)

1.e.)

That is, the physical algebra Z;~;+i) for the conjugate
potential corresponds to j(j+1)= l(l+1) where 1 is the
angular momentum given in (49). The physically
interesting values of l are integers for the three-dimen-
sional problem and half-odd-integers for the two-
dimensional problem. Thus, for these problems one is
led to an Z;(,+1) with integer and half-integer j values.
But as we have seen, these are precisely the values j at
which 2;U+~) develops ideals by means of which we
generated the truncations. Thus, for angular momentum
t', the 2lth-order approximate normal form has a special
property for potentials of the type (48), namely, that
we do not have to continue in / to obtain the appropriate
truncation —we are already there. Hence, for this case
there is no loss of homomorphism in the truncation
operation and we therefore will calculate a correct 2tth-
order normal form to all powers of A. Note that this
does not mean that this approximate normal form is the
complete solution to the dynamical problem, but merely
asserts the complete reliability of the 21th-order normal
form calculated by the method of Sec. VI qgu a 2lth-
order normal form. To obtain higher order approximate
normal forms we have to extrapolate in / as we did in
Sec. VI and will therefore be able to conclude only that
the normal forms are accurate to some power of h.

"The reader will And it amusing to obtain the Salmer formula
from the formula for the oscillator levels by making the inter-
changes described between coupling constant and energy and
shifting the angular momentum.

In this section we will show how the calculation of
approximate energy levels by the techniques described
above may quite simply be carried out. We shall then

apply the technique to the second-order approximation
(first nontrivial case) for the anharmonic oscillator and
the Yukawa potential.

We first observe that (14) can be written

e ~ He~ =4(J-p J)+V(—AJ+)=H—. —(55)

Since the levels are invariant to canonical transforma-
tion we may compute using H instead of B. The
advantage of H is that its tensorial expansion is quite
simple, namely

II=2AL2T(1, —1)—%2T(1,0))

+P np( —k) "T(k,k) . (56)
k=1

+Q np( —k)'T...'(k, k), (57)

the elements of which are, by (21),

(pi8;;,'i v)

=4&((~—j)4, —~..-iLv(2j —v+1)3'"}

»p I'(2j—v+1)1'(v+k+1) "'
+Z np( —&)'4,.+p

I'(2j—v —k+1)I'(v+1)

p, v=0, 1, , 2jp. (58)

Let the eigenvalues be Xp{j), , X», (j). We choose a
"canonical" ordering of these eigenvalues as follows:
Consider the X„(j) as a function of the para, meters
ni, np, , n», in (58) and then define X„(j) to be that
eigenvalue which takes the value 4k(p —j) when the
o.'s all vanish. Thus when j=—',, 1, —,', ~ ~, jo we know
that X&(j), X&(j), , X»(j) are the eigenvalues of H, .

The first step, then, in ending the 2joth-order normal
form is to diagonalize

8;;,'=2kt 2T,;,'(1, —1)—v2T...'(1,0)]
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The next step ls to express tllc matrices

0

as a linear combination of the matrices T (k,0). This
calculation is facilitated by an orthonormality property
of the T (k,0) obtained from the Wigner-Eclrart
theorem, namely

(ka!)'(2j+ka+1)!
Tr{T/(ka, 0)T/(k2, 0)) =8),aa, . (60)

(2ka+ 1)!(2j—ka)!

From (30), we have

(.IT (k,OI )=~..~.'(j,k),

(-1)" ~ k
C.'U, k)—= (—1)'

L(2k))]'" =»
(+~)! (2j+k-.-~)!

X — (61)
(aa+s —k)! (2j—)ta

—s)!

(the summation over all s for which the factorials have
non-negative arguments). We then obtain

(2k+1)!(2j—k)! 2i

&'p~(i o,i)= . Z 4(j)c'.'(j»)
(k!)2(2j+k+1)!N=o

for j=~~, 1, , jo, (62)

and may then compute the approximate normal form
coeKcients k'p;, ), (j) by the interpolation process

l Eq. (37)].
The final step is the insertion for the 2";(k,0) in (38)

of the correct quantum-mechanical representation,
namely

(y[T;(k,0) l
I)= i)„„C„(j,k), p, I =0, 1, 2,

4"(i,k) = ZI (—-1)'
((2k) ))a)'.=o Es

(Note that in the above, summations and products
indexed by j' and j" run over both integer and half-
Integer values. ) The value of j is then chosen to be one
of the roots j=—~, —a~ of j(j+1)= —3/16 in the one-

dimensional problem. In the two- and three-dimension. al
cases we set j=-,'l —4, 3=0, 1, 2, for angular mo-
mentum 1,, L'= (i+ a2)' (2 dimensions) or /(1+ 1)
(3 dlmenslolls).

As a 6rst example consider the anharmonic oscillator

&-—= lP I'+
I el'+2~ I el' (66)

for which we compute the second-order (jo= 1) approxi-
mate energy levels. %C must first diagonalize

-(2j) I

H „=4k j+1 —(-2(2j—1))'"
0 —j—2

0

.~&(j(2j—1))"'
(67)

Solving the secular cubic equation for the eigenvalues

Xp(J) we 6nd

X,(-;)=—2k, X,(-;)=2k;

8k ((p+2ar 8k y+47r)
Xo(i) =—cosl Xa(1)=—cos

%3 4 3 v3 3

8k y)
X2(1)=—cos —l,

K3 3)
(68)

where q is defined by

cosy =3V3nk.

From (65) we then obtain after a slight rearrangement

Collecting the above results we now have as a Anal

formula for the 2joth-ordcr approximate energy levels:

mao io 2i (2k+1)!(2j'—k)!
+is ~(j)=z z

)=I z=a) )-o (k!)'(2j'+k+1)!

XC „(j,k)p;, ,,(j,j')X„(j')e„(—j'—1, k), (65)

where p, —0 1 ~ and

(I +~)! 1"(2j+2+I +~)

(„+, k)) Z(2~+2+„+, k)
'

&I, (j)=4& 1+(s—5j(j+1)) 1—c»- (i+ad+1)
3

One may note that

C„(-j—1, k)=C„'(j,k) (64)

for j=-,', 1, , and p=0, 1, ~, 2j. l
This is a mani-

festation of the fact that the structure of 2;(;+j~ is
determined by j(j+1) which is invariant under

j~ —j—1, a fact which will be discussed further in
the next section. ]

8
+%3(sin- [(a+~+1)'—',l(a+1)j, (69)

3

sm8=343kn and @=0 1 2

'8 The root j= ——,'l —~ is excluded by the requirement of positive
energies.
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I'(r) = (a/r)~ "'"' (77)
E Eo — 0 5%3 8

=2 sin' — + sin —.
A 6 2 3

for which G= —g/r, and ri ———1/2r0 and Qnd the condi-
tion for the existence of at least one bound state. Thus
we seek a condition on g, rp in order that the l= 0 ground
state has zero energy. Setting I=+=-E=O in (76) we

obtain an equation for (—pro)'". Solving this graphi-

cally, one obtains

We see that real positive energies are obtained only as
long as

mini &1/3&3. (72)

In particular the l=0 ground-state energy E di6ers As an illustration we consider a simple Vukawa
from the l=0 harmonic-oscillator ground-state energy potential,
Ep by

2g (G E)—1/2 (74)

are the energy levels at angular momentum 2l+ —', of the
potential:

where
lpl'+lrl'+alii rl'+~ I2 rl'+",

P, =4Gr, [a(G E)5 'i'. —--
For the second-order calculation (jo= 1), this reduces to
the same form as the anharmonic oscillator treated
above with

a= ~Gri(G E) 'i'. — (75)

If we suppose then that I, E, G, and 7 i are given, (69)
becomes an equation for the allowed values of g in this
approximation, namely

gi,.= —2&(G—E)'" I+(5—sl(t+1)) 1—«s-
I

3)

X (I+p+1) v3l sin —
t l+—y+1)' 3l(t+1)—5 (76)

3

where
sing= (—343A/4)Gri(G —E) 3i'

andy, —0, i, 2,
To obtain energy levels for given g one sets g& „——g

and then solves for E=E~,„as a function of g. In doing
this it is important to remember to choose the correct
root, namely the one which gives the Balmer formual
when G= 0.'P

"Since we know that the levels (69) must be correct to order 5
(since jo——1), one can trivially extract the first-order perturbation-
theory result by computing to 6rst order in'.

~ One may observe that a solution is obtained even for repulsive
potentials. These solutions will, however, lie on the second energy
sheet. A glance at the Balmer formula for the Coulomb case will
make this quite clear.

If one wishes to consider stronger anharmonic perturba-
tions it is necessary to employ the higher order approxi-
mations jp ———,',

As a second example we consider the second-order
approximation for Vukawa-, .like potentials:

I'(r) = (g/r)+G(1+rir+~2r'+ ) (73)

for angular momentum l. By the method of Sec. IX we
erst go over to the conjugate potential and thus (after
a scale change) find that the allowed values of the
quantity

Thus the second approximation has reduced the error
in the first approximation considerably.

The third approximation entails the solution of a
quartic which can be done but is messy. The fourth and
higher orders require the solution of algebraic equations
of degree five and higher and so must be done
numerically. In a subsequent paper we shall present the
results of these computations.

XI. APPLICATION TO SCATTERING

We shall deal with potentials of the form (73) and
assume that we have applied the above methods to
compute in 2jpth approximation the allowed values of g
for given energy, angular momentum, G, r&, 7.2,

Namely,

g=g, , „(l,G,E), @=0, 1, 2, (78)

(the dependence on ri, r2, . being omitted for
convenience). We now show how these may be used to
extract corresponding approximations for the phase
shifts.

It is convenient first to set

G= gGp

in (78) and solve (78) for g to obtain

g= g,, „(l,GO,E), p, =0, 1, 2, (79)

the proper root being chosen in each case by the require-
ment that it coincide at Gp ——0 with that given by the
Balmer formula. That is the g;, „(L,GO,E) are the 2joth
approximation to the exact values

g=g„(l,GO,E), p=0, 1, 2, . . .

for which there is a bound state of given energy E an@
angular momentum l for the potential:

V(r) =g(1/r+Go(1+ rir+72r'+ )) . (80)

Let l%'„) be the bound-state wave functions correspond-

(—gro)'i'= 1.50&0.01.

The first approximation (j,=-,) for this quantity yields

(—gro) i = 2.0. Now the exact value of (—gro)' ' from
numerical solution of the Schrodinger equation may be
computed from the well-known well-depth parameter
and is

(—gro)'i'= 1.30&0.01.
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ing thereto, with the normalization

&+.I 1/r I+.&= &...
and consider the bound-state Green's function

In fact we shall next show that the approximation of

( )
(90) by

(82)

for which we have
j.«""-I+,)=—I+.&.
r R

The advantage of 6xing E and considering the eigen-
value problem in the coupling constant is that for any
V(r) which can be written as a "reasonable" super-
position of Vukawa potentials, the operator on the left
side of (83) is L' and one can apply Fredholm methods.
Hence if IV(o)& is an unperturbed (g=0) solution then

I+(.)&= I+(o)+gG(""(1/r) I+(.)& (84)

is an integral equation giving a solution I%'«)& at any
value of g. G~( ) is a function of E=k' and if we
analytically continue from the upper imaginary k axis
to the positive real k axis we obtain the scattering
Green's function:

Gi(+& =Gi(as) (k+io)

has an interesting physical interpretation.
We have noted previously that the algebra of 2;0~~)

of quantum-mechanical operators develops an ideal
when j= ~~ 1 ~3 - ..We have also noted that the struc-
ture constants of 2;(;+i) are polynomials in j(j+1)and
are therefore invariant under j—+ —j—1.Thus, 2;(;+.&)

also has an ideal for j=——,', —2 . .. If one writes
explicit infinite matrices for the operators T; (k,m) which
generate 2;U+&) and then analytically continues in j to
j=—~3, —2, ~ ~, one Ands that these ideals manifest
themselves explicitly. To see this we observe that the
quantum-mechanical operators T;(k,m) are determined
by (9), (Sb), (Sc'), the Hermiticity requirement j'o= jo+,
J+=—J +, and the requirement that Jo have only
positive eigenvalues. These requirements restrict j to
j=o, » I, and lead in a familiar way to the matrix
elements.

(Z,)„.=mr. ..
(~+)--= &-,-+ L ( ~1)—j(j+1)l'"
~eJy, ~ I&,'na

One may then show (c.f. Ref. 10) that the Jost function
is given by

fi(+'(k) det=(1 gG(—(ss)(k+ o)(1/r)). (86)

Evaluating the determinant in coordinate system
spanned by the I%'„) and using (81), one finds

with

r(m' —j.&r(,ym y1) i(o

X
r (m —j)r (jimmy 1)

m', m= j+1,j+2,

(m' —m)!

(92)

gf "'(k)= III 1——
g„(+&(I,Go,E~))

(87)

where g„&+& indicates that g„ is to be computed for
positive E=k' by analytic continuation from the posi-
tive imaginary k axis to the positive k axis. The Jost
function fi( &(k) is given by

I'!r(2j+2+e') i)P

(paJ+), —(i )n' —n,

~! r(2jg2y~) (&i'- &i)!

and if we then analytically continue these matrix ele-
ments in j to —j—j. we obtain the expression

If we de6ne new indices I', n by m= j+1+&o, m, '= j
+1+n'; e, &o'= 0, 1, 2, , we find, e.g.,

fi' '(k)= (f('+'(k))' (88)

(I'—I)!
e'! r(—2j+ip') "' 1

(i~) n' e—
I! r(—2j+I)

(93)

which has the property that it vanishes unless either:
(89)

(i) e'(2j and n(2j,

(il) I )2j alld SW 2j.
We now obtain the approximate Jost function and
5 matrix by replacing g„&+) by our approximate expres-
sions g;, „(+);thus,

That is to say, the matrix e ~+ fragments into two
block.s:

(90)

Since our goal is to obtain approximations which can
be computed in 6nite terms we must next f(nd a mean- the 2 block being a (2j+1)-dimensional matrix which

ingful method of truncating the infinite product (90). coincides with the representation of e + in the spin- j
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i(+)= $.f (6). (95)

(This is just the well-known Mandelstam symmetry of
the Smatrix: S;, i——S,, for jp=0 &2 &1 ' ~ .) When
f';, i'+'(k) vanishes because of a zero of $,, then

f;, i' )(k) also vanishes and hence the S matrix de-
velops no pole, becoming formally 0/0. Such zeros are
therefore called "indeterminacy points" (cf. Ref. 21).
Now it is easy to see that the truncated expression (91)
coincides exactly with $;, when /= —jo—1. Conse-
quently the replacement of (90) by (91) gives an ap-
proximate Jost function with the property that it
vanishes when l = ——,', —2, ~, —jp

—1 at precisely the
values of k =gE at which the true Jost function
develops a zero corresponding to an indeterminacy
point.

Even though the indeterminancy points are not true
bound states they do define points on the Regge
trajectories which are defined as the zeros of f&(k). If one
attempts to write dispersion relations for the Regge
parameters (cf. Ref. 21), in which the unitarity condi-
tion is approximated by including only a finite number
of trajectories, one Ands that a finite set of inde-
terminacy points may be taken as the subtraction
points and thus constitute the dynamical input. The
approximate Jost function (91) and the approximate S
matrix corresponding thereto contains and is fixed by
precisely the same information. Thus we conclude that

"S. C. I'rautschi, P, Kaus, and F. Zachariasen, Phys. Rev. 133,
81607 (19M).

representation of J+, J, Jp. If the infinite block 8 one
introduces indices s, s' defined by e=2j+1+s and
ii'= 2j+1+s', one observes that this matrix is identical
with (93). Clearly the same thing happens for e ~- and
hence for all T;(k,m). One may also see that the A
blocks of the matrices T, (k,m) for k=2j+1,2j+2,
vanish identically. Thus the A blocks of the T;(k,m)
represent the algebra A2, which as we have seen is the
homomorphic image of Z, U+y) when j=+» ~1, ~

Since the A blocks of the quantum mechanical operators
T, (k,m) at j= —2, —2, coincide with the matrices
which we inserted for them in the calculation of the
2 (—j—1)th-order normal form we see that the approxi-
mate energy levels E„(j),p =0, 1, 2, , of II; which we
computed by our method are exact eigenvalues of IJ;
for j= —()i+3)/2, N=O, 1, 2, , and &=0, 1,
s+1

The above observations may now be translated into
Jost function properties by virtue of the reciprocal
relationship between the Green's function and the
Hamiltonian, namely, one finds that at j=—jp—1 the
infinite determinant (86) fragments into the product of
two factors: a finite determinant which we denote $;,
corresponding to the part of 8; which goes into the A
block and an infinite determinant corresponding to the
8 block which in fact coincides with f;,(+). The finite
factor $;, is the same for f(+) and f( ) so that

the approximate 5 matrices obtained by the method
above described are the exact solutions of these ap-
proximate Regge dispersion relations.

We shall now take (91) as the final expression for our

2jpth-order approximation for obtaining the phase
shifts and examine some properties of the simple
Yukawa-potential S matrix as deduced from the second
order (j0=1) approximation. For this discussion it is
convenient to take IE=1. First of all we may inquire as
to the energy range for which we expect our method to
yield an accurate expression for the phase shifts. Since
our second-order approximation replaces (77) by

g r I r)
— 1—+-—

I

r ro 2 ro )
(96)

in the sense that higher order terms lead to zero
operators in the computation of the normal form, we

expect an accurate answer only if the energy 8=k' is
suKciently large that V(r) is negligible compared to E
in the range of r values for which (96) deviates ap-
preciably from V(r). This leads to a condition

k'»lg/ oI (97)

2/0

(101)

where

();,, )(&)(k) =arg 1—
g)0,.(+) (~&Go&&)

(102)

How much greater depends on the accuracy desired but
it is important to observe that (97) becomes weaker and
weaker as we go to higher and higher approximations
wherein more terms of V(r) are included. Hence, any
given energy can be discussed to any given degree of
accuracy by considering a sufficiently high-order ap-
proximation. If we also restrict ourselves to "nuclear-
type" potentials for which

la«l)1 (98)

then (97) and (98) yield the condition

krp)&1.

In this range the inversion of (76) to obtain the quanti-
ties g;0,„becomes quite simple, namely, one may assume
that q is small, solve for gi „and then show that the
assumption is justified by (99) for p=0, 1, 2. The
result for S waves is

2(.+1) (~+1)' '"
gi „(+)= — +2ik (p+ 1) 1+ . (100)

rp 2k'rp

In the spirit of (99) one should expand the radical to
first order. We have included the radical itself to indicate
the manner in which the familiar left-hand energy cuts
appear in our approximation scheme. The phase shifts
may now be calculated in the 2jpth approximation from
(91) and are given in general by
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One then obtains as the second-order approximation for
the 5-wave phase shift for a simple Vukawa potential in
the domain for which (98) and (99) are valid.

go . 103

In general, it will be necessary to carry out the above
calculations with a computer but no computation in-
volves anything more dificult than the solution of an
algebraic or trancendental equation.

The methods described above also yield approximate
expressions for the Regge parameters n(E) and P(E).
For example, n(E) is computed by solving

gia, y (lPO~E) =g

for t as R function of g and E. In fact it is not necessary
to first compute g;, „but sufhces to solve

g=g. .(~G,E)

for / a,nd choose the root which goes into the known
Coulomb value at Gp ——0.Thus, for the jp ——4 approxima-
tion it is only necessary to solve (76) with g~,„set equal
to g (which is a cubic in l) and choose the root l=aq, „(E)
which becomes

g—p, —1——,p, =0, 1, ~ ~ . ,
V(—E)

when G=0. To find the residue parameter P it is neces-
sary to calculate the approximate 5 matrix as described
above and compute its residue at l= o, 1 „.Numerical re-
sults foI' the Yukawa CRsc will bc pIcsentcd ln R subse-
quent paper.

Thus we have obtained a closed form 2joth approxi-
mation to the solution of the scattering problem which
may be expected to converge as jp —+~ to the exact
solution. As a byproduct we have also discovered thc
group theoretic signi6cance of the Mandelstam sym-
xnctI'y Rnd lndctcI'InlDRcy polDts.

It is important to point out that our 2joth-order Rp
proximation really ends with (90) rather than (91).The
approximation of (90) by (91) is outside of the group-

theoretical framework and may only bc expected to
yield a convergent system of approximations under the
circumstances (not yet fully understood) wherein Regge
dispersion relations with the indeterminacy points used
as subtractions converge to the correct answer when all

1DdetcI'IQIDRcy points Rlc included. This undoubtedly ls
the case if the so-called background integral can be
moved to the inhnitely far left-hand 1 plane and then

thrown away. It may well be that this is always so when

the potential admits a, normal form to infinite order, but
we have not as yet been able to establish this.

While we have succeeded in generating R purely
group-theoretic technique for the approximate solution

of two-body problems only, the method is suggestive of
an approach to I-body problems by building the
dynamlcRl RlgcbIR out of thRt of RD @-body system of
harmonic oscillators. This will no doubt lead to struc-

tures based in higher order symplectic algebras, the
occurrence of the 0~ algebra in the two-body problem

being only R manifestation of thc fRIDlllar degeneracy

among the low-rank algebras. The formahsm wiB be

more complicated but we sec no intrinsic reason for

believing that such an extension would not be possible

for interactions without singular points at the origin.

For singular interactions involving more than two

particles it is not at all evident that one can get rid of
morc thRD onc slngulaI'lty by going to R con]ugatc pI'ob-

lem via, a, canonical transformation as we did in the two-

body problem and we do not at the moment see how this

difficulty can be surmounted.
Finally we should like to point out that while there

are strong indications of rapid convergence of the

method developed (cf., the well-depth calculation for

the Yukawa case) it is of utmost importance to make the

conditions precise. From a mathematical point of view

this entails putting some rea, sonable topology on the

interpretation of an infinite Lie algebra as the limit of

a sequence of finite Lie algebras. The theory of infinite

Lie algebras is as yet in its infancy Rnd it may well be

that physics may suggest the most CGcctive way of

treating such problems.
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AI PENDIX A

An exact expression for the C~, ,»~,~™(j(j+1))is
here obtained. From the tensor property for any
integer or half-integer j,
T;(k&m2) T;(k2m2) =8, ,~„,P (k&m, k,m, !k,k,km)

X[T,(k&m&)g T;(k2m2)5&'&„,

where the tensor product is given by (cf.A. R.Ednlnds,
Ref. 12)

[T;(k&m~) XT;(k2m, )1&»„

(jll[T (k~)T (k2)7'"&!!j)
T, (k,m) 8„

(j!IT (k)!lj)

with the reduced matrix elements

(jllLT (k~) XT (k2)] "&llj)= (—1)"(2k+1)'"

kg k2
X(jllT (k&)ll j)(jllT (k2)ll j) j

(—1)'(jllT (k)ll j)

so that
tanh(2y) =~&/(2+~&), (83)

e&&-~++~ &k-( 2 (2+ng) Jo+n& (J='J~) )e& &~~~

= 2k(1+eg)u'Jo ——-', k(1+o&)'&'Po. (84)

'thus if n&Q —1, a finite y exists satisfying (83) such
that (84) is a canonical transformation of (81) into
oscillator form.

APPENDIX C

(N,sk,m)=—k"+~+"—'(j(j+1))'T;(k,m),
k= 1, 2, ~; e, s=0, 1, 2, . (C1)

Then [{Nys&,kymy), (lgs2k2mg) j is a linear combination
of (N,s,k,m)'s with coefficients independent of k and j
and vrith

e+k+2s —1= (eg+kg+2sg —1)
+ (N2+kg+2s2 —1). (C2)

Moreover,

[(n,s,k,m, T;(1,0)$=P&,„(e,s,k,m),
-k!k!(2jyky 1)!-~12

(2k)!(2j—k)!
=(2ky1)u2&, .

~
where pq is independent of k and j and p~ 00 unless
m, =0. Hence, for m&0,

Interchanging k~ and k2 one obtains the same expression A

except for a factor (—1)»+» ". Hence, from the xp
commutator:

C~,~,»~,'"(j(j+1))=&~ ~ ~~ [1—(1)"'+'~"j

(e,s,k,m)

= T;(1,0) n(e, s,k,m) —. (C3)

X!
' ' '

'!((2k,y1) (2k,y1)) ~2

& p,'&
kg k2

X {k&m&k2m2! k&k2km) X (—1)'&+»

From the familiar expression for the 6—j symbol one
may readily see that this is indeed a polynomial in
j(j+1).Hence, the above expression is valid for all
complex j.

APPENDIX 8
We n&ay rewrite (20) as

Now any regular H; can (cf. Appendix A) be brought
into the"form

AT;(1,0)+P g n&,„k"T;(k,m)

by a preliminary canonical transformation. Hence by
successive applications of inner automorphisms of the
form

exp — (n,s,k, m)

to H; we can in virtue of (C2) and (C3) bring P, into
the form

k(2(2+ni) Jo+ng(J —J~)) .
For any y we have the identity

e&&~++~-&Joe-&~~++~-& =Jo cosh(2y)
+-', (J —J~) sinh(2y).

for any given X=1, 2, ~ where p„&, are coeKcients
(82) independent of k and j.


