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A theoretical analysis of the collisions of particles with deuterons is carried out in the high-energy approxi-
mation. This approximation, which corresponds to a generalized form of diffraction theory, takes explicit
account of double collision processes as well as single ones. It is used to express the amplitudes for elastic
and inelastic scattering by deuterons in terms of the elastic-scattering amplitudes of the neutron and proton
and the deuteron wave functions, The resulting expressions are used to evaluate the differential cross sec-
tion for elastic scattering, and the angular distribution of inelastic scattering (i.e., the differential cross
section for deuteron breakup integrated over 6nal energies of the incident particle). The contributions to
these cross sections of the various single and double scattering processes and the terms which represent
their interference are exhibited individually. Expressions are derived for the total cross section of the
deuteron and for its elastic and inelastic total scattering and absorption cross sections. The difference be-
tween the various types of deuteron cross sections and the sum of the corresponding cross sections for the
free neutron and proton is explained in some detail. Spin-dependent interactions are treated, and for incident
particles of spin 2 an expression is given for the deuteron total cross section in terms of the general spin-
dependent scattering amplitudes of the neutron and proton. The theory is applied to antiproton-deuteron
collisions in the energy range from 0.13 to 17.1 BeV. The results for the total and absorption cross sections
which are calculated for a variety of models of the deuteron wave function are found to be in good agreement
with the measurements. The magnitudes of such effects as double scattering and the interference of single-
and double-scattering amplitudes are seen to be appreciable.

I. INTRODUCTION

XPERIMENTAL studies have been made in recent
~ years of the interactions of a wide variety of high-

energy particle beams with deuterium targets. Several
« these studies have been directed toward determining
the internal structure of the deuteron. More frequently,
however, deuterons have been used as collision targets
in the hope of estimating, by a simple subtraction pro-
cedure, the cross sections of stationary neutron targets.
This method has been based on the presumption that at
sufficiently high energies, i.e., when the incident-particle
wavelength is much smaller than the deuteron radius,
any deuteron cross section should be approximately the
sum of the corresponding free-neutron and free-proton
cross sections. If that is so, then once the deuteron and
proton cross sections are measured, the neutron cross
section is given by their difference.

It has become evident, however, through many ex-
periments that the deuteron cross section may differ
quite substantially, even at the highest available en-
ergies from the sum of the free-neutron and proton
cross sections. An elementary discussion of the origin
of this lack of additivity has been given by Glauber' '
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who made theoretical estimates of its magnitude for
the case of incident nucleons and x mesons. In subse-
quent experimental work much the same effect has been
observed with incident beams of antinucleons' ' and
E mesons. ' ' In particular the deviation from additivity
of the cross sections for the case of incident antinucleons
has been found in some measurements' 4 to amount to
20 to 40% of the individual antinucleon-nucleon cross
sections. Since a detailed understanding of this correc-
tion is evidently of some importance in establishing
fundamental cross sections we shall try to improve the
earlier theoretical analysis in a number of respects and
to extend its domain of applicability. At the same time
we shall take the occasion to study in detail the various

types of collision processes in which the deuteron may
participate. ' In particular we shall separate the differen-
tial cross sections for elastic and inelastic scattering
into contributions coming from single and from double
scattering and their various interference terms. %e then
illustrate the magnitudes and angular dependences of
these cross sections by calculating them explicitly for
the case of antiproton-deuteron collisions.

In each of the cases which has been studied experi-

' Q. Chamberlain, D. V. Keller, R. Mermod, E. Segre, H. M.
Steiner, and T. Ypsilantis, Phys. Rev. 108, 1553 (1957).

4 T. Elioff, L. Agnew, O. Chamberlain, H. M. Steiner, C. Wie-
gand, and T. Ypsilantis, Phys. Rev. 128, 869 (1962).'%. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic,
R. H. Phillips, A. L. Read, and R. Rubenstein, Phys. Rev. 138,
B913 (1965).

6 V. Cook, B. Cork, T. F. Hoang, D. Keefe, L. T. Kerth, W. A.
Wenzel, and T. F. Zipf, Phys. Rev. 123, 320 (1961.).' V. Franco, thesis, Harvard University, 1963 (unpublished).
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mentally at suSciently high energy, the sum of the
free neutron and proton cross sections has been found
to exceed the deuteron cross section. If we call this
difference the cross-section defect, then our first task is
to explain why the cross-section defect is so consistently
of positive sign at high energies. Part of the answer is
immediately evident when the incident particle is
capable of producing other particles on colliding with
either the neutron or proton. Particle-production proc-
esses may be considered as absorption processes from
the standpoint of their effect on the incident wave.
Thus, when particle production occurs the neutron and
proton in the deuteron cast individual shadows. 7'(hen

either particle lies in the shadow cast by the other it
absorbs less effectively than when outside it. Hence the
absorption cross section of the deuteron is smaller on
the average than the sum of the absorption cross sec-
tions of the free neutron and proton.

The shadowing eFfect, however, as was noted in
Refs. 1 and 2, is only one of several contributions to the
cross-section defect. Other contributions of comparable
magnitude come from double-interaction effects such as
double scattering and scattering by one nucleon fol-
lowed by absorption by the other. Also present in the
cross-section defect are the effects of interference of the
amplitudes for the various single- and double-scattering
processes which can occur. Although the contributing
terms are many in number, their sum is easily shown

by means of the optical theorem to be expressible in a
fairly compact and simple formula for the cross-section
defect. This expression was used as the basis of the
analysis in Ref. 1 which mentioned the various con-
tributing effects but did not treat them individually in

any detail. One of the purposes of the present paper, in
addition to presenting a more general analysis of the
total cross section of the deuteron, is to discuss the
relative magnitudes of these individual contributions
to it.'

A good deal of insight into the behavior of the cross-
section defect may be obtained, according to the analy-
sis of Ref. 1, if we assume that the ranges of interactions
of the incident particle with the neutron and the proton
are considerably smaller than the radius of the deuteron.
In that case the optical theorem shows that the cross-
section defect is proportional to the real part of the
product —f„(0)f~(0) where f„(0) and f~(0) are the
amplitudes for forward scattering of the incident par-
ticle by the neutron and proton, respectively. Since the
imaginary parts of the forward-scattering amplitudes
are positive and tend to exceed the magnitudes of the
real parts at high energies we see immediately that the
cross-section defect will tend consistently to be positive.

'Since high-energy scattering takes place predominantly at
extremely small angles, double scattering may occur with appreci-
ably intensity within the deuteron. Triple and higher order
multiple-scattering processes, however, must take place via, one or
more backward scatterings and hence tend to have negligibly
small amplitudes.

That the cross-section defect is not due solely to the
shadowing effect mentioned earlier may be seen from
its presence at energies low enough to lie beneath the
threshold for absorption, i.e., for particle production.
At sufIiciently low energies, however, there is no reason
to expect the contribution of the imaginary parts of the
scattering amplitudes to be dominant, and the cross-
section defect may have either sign.

While the assumption that the interaction ranges are
small compared with the size of the deuteron leads to
several useful insights, it was noted in Ref. 1 that
more accurate approximations must be used for nu-
merical purposes. The double-interaction effects which
contribute to the cross-section defect are all most
intense when the neutron and proton are close together
in the deuteron. The heavy weighting which is thus
given to the smaller separations means that it is quite
necessary, for quantitative purposes, to treat the inter-
action ranges as comparable in size to the average
distance between the neutron and proton. This was
done in Ref. 1 by assuming the regions of interaction
surrounding the neutron and proton to be purely ab-
sorbing spheres with radii adjusted to fit known total
cross sections. Since we often possess, at present, more
detailed information based on measurements of dif-

ferential cross sections, it is desirable to reformu-
late the analysis in terms which may be applied more
accurately and more generally. In doing this we shall

forego attempts to describe the interactions themselves
in any detail. Instead we shall express the various con-
tributions to deuteron cross sections directly in terms
of the amplitudes for scattering by the neutron and
proton and certain integrals of their products. The
means by which we do this are provided by an approxi-
mate form of high-energy collision theory' w'hich is
related to optical-diffraction theory. Several aspects of
the scattering of high-energy particles by deuterons
have been discussed by means of this approximation by
Harrington. ' The theory of deuteron stripping at high
energies may be developed in much the same terms.
Several of the cross sections for stripping reactions may
be found from the results of the present paper by simply
transforming them to the rest system of the incident
particle. ' "

The analysis is begun by presenting some of the
necessary elements of the high-energy approximation
in Sec. II. The various cross sections of the deuteron
are then calculated in Sec. III under the simplifying
assumption that spin-dependent interactions may be
neglected. The evaluation of these cross sections is then
discussed in the next section and numerical results are
presented for the case of antiproton-deuteron scattering.
Finally, the effects of spin dependence of the inter-
actions are discussed in Sec. V.

9 D. R. Harrington, Phys. R.ev. 135, 8358 (2964); Di, AB3(E)
(2965).

MV. Franco and R. J. Glauber, Bull. Am. Phys. Soc. 8, 366
(2 9'.



IC I GH —ENE I»GY DEUTERON CP»OSS SECTIONS

II. THE HIGH-ENERGY APPROXIMATION

%e shall assume, as our definition of the high-energy
domain, that the wavelength of the incident particle
is much smaller than the ranges of its interaction with
nucleons. When that condition holds, the scattering
phase shifts corresponding to relatively large values of
the orbital angular momentum take on values different
from zero. The many partial waves which are thus
scattered typically lead, through their interference, to
angular distributions which are sharply peaked near
the forward direction. We shall take advantage of these
features of high-energy coHisions in the work that
foHows by using an approximate form of coHlslon theoI'y
which is asymptotically correct for high-energy scatter-
ing at small angles. It is the use of this approximation
which makes it possible to calculate the coHision cross
sections for a two-particle target such as the deuteron
in a reasonably simple and accurate way.

To illustrate the approximations used, let us assume
that the interaction between the incident particle and
single nucleon is spin-independent and spherically sym-
metric. Then the elastic-scattering amplitude f(8) for
this two-particle system may be written in the high-
energy approximation" as

f(8) =ik JD(2kb sink8)t 1—~'"'~'lb ~b,

where 0 is the angle of scattering, k is the wave number
of the incident particle and the variable of integration
b corresponds to the impact parameter of the collision.
The integration over the latter variable is simply Rn

asymptotic representation of the sum over the angular
momenta 1=kb—-', of the partial waves which con-
tribute. The Bessel function Jo is an approximate form
for the Leg endre polynomial appropriate to small
scattering angles. The function y(b) which occurs in
Kq. (2.1) is a complex phase shift which is related to
the more familiar phase shifts b~ through the definition

When a particle is incident upon a nucleus containing
more than one nucleon the interaction which it en-
counters does not in general have spherical symmetry.
The instantaneous configuration of the nucleons in the
deuteron will not even have azimuthal symmetry in
general about the direction of the incident momentum.
For that reason wc must usc a more general form for the
elastic-scattering amplitude than is given by Kq. (2.1).
We require an expression for the amplitude of the scat-
tering produced by an interaction of arbitrary shape.
It ls shown ln Appendix A thRt R gencI'Rl explesslon fol
this amplitude, RsymptoticaHy correct for high-energy

"Sec Ref. 2, p. 345.

ik
f(k', k) =— exp'(k —k') b)I'(b)d&'&b, (2.3)

2Ã

r(b)=1—e p(4(b)j. (2 4)

In these expressions y(b) is a phase shift associated
with a particular impact-parameter vector b which is
perpendicular to the direction of the incident beam. The
two-dimensional integration is performed over the plane
of impact-parameter vectors.

The expression (2.2) is obtained by 6rst writing the
elastic-scattering amplitude in a series of spherical
harmonics and then expressing the associated Legendre
functions for smaH angles in terms of Bessel functions.
The resulting summation over angular momenta is then
transformed to an integration over impact parameters.
It is easy to show that this general result reduces to
Kq. (2.1) if the interaction has azimuthal symmetry.

The formulas we have written for the scattering
amplitude are of the correct form for describing the
collision of the incident and target particles in their
center-of-mass system. In order to compare deuteron
cross sections with those of free nucleons by calculating
scattering amplitudes in center-of-mass systems, how-
ever, we should have to make use of at least two such
systems. It is considerably simpler instead to refer all
calculations of the scattering amplitudes to the labora-
tory system, Wc demonstrate in Appendix B that the
expressions (2.2) and (2.3) for the scattering amphtude
in fact undergo very little change of form when they
are transformed to the laboratory system. Because of
the simple geometry and smRH recoil effects which are
associated with nearly forward scattering, the scattering
amplitudes in the laboratory system may be found from
the expressions (2.2) and (2.3) simply by substituting
in them the laboratory values of k and k', or of the
incident momentum and scattering angle.

It is characteristic of collisions as seen in the labora-
tory system that the incident particle transfers a certain
recoil energy to the target particle and that the magni-
tude of k' is thus smaller than that of k. This energy
transfer, which is proportional to the square of the
momentum transfer, is typically quite small for scatter-
ing near the forward direction. No appreciable error is
introduced, therefore, by neglecting the energy transfer
altogether and evaluating the scattering amplitudes
for k'=k.

It is worth noting that the derivation of the formulas
(2.1) and (2.2) for the scattering amplitude does not
assume the existence of a potential function to describe

scattering near the forward direction, is

ik
f(k', k) =— expLi(k —k') bj

2Ã
X(1—e PE~X(b)3d"'b (2 2)

which we shaH often abbreviate as
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the interaction of the incident and target particles. It
is possible to show, however, that a complex potentiaP
may always be found which describes high-energy dif-
fraction scattering. The relationship between a potential
function V and the phase-shift function x is given in
the high-energy approximation by

(2.5)

where ~ is the relative velocity of the incident and
target particles and z is a vector parallel to the incident
momentum.

We next consider the more realistic problem of scat-
tering by a system which possesses internal degrees of
freedom such as the deuteron (or more genera. lly, any
A-particle nucleus). The detailed justification of the
use of the high-energy approximation in treating prob-
lems of this type has been given by Glauber. "For our
present purposes we shall use a simplified form of this
approximation which takes advantage of the fact that
the motion of a nucleon which is part of a scattering
nucleus is characteristically rather slow in comparison
to that of a high-energy incident particle. The approxi-
mation is made therefore that the scattering nucleons
are frozen in their instantaneous positions during the
passage of the incident particle through the nucleus.
The detailed analysis shows that this approximation
amounts to neglecting the energy communicated to the
target nucleons by the incident particle. Since we are
discussing only collision processes in which the mo-
mentum transfer is small, the energy taken up by the
nucleus will be small in comparison to the incident
particle energy, and neglecting it leads quantitatively
to little error.

Let us imagine the coordinates of the target nucleons
for the moment to have the fixed values r~, , r~.
Then the wave which represents the incident particle,
when it passes through this system, will accumulate a
total phase shift which depends on the coordinates

ry, , rg as well as on the impact parameter vector b.
If we write this phase-shift function as Xi,q(b, ri, . ,r~)
and introduce the function

I"i.,(b,ri, ,r~) = 1—exp[iXi.,(b, ri, ,r~)], (2.6)

then we see from Eq. (2.3) that the scattering amplitude
for the 6xed configuration of the nucleons would be

ik
exp[i(k —k') bjl'&, &(b, ri, , r~)d "&b. (2.7)

2'

We may take account of the fact that the nucleons

are not rigidly fixed in the positions r&, ~ ~, r& by noting
that I'&,&(b, ri, , r~) can be regarded as an operator
which induces changes in the state of the nucleus

through its dependence on the nucleon coordinates,
much as it changes the momentum state of the incident
particle through its dependence on the coordinate b.
The scattering amplitude then for a particular nuclear
transition is simply the matrix element of the expression
(2.7) taken between the appropriate nuclear states. The
amplitude for a collision process in which the incident
particle suffers a deflection from momentum Ak to Ak'

while the target nucleus makes a transition from the
initial state ~i) to the final state

~ f) may therefore be
written as

ik
Fr, (k', k) =— exp[i(k —k') bj

2x

X(f ~

I'i.i(b, ri, ,rg)
~

i)d&'&b. (2.8)

The initial state ~i) will ordinarily be a nuclear ground
state, but the final state

~ f) may be the ground state
for the case of elastic scattering or any excited state
including those with unbound nucleons when the scat-
tering is inelastic.

We have noted earlier that the recoil of the target
nucleus leads to negligible energy transfer for nearly
forward scattering. We therefore ignore the recoil by
assuming that the center of mass of the target nucleus
remains fixed at the origin. Then if we introduce the
configuration space wave functions P, and fr for the
initial and final nuclear states, we may write the
scattering amplitude (2.8) as

ik
Py, (k', k) =— exp[i(k —k') b]d"'b

2T

X Pr (r„,rg)I'...(b,r.. .rg)

Xlt;(ri, ,r~) g; dr;. (2.9)

The r; integrations are carried out over A —1 nucleon
positions which may be chosen independently relative
to the nuclear center of mass. The states P, and Pr may
depend on the nucleon spins and the function I'&,& may
be spin-dependent as well. Until spin dependences are
examined at a later point, however, we shall not intro-
duce any explicit notation for them.

If the incident particle interacts with the nucleons
through two-body interactions then its total phase
shift X„„(b,ri, ,r~) will be the sum of the phase-
shift functions produced by each of the nucleons
considered individually. If the components of the co-
ordinates r~, , rg perpendicular to the direction of
incidence (i.e., parallel to the plane containing the
impact parameter vectors b) are si, , sg, then we

may write the total phase shift as a sum of the form

"See Rd. 2, p. 372.
x...(b,r„,rg) =P x, (b—s;). (2.10)
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The function rt,,t, then becomes

A

I'&,&(b,ri, ,r~) = 1—exp[i g X, (b—s;)j. (2.11)

When the scattering amplitude obtained by substituting
this expression into Eq. (2.9) is analyzed in detail it
may be shown to take implicit account of all the signifi-
cant ways in which the incident particle can be multiply
scattered by the target nucleons. (The correct treat-
ment of multiple scattering is a consequence of the fact
that phase shifts rather than scattering amplitudes are
summed. ) In treating collisions with deuteron targets
we shall resolve the expression (2.9) into a sum of
terms which exhibit single- and double-scattering proc-
esses explicitly.

III. SCATTERING BY DEUTERONS

We shall now apply the expressions obtained in the
preceding section to the case of collisions of arbitrary
particles with deuterons. To afford the most direct
insight we shall simplify the calculations for the present
by neglecting any spin dependence of the interaction
between the incident particle and the target nucleons.
Cases in which the interactions are spin-dependent are
treated in Sec. V.

We let r„and r„be the coordinates of the neutron
and proton in the deuteron so that the internal co-
ordinate is r= r~—r„. We take P;(r) to be the internal
ground-state wave function of the deuteron and pr(r)
its internal final-state wave function. The function p~ (r)
may represent either an excited state (i.e., an unbound
two-particle state) or, in the case of elastic scattering,
the ground state once again. If we use the approxima-
tion described in the preceding section, we may write
the amplitude for the process in which the deuteron is
left in a final state

~ f) and the incident particle trans-
fers momentum &&&q= h(k —k') to the deuteron as

ik
Fr, (q) =— expLiq bg d &'&b

2x

X pr*(r) f 1—expfiX„(b—-'s)+iX„(b+-,'s) j)

Xg;(r) dr. (3.1)

In this relation s is the projection of r on the plane
perpendicular to the direction of the incident beam and
X„(b—2s) and X„(b+sis) are the phase shifts produced
by the neutron and proton in their instantaneous posi-
tions. Since k, the magnitude of the propagation vector,
remains constant in the collision, we have omitted ex-
plicit reference to it in writing the scattering amplitude
as Fr, (q).

As a first step in separating the contributions of the
individual nucleons to the scattering, we introduce the
functions F„and F~ for the neutron and proton,

r(b) =
27rik

exp( —iq b)f(q) d&'&q. (33)

The accuracy of this expression for I'(b) will of course
depend on the extent to which our underlying assump-
tions are ful6lled. If the scattering is indeed highly con-
centrated near the forward direction, the contributions
to the integral (3.3) will come from momentum trans-
fers Aq which are quite small. In that case the difference
between integrating q over a plane and integrating it
over the sphere, which more correctly represents the
locus of momentum transfers kq for fixed energy, be-
comes negligibly small.

We shall denote the matrix element of any operator,
G(s), with respect to the internal coordinate by

(f)G(s) ~i)—= gP(r)G(s)g, (r)dr.

If we now substitute the identity (3.2) into the inte-
gral (3.1) and shift the origin in the b plane in the first
two resulting integrals we obtain

ik
Fr;(q) = (f ~

exp(2iq s)— exp(iq b)I' (b)d&'&b
2'
ik

+exp( —i~iq s)— exp(iq b)I', (b)d&'&b
2'

ik
exp(iq b)1'„(b——,'s)I' (b+-', s)d&"b~i).

2'
(3.4)

The 6rst two integrals maybe easily expressed in terms
of the neutron and proton elastic-scattering ampli-
tudes by means of Eq. (2.3). By expressing I'„and I'„

respectively. These are de6ned in terms of X and X„
by means of Eq. (2.4) and therefore obey the identity

1—expLiX„(b—-', s)+iX (b+-', s)j
=I'.(b——', s)+I'„(b+-,'s) —r„(b——,'s)l'„(b+-,'s). (3.2)

Since the amplitudes for scattering of the incident par-
ticle by the nucleons can be determined from experi-
ment more readily than can the functions F„and I'„,
there will be considerable advantage in expressing the
latter functions in terms of the scattering amplitudes.
This step, as we shall see, will make it possible, within
the approximations stated, to express all of the cross
sections of the deuteron in terms of the neutron and
proton elastic-scattering amplitudes f„and f~

In this connection we note from Eq. (2.3) that the nu-

cleon elastic-scattering amplitude is a Fourier transform
of I'. An approximate inversion of the transform may be
achieved by multiplying Eq. (2.3) by exp( —iq b') and

integrating the variable q over a plane perpendicular
to the direction of incidence. In this way we find
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in the third integral in terms of f and f~ and making
use of the Fourier integral representation for the two-
dimcnsional delta function, vre 6nd a result vrhich may
be vrritten as

~f'(q)=&fl~(q, s) I~},
where

~(q, s) =exp(k~q s)f.(q)+em( —2i» s)fn(q)

(3.5)

exp(~q s) (y(r) ~'dr.

Since s is the component of the coordinate r lying
parallel to the plane which contains the momentum
transfers q, this integral is equivalent to the expression

S(q) = exp(iq r)
~
y(r) ~' dr (3.7)

which we recognize to be the form factor of the deu-

teron ground state. If wc make use of this expression
for the form factor the elastic-scattering ampHtude may
be vrritten as

~;;{q)=S(-:»)f.(q)+S{—:q)f.(»)

+ S{q')f-(2»+q')f~(2» —»') d"'»'. (3 g)
27rk

The optical theorem, which relates the total cross
section to the imaginary part of the amplitude for
elastic scattering in the forward direction, allovrs us to
write the deuteron total cross section as

+ exp(i»' s)f„(»'+-',»)
2xk

&&fr(—q'+2») d"'»' (3.6)

The CRects of single and double scattering have been
separated in this expression. The 6rst tvro terms in
Eq. (3.6) are the single-scattering amplitudes con-
tributed by the neutron and proton, respectively. The
third term is an approximate form of the double-scatter-
ing amplitude, i.e., it represents processes in which the
incident particle collides with both the neutron and
proton. The absence of triple and higher order multiple
scattering terms in the expansion is due to our implicit
assumption that large-angle scattering is negligible.
When scattering is con6ned to small angles the ge-
ometry of a two-particle scattering system only allows
single and double scattering. Double scattering, in
particular, tends to take place only when the position
vector of either scattering particle relative to the other
is nearly parallel to the incident propagation vector k.

To evaluate the elastic-scattering amplitude we must
make use of integrals having the form

Similarly if we let the subscripts e and p refer to the
neutron and proton, respectively, then the free-nucleon
cross sections may be written as

4m.

0;=—Imf;(0), j =n p.
k

(3.10)

The deuteron cross section is thus expressed as the sum

of the free-nucleon cross sections plus a correction term
dependent upon the nucleon elastic-scattering ampli-
tudes and the deuteron form factor. Included in this
sum are the contributions of the fuH variety of eRects
which are due to the simultaneous presence of the two

target particles. Wc shall discuss some of these eRects
shortly.

The cross-section defect may also be vrritten as

2
80 =—S(q) [Imf„(q) Imf~( —q)

—«f-(q) «f.( »)3d—"'» (3 13)

In this form we see that it is positive vrhen the scattering

amplitudes are predominantly imaginary near the for-
ward direction, as indeed they appear to be quite gen-

erally at high energies. Hovrever, vre may expect that
at lower energies, where the real parts of the forward
amplitudes can be relatively large, Bo- can become nega-

tive, i.e., the deuteron cross section can exceed the sum

of the free-particle cross sections,
It is of interest to investigate the eRects of the

simultaneous presence of two target nucleons on the

angular dlstI'lbutlons which may bc found foI' th.c scat-
tered particles. Let us consider 6rst the total scattered
intensity, {do/dQ)„, which is obtained by summing the

squared modulus of the amplitude in Eq. (3.5) over a
complete set of final deuteron states,

~ f). We then have
a differential cross section for the sum of elastic plus
lnclastlc scattcI'lng which w'c may write as

(d~id~l). .=Z~l~r;(q) I'. (3.14)

Since we have neglected the energy differences of the
various 6nal states of the deuteron vre may use the
completeness relation

If we note that the form factor of the deuteron is unity
for the forward direction q=o, and make use of the
imaginary part ot Eq. (3.8) with q= 0, we see that the
total cross section of the deuteron may be vrritten in
the form

(3.11)

with thc CI'oss-scctlon defect 80 glvcn by

2
80 = ——S(q) «[f„(q)f„(—q)$d~'&q. {3.12)

k'

4x
Og

———ImF "(0).
k

Pr yf (r)yr(r') =b(r r')—
(3.9)

in summing over all 6nal states in Eq. (3.14). We may
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then make use of the amplitude F(q, s) de6ned by Eq. (3.6) to write the summed deferential cross section as

(d(r/dQ)„=(i
J [F(q,s) )'[i) (3.15)

1
= If-(q) I'+ I f.(q) I'+2~(q) «IJ-(q)f.*(q)j——»if-*(q) ~(q' —kq)f-(kq+q')/. (kq —q')d"'q'

xk

—zrnj "(q)js(g + 'q')y -(k+g )j„('q q-)u—~'&q'

xk

+ «I e(r) I' d"'q""'f-(2q+q')f. (kq —q') (3.16)
(2vrk)2

Kach term in this expression has a simple physical interpretation. The first and second terms are just the in-
tensities for scattering by a free neutron and a free proton, respectively, and are assumed to be peaked in the
forward direction. The third term results from the interference of the two wave amplitudes scattered by the
neutron and by the proton. %e may expect it to be even more sharply peaked than the first two terms because the
deuteron form factor S(q) is itself sharply peaked at (t=0. If double-scattering effects were neglected (as they
have usually been in applications of the impulse approximation), the total scattered intensity would consist of
only these three terms. The fourth term corresponds to the interference between the double-scattering amplitude
and the neutron single-scattering amplitude, and the fifth term has a similar interpretation with the neutron single-
scattering amplitude replaced by that of the proton. Since the form factor is sharply peaked in the forward direc-
tion, the major contribution to the integral in the fourth term will occur for q close to ~q. This indicates that
the neutron single-scattering amplitude interferes appreciably with the double-scattering amplitude only if in the
double-scattering process the scattering by the neutron occurs with a momentum transfer very close to q and the
additional scattering by the proton occurs with nearly zero momentum transfer. A similar argument holds for the
fifth term. The last term is the intensity for pure double scattering and is simply the average, taken over orienta-
tions of the deuteron, of the squared modulus of that part of F(q, s) due to double scattering.

Another angular distribution of interest is the elastically scattered intensity, (do/dQ), ~, which is obtained by
squaring the modulus of the diagonal element of F(q, s) in the deuteron ground state. This matrix element is given
in Eq. {3.8) and yields

( d/od)Q. =(iF;;(q)i'
=~'(-'q)( I f-(q) I'+

I f.(q) I'+»eCf-(q)f, "(q)3
1——~(2q) Im

I /-*(q)+/:(q) j ~(q')f. (kq+q')f. (-:q—q') d"'q'
xk

(3.17)

(2mk)'
~(qu-(-:q+qu. (-;q-q) «&q . (3.~g)

The inelastic angular distribution, (do/dQ); .(, is simply the difference between the total and elastically scattered
intensities

(do/dQ);„( ——(d0/dQ) „—(d(r/dQ), (. (3.19)

The scattering processes which are regarded as inelastic in the present context are those which excite the deuteron
and thereby dissociate it into two free nucleons.

The integrated scattering cross section, 0-, is defined as

(3.20)

where the solid-angle integration is carried out over all directions of k . Since the scattering is predominantly close
to the forward direction, the integration over the surface of the sphere

~
lr'~ =k may be approximated by an inte-

gration over the plane, in momentum space, which is tangent to the sphere at the forward direction, lr'= k The
solid angle dQ may therefore be represented approximately by d'"k'/k' where d"'lr' lies in the tangent plane men-
tioned. Since the angular distribution is a function of q= k—k and k is fixed we may equivalently replace dQ by
d(2'q/k'. With this approximation we carry out the integration in Eq. (3.20) and find that the total scattering
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(3.21)
dn&.. &'

2
* a)3d"'a=&n s(q) R

I f-(a)f („+0'y sc+

s(q~+. ', q) Imf p (a)f" a
1

P, q—q[s(q' —2
7rk8

q) imf.*(a)f-(»

(2) u (3.22)u) d(2)qd( )q d) *(q"+-',a)f.*( q a(q~+ -', q)fp(kq
(2 k')'

(3.23).„„.=— If a
1

( )I, d(2)a j=N, p

where

(3.24)

k

~
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~
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s(-;q)(!f.«)I'+If"('

I
2

') d(') q.() s(q')f. «'+")f" '
(2 a')'
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transfers, we may write the total scattering cross sec-
tion as

d(2)q

&IF(q,s) I'&

may note that some of the results of the present calcula-
tion show that this assumption is not inconsistent with
experimental values for the 7i-p and p-d cross sections. )
We therefore write

f-(il) =f.(a)=f(a). (4.1)

d"'b d &'&b' exp[iq (b—b')]
4x'

X (1—exp[zx, (b,s)])

x{1—e p[—ix..."(b',s)])d'"q).

If we now recognize in this equation the Fourier integral
representation of the two-dimensional 6 function of
argument b—b' and perform the b' integration, we find

a.,= (~ 1—exp[iXi, i(b, s)]~') d~'~b. (3.29)

The absorption cross section defined by Eq. (3.27) is
then

(1—(l e'p[~&i.i(b,s)]I')) &"'b (3 3o)

which is of precisely the form one would find by calcu-
lating the average decrease in the intensity of the in-
cident particle wave brought about by its passage
through the deuteron. '

If the function exp[iX„&(b,s)] in Eqs. (3.28), (3.29),
and (3.30) is expressed in terms of the neutron and
proton scattering amplitudes, the equivalent expres-
sions for the cross sections given by Eqs. (3.11), (3.12),
(3.22), and (3.27) may easily be reproduced.

IV. EVALUATION OF CROSS SECTIONS:
SPIN-INDEPENDENT INTERACTIONS

To illustrate a typical application of the results of
Sec. III we shall consider the case of high-energy anti-
nucleons incident upon a deuteron target nucleus. '
Since the available data on the basic antinucleon-
nucleon-scattering amplitudes are incomplete, we shall
make a number of simple assumptions to complete
their specification. Scattering problems involving other
types of incident particles may require somewhat dif-
ferent expressions for the basic scattering amplitudes,
but the calculations in which these amplitudes are used
will, in general, closely resemble those presented here.

We shall begin the treatment of antinucleon-deuteron
collisions by assuming that the amplitudes for elastic
scattering of the antinucleon by the neutron and proton
are equal. Theoretical arguments suggesting that these
amplitudes should be equal in the high-energy limit
have been given by Pomeranchuk. i3 (Furthermore, we

"I.Ia. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 30, 423 (1956)
t English transl. : Soviet Phys. —JETP 3, 306 (1956)j.

If the antinucleon-nucleon total cross section ap-
proaches a constant limiting value as the incident energy
becomes infinite then, according to the optical theorem,
the imaginary part of the forward-scattering amplitude
increases linearly with k. Since furthermore the pre-
dominance of absorption (i.e., particle production proc-
esses) tends to lead in the high-energy approximation to
purely imaginary scattering amplitudes, we may expect
that at suKciently high energies Im f(0) greatly exceeds
~Ref(0) ~. If we assume that the real part of the
forward-scattering amplitude is negligibly small in
comparison to the imaginary part then the optical
theorem relates the elastic-scattering intensity in the
forward direction, do ~ (0)/dO, to the antinucleon-nucleon
total cross section tT& by the equation

dail (0)/dQ= (kaid /4~)',

(Ref�(0)

= 0) . (4.2)

The assumption that
~
Ref(0)

~

is negligible compared
to Imf(0) may therefore be tested by comparing the
measured forward-scattering intensity to the value ob-
tained from the measured total cross section by means
of Eq. (4.2). Recent experiments" with 4-Bev/c anti-
protons scattered by protons find the ratio of the
extrapolated elastic-scattering intensity at zero degrees
to the value given by Eq. (4.2) to be 0.98+0.07. In the
following calculations we shall assume that near the
forward direction, where nearly all the elastic scattering
takes place, the scattering amplitude is purely imagi-
nary. ""In that case the antinucleon-nucleon elastic
scattering amplitude is determined by the measured
angular distribution of elastic scattering to be

f(q) = i[da~(q)/«]'". (4.3)

According to Eq. (3.12) then, the cross-section defect
may be expressed in terms of the deuteron form factor
and the differential cross section da.~/dQ by

4x
ha =— S(q) (da ~(q)/dQ, )q dq.

o

"O. Czyzewski, B. Escoubes, Y. Goldschmidt-Clermont, M.
Guinea-Moorhead, D. R. 0. Morrison, and S. De Unamuno-
Escoubes, Phys. Letters 15, 188 (1965)."If, however, the scattering amplitude has a small real part,
as recent experiments on p-p and ~-p scattering, described in
Ref. 16, have indicated for those amplitudes, the resulting errors
incurred in the cross-section defect and the various deuteron cross
sections and angular distributions would be small. For example,
if RefjIm f were as large as 0.25 for the p-p elastic amplitudes,
(i.e., as large as experiments indicate for the corresponding p-p
and m-p amplitudes), then neglecting Ref would result in an error
of less than 2% in the deuteron total cross section for the energy
range we have considered."K.J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
Yuan, Phys. Rev. Letters 14, 74 (1965); 14, 862 (1965).
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It will be convenient for numerical purposes to
adopt an analytical representation for the angular dis-
tribution d0.1q/dQ which is consistent with small-angle
scattering measurements in high-energy experiments.
It is simplest, of course, to choose one that allows an
analytical evaluation of at least some of the multiple
integrals we shall encounter. Such an angular distribu-
tion is the Gaussian

da.~/dQ =Ae—'q'. (4.5)

(It is worth noting that some theoretical arguments
have been put forward to suggest that scattering dis-
tributions are indeed Gaussian in shape at high energies
and small momentum transfers. ") The parameter A

may be determined from the measured value of the
total cross section by means of the optical theorem as
expressed by Eq. (4.2). That value is given by

A = (k~p, /4~)'. (4.6)

The parameter n' may be determined, for example,
from the measured values of the total cross section and
the elastic-scattering cross section. The elastic-scatter-
ing cross section 0.& „is given by the integral

OX sc= (4.7)

which is carried out over the direction of k'. This
integral may be evaluated in the approximate way we

have discussed in the preceding section by regarding it
as an integral over d(2&q and letting the momentum
transfers range over a plane perpendicular to the direc-
tion of incidence. In this way we obtain the relation

n —0 1q /1 6' 0 1q sc ~ (4.8)

When the differential cross section for scattering by a
nucleon is represented by means of Eqs. (4.5) and (4.6)
the total-cross-section defect given by Eq. (4.4)
becomes

2 00

8o = S(q)e
—""qdq.

4m p

(4 9)

The same assumptions regarding the form of the
antinucleon-nucleon scattering amplitude may be used
to evaluate the various types of angular distributions
and integrated cross sections for scattering by deu-

terons which were discussed in Sec. III.For this purpose
we use Eqs. (4.3), (4.5) and (4.6) to write the scattering
amplitude f(q) as

f(q) = i (k01q/4qr) e .l"q'— (4 1o)

If we substitute this expression, for example, for the
amplitudes f„and f„ in Eq. (3.16) we may evaluate
the differential cross section summed over elastic and
inelastic processes. Several of the integrations indicated
in Eq. (3.16) may be carried out analytically before the
form factor of the deuteron, S(q), is specified. When

these are done we find

4 kfT~ '
(do/dQ). .= (k01q/4qr)'2L1+S(q)]e ""—— — S(q')e '"'Iq(n'qq')q'dq' e ""

k 4m p

kg~ 4 1
+ — — S(q')e l""'q' dq' e

—l"", (4.11)
4qr (2nk)' q

where Iq(n'qq')=Iq(in'qq') is the Bessel function of
zeroth order with purely imaginary argument. In ob-

taining this expression we have used an integral repre-
sentation for the Bessel function Iq(n'qq') given by

2

(nqqq&) — e
—aqqq' cosyd ~

2'7f p

(4.12)

and have utilized the result

4n' e '~'"'I&( 2'nq' q)q'dq'= e'~'"". (4.13)

The angular distribution of elastically scattered par-
ticles is obtained from Eq. (3.18) and may be written

'7 S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962).

The intensity of inelastically scattered particles may be
found by subtracting the elastic differential cross section

from the summed differential cross section as given by
Eq. (4.11).

The scattering cross section integrated over solid

angles (for elastic plus inelastic scattering) is obtained

from Eq. (3.22) and may be written as

00

0', = 2IT1r +60 — 01q r71V —S(q) e ' qdq
4x p

=20K sc ~ose)

00

+—0-1r „' S(q)e i '"qdq (4.15)
2' p

(4.16)

in the simple form

(do/dQ) „=L2 (ko~/4qr) S (-',-q) e—l '"
—(kS~/4~)e-'""]'. (4.14)
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where Eq. (4.16) defines the defect, bo;„of the scatter-
ing cross section. Similarly Eq. (3.25) yields the inte-
grated elastic-scattering cross section

00

o.&
=—o pP S'(-,'q) e

—""qdq
2' p

&abs &d &Bo

2(&w oK ae) ~&sbs ~

(4.1g)

(4.19)

The latter equation defines the absorption cross-section
defect bo-,b, of the deuteron.

To evaluate the expressions we have given for the
various deuteron cross sections we must have some
knowledge of the form factor S(q) for the ground state
of the deuteron. Since the ground-state wave function
of the deuteron is not known very accurately, particu-
larly for small neutron-proton separations, we can only
use theoretical models to evaluate S(q). The values of
the cross-section defects have been shown&' on the other
hand to depend more sensitively on the form taken by
the deuteron wave function at small distances, than on
its form at large distances. It will therefore be interest-
ing to see how model-dependent the deuteron cross
sections are. To investigate this sensitivity we have
considered seven forms of the deuteron wave function
in calculating the deuteron total cross section. The
choice of these wave functions, we must emphasize, has
been guided by the need for analytical simplicity as
well as variety. Six of the wave functions we have
chosen represent simply plausible functions which are
available in manageable analytic form. The seventh is a
particular function available only in numerical form.
Our use of these wave functions as illustrations is not
intended, of course, to constitute endorsement of these
products.

The first of these wave functions, and one of the
simplest, is the one which corresponds to the. zero-
range approximation for the neutron-proton force,

yy(r) = (g/2m) e /y (4.20)

where the parameter a may be regarded as the reciprocal
of the radius of the deuteron. It is given in terms of the
deuteron binding energy Ez by a= (2ph 'Ee)'", where
p, is the reduced mass of the proton and neutron, and
has the numerical value a=0.232 fermi '.

The second of the wave functions is given by

$o (r) = (const) (e ~" e')/r—(4.21)

where the parameter a is the same as in Eq. (4.20).

00 5o.
——orb~ S(-,'q)e ' '"qdq+2o~„— . (4.17)

2' p &x

The absorption cross section is the difference between
the total cross section of the deuteron and the integrated
scattering cross section

The value used for b is that given by Moravcsik' in

his fit of the Gartenhaus wave function, b= j..202
fermi '.

The third type of wave function is an improved fit to
the Gartenhaus wave function obtained by Moravcsik. '
It is given by

go(r) = (const) (e '" e—'") (1—e '")/r, (4.22)

where c= 1.59 fermi —'.
The fourth wave function is a still more accurate fit

to the Gartenhaus wave function and is given by"

y4(r)= (const)(e ~"—e
—")(1—e '")(1—e o') (4.23)

where d= 1.90 fermi ' and g= 2.5 ferm '.
Although the wave functions (4.20—23) clearly have

the correct asymptotic form for large neutron-proton
separations, their exponential character leads to ex-
pressions for the integrals in Eqs. (4.9), (4.15), and
(4.17), for example, which can only be evaluated by
numerical integration. Since, as we have noted earlier,
the double interaction effects arise largely from small
neutron-proton separations, there is no need to restrict
the approximate wave functions to choices having the
correct behavior for large separations. It becomes
possible to evaluate the integrals in Eqs. (4.9), (4.15),
and (4.17) analytically, for example, if we approximate
the deuteron wave function by means of the simple
Gaussian

yo(r) = (2P /~)'"e e'". (4.24)

For this wave function we take P'=0.0961 fermi —', the
value obtained by Verde" by minimizing the energy of
the trial function for the deuteron ground state by
means of a variational method.

A possibly more accurate wave function for which the
calculations may still be carried out analytically is
given by the sum of three Gaussians

yo(r) =P.P2133e o.os~ +P Pg5g2, —o.i«o

+0.18115e—o.vo. (4 25

which was suggested by Christian and Gammel. "This
expression represents a fit to a wave function they ob-
tained for a specific Gaussian form of interaction.

None of the analytical representations of the deuteron
ground-state wave function, g~, . , go, allows for the
presence of a hard core in the neutron-proton force. To
illustrate the effect of a hard core on the cross-section
defect we consider as a seventh type of wave function,
g7, the one obtained by Hamada and Johnston'~ which
has a hard-core radius of 0.486 fermi. This wave func-
tion, which has been presented in the form of numerical
tables, includes a representation of the small D-state
admixture in the deuteron ground state.

"M. J. Moravcsik, Nucl. Phys. 7, 113 (1958).
"M. Verde, Helv. Phys. Acta 22, 339 (1949)."R.S. Christian and J. L. Gammel, Phys. Rev. 91, 100 (1958)."T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
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The form factor Si(q) for the wave function If i(r) is

Si(q) = (2a(q) tan-'(q/2a), (4.26)

and t"e form factor Ss(q) for tlie wave function @~(r) is

Sn (q) =e- ' 's'. (4 2&)

TARSI.E I. Deuteron total cross sections. Measured antiproton-
proton and antiproton-deuteron cross sections are shown in col-
umns 2, 3, and 4. The antiproton-deuteron total cross sections
calculated using the wave function @4 are shown in the last
column. All cross sections are in millibarns.

0.133
0.197
0.265
0.333
0.534
0.700
0.816
0.948
1.00
1.068
1.25
2.00
2.47
3.17
5.1
7.1

11,1
13.1
15.1
17.1

(expt)

166 +8
152 ~7
124 ~7
114 ~4
118 w6
116 ~5
108 ~5
96 ~3

100 a3
96 a3
89 w4
80 ~6
75.4~2.0
71 &1
59.3%1.1
56.4w0. 8
51..7~0.8
50.7&0.9
49.2~0.8
50.3~3.6

&N se

(expt)

72 ~10
64 ~8
50 ~7
49 ~6
42 ~5
42
38 ~4
33 &3
32 &2
30 ~2
28 ~2
25 ~4
21.9~1.1
19.8~0.7

11.6~0.4

210 &5
189 a5
196 a6
178 ~5

106.9m 1.3
102.7&1.3
96.1&1.3
95.0%1.4
93.2w1.6
87,2&6.1

(cale)

285
263
219
202
211
207
194
174
181
175
163
147
139.6
132
111.6
1.06.4
98.1
96.3
93.6
95.5

~C. A. Coombes, B. Cork, G. R. Lambertson, and W. A.
Wenzel, Phys. Rev. 112, 1303 (1958).

~ R. Armenteros, C. A. Coombes, B. Cork, G. R. Lambertson,
and %'. A. Wenzel, Phys. Rev. 119, 2068 (1960).

24 T. Ferbel, A. Firestone, J.Sandweiss, H. D. Taft, M. Gailloud,
T. W. Morris, W. J.Willis, A. H. Bachman, P. Baumel, and R. M.
Lea, Phys. Rev. D7, 81250 (1965)."K.J. Foley, S. J. Lindenbaum, %. A. Love, S. Ozaki, J. J.
Russell, and L. C. Yuan, Phys. Rev. Letters 11, 503 (1963).

The form factors for the wave «n«ions q4, 43, »d 44
are just linear combinations of arctangent functions
multiplied by q i, and for &6 the form factor is just a
linear combination of Gaussians. The form factor for
the wave function p7 has been obtained by numerical
integration.

We have summarized the experimental input data
and the results of one of our calculations in Table I.
Columns 2, 3, and 4 of that table show the experimental
values of the elastic and total cross sections of the
proton4' ~422 " and total cross sections of the deu-
teron'' for instances in which at least two of these
cross sections have been measured at the same energy.
The measurements of the elastic-scattering cross section
of the proton which have been carried out at energies
above 4 BeV have, with a single exception, been made
at energies other than those listed in the table. We 6nd
that those measurements are consistent with an energy-
independent value of the parameter 0,', defined by Eq.
(4 5), of ~0.50 fermi'. Since this value is consistent with

350 & -
I I I I I I I I I

300-

lO

S 250-

E

c 200

V)

~p l50-
C3

O

IOO-
Cl.

50—

I I I I I lltl I I I I I IIII
O.I 0.2 05 I 2 5 IO

Antiproton Kinetic Energy. (BeY)

FIG. 1. The theoretical total cross sections for antiproton-
deuteron collisions as a function of the incident antiproton labora-
tory kinetic energy. The deuteron wave function used ls qb3, Kq.
(4.22). The two lower curves are smoothed representations of
the indicated measurements of the total and elastic antiproton-
proton cross sections. The deuteron total cross sections which
are calculated from the smoothed data are given by the curve
labeled og. The uppermost curve represents twice the antiproton-
proton cross section. The total cross-section defect is the difference
of the ordinates of the two uppermost curves,

direct measurements of the high-energy antiproton-
proton scattering angular distribution, we have used it
in place of the values of the elastic cross section at the
energies above 4 BeV in the table. The fifth column of
Table I shows the values of the deuteron total cross
section which are calculated according to Eq. (4.9) by
making use of the wave function f4 which presumably
is the most accurate of the analytically presented wave
functions we have considered. The over-all agreement
of the calculated total cross sections of the deuteron
with the measurements is seen to be quite good. It is

perhaps indicative of some systematic error, either
theoretical or experimental, that at the energies above
4 BeV the calculated values of the cross section exceed
the measured values, though only by amounts lying
within or near the quoted probable errors.

We show in Fig. 1 the way in which the actual cross
section of the deuteron di6ers, as a function of energy,
from the sum of the cross sections of the two nucleons.
As input data in the calculations for this graph we have
used the curves indicated there which have been drawn
to 6t the measured values of the total and elastic proton
cross sections. The deuteron wave function used was &3.
We observe that the cross section defect decreases
quite slowly with increasing energy. The graph shows

quite clearly the importance of ba in calculating the
cross section of the deuteron.

The dependence of the total cross-section defect
upon the deuteron model used is indicated in Table II
for the energy range 0.13 to 3.2 BeV. The columns
headed 50., represent the values calculated for the total
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0.534, 1.00, and 2.47 SCV are then 134, 68, 49, and 28
mb, respectively. These estimates are more than a
factor of two larger than the values listed for the same
energies in the column headed bo-2 in Table II. The
simple formula (4.31) is evidently not very reliable in

RCCuI'RCy.

The presence of a hard-core interaction, which tends
to keep the neutron and proton apart, can improve thc
accuracy of the approximate expressions given by Kqs.
(4.30) and (4.31) since it gives zero weight to the
region in which r ' is singular. To test this possibility
we note" that for the wave function Q7, the average
value of r ' is 0.273 fermi —'. This value, used in Eq.
(4.31), leads to estimates of the cross-section defect of
30.2, 21.7, and 12.3 mb at energies of 0.534, 1.00, and
2.47 BeV. These values are 6 to 16% larger than the
values of the cross-section defect for the same energies

given in the column headed 80-7 of Table II.
To test the sensitivity of the cross sections to the

assumption that the angular distributions of scattering
are Gaussian in form we have also carried out a calcula-

tion in which the angular distribution is taken to be
that due to diffraction by a grey disk. For this inter-
action the function 1'(h) takes the form

P —2+&P +N eeJ ~
1 /' (4.35)

The angular distribution for elastic scattering is then

doN/dQ= (koN/47r) [2Jt(pq)/pqg . (4.36)

The wave function used for this calculation is the form

Ps given by Eq. (4.21).
Typical values for the cross section defects are then

found to be 48, 26, 20, and 12 mb at energies 0.133,
0.534, 1.00, and 2.47 BCV, respectively. These values

are seen to differ little from the ones listed for the same

energies in the column headed bo 2 in Table II.The latter
values were calculated with the saro.e deuteron wave

function &2, but with the Gaussian form of angular dis-

tribution for scattering. This insensitivity of 50. to the

form used for the scattering amplitudes is in fact sug-

gested. by the approximate expression (430) which

depends only on the forward-scattering amplitudes. The

more correct expression, Eq. (3.12), depends on the

26 R. A. J. Riddle, A. Langsford, P. H. Bowen, and G. C. &ox,
Nucl. Phys. 61, 457 (j.96S).

(432)=0, b&p,

where p is the radius of the disk and f' is a positive
parameter less than unity. The elastic scattering ampli-

tude is then
f(q)=s(1—l)&pr'~t(pg). (433)

The parameters f and p are determined from Eqs. (4.2)
and (4.7) to be

(4.34)
and

O

a

os

lo 2
a

I I I I I

A-'Elastic Scattering Angular Distribution for
p-d Collisions at 2.0 BeV - {dV/dn) el

AA:A x 500

O

l l 5 2 25
Momentum Transfer q, (Fermi ')

I p
5.5

FrG. 3. The theoretical angular distributions for elastic scatter-
ing, inelastic scattering, and their sum for antiproton-deuteron
collisions as a function of momentum transfer g. The incident
antiproton laboratory kinetic energy is 2.0 Beg and the deuteron
wave function which is used is @2, Eq. (4.21). The angular dis-
tribution for elastic scattering for q&2.1 fermi ' is given by
curve AA with the scale on the right side. The intensity for
inelastic scattering (multiplied by a factor of 5) is shown in
curve C.

scattering amplitudes for small but nonvanishing mo-
mentum transfers. The power series expansions of the
two scattering angular distributions we have used are
in fact the same until the q' term is reached.

As we have noted in Sec. III, the high-energy ap-
proximation may also be used to investigate the angular
distribution for elastic scattering and that for the sum
of elastic plus inelastic scattering. We have calculated
these angular distributions' for an incident antiproton
energy of 2.0 BeV by means of Eqs. (4.11), (4.14) and,
the wave function Ps. As input data we have used the
antiproton-proton cross-section measurements shown in
Table I. The results are shown in Fig. 3. Wc see that
elRstlc scattcI'lng donllnRtcs ncRI' the forward direction
as might be expected. We also observe that the differ-
ence shown in curve C between the angular distribution
for elastic plus inelastic scattering and that for purely
elastic scattering does not vanish for zero momentum
transfer. It is of course not surprising that some of thc
forward scattering should be inelastic in character, but
the statement that this scattering is associated with
zero momentum transfer requires some clarihcation.
For this purpose we must recall that the energy change
of the incident particle upon scattering has been as-
sumed negligibly small. For small momentum transfers,
therefore, kq represent only the part of the momentum
transfer which is transverse to the direction of inci-
dencc. This component nRtul. Rlly VRnlshcs when thc
angle of scattering vanishes. Double-scattering proc-
esses in which the transverse momcnta communicated
to the two nucleons are equal and opposite and sufB-
clclltly str'OIlg to dlssoclRtc the dcutclorl lllakc up thc
inelastic contributions to forward scattering.
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FIG. 4. The theoretical components of the total angular dis-
tribution for scattering (inelastic plus elastic) in antiproton-
deuteron collisions as a function of momentum transfer q. The
incident antiproton laboratory kinetic energy is 2.0 SeV and the
deuteron wave function used is p2, Eq. (4.21). The terms of Eq.
(3.16) to which the four curves correspond are indicated in the
figure. Curve A represents the sum of the single-scattering cross
sections and 3 is the contribution of the interference of the two
single-scattering processes. Curve C is the contribution of the
interference of the single- and double-scattering amplitude (which
is negative) and D is the angular distribution for double scattering.

1.5
) d(2)q

which the intensity is appreciable, except for the for-
ward direction. There it shares this distinction with the
simple interference term for the nucleon-scattering
amplitudes, which is represented by curve B and is
highly peaked near the forward direction. Curve C
corresponds to the contribution from the interference
between the single- and double-scattering amplitudes
and is seen to be negative, and curve D represents the
direct eA'ect of double scattering. The total scattered
intensity shown in Fig. 3 is obtained by adding all the
curves.

Figure 5 shows a similar analysis of the contributions
of the various collision processes to the angular dis-
tribution for purely elastic scattering. In this distribu-
tion the interference term contributed by single scatter-
ing takes the same form as curve A which represents
the sum of the elastic single-scattering terms con-
tributed individually by the two nucleons. Curves 3
and C represent the interference between single and
double scattering and the contribution of double scat-
tering, respectively.

The various contributions to the intensity of inelastic
scattering, or scattering accompanied by deuteron
break-up, are given in Fig. 6. Curve D in this figure
shows quite clearly that the inelastic scattering which

We note in Fig. 3 that there is a zero in the elastic
scattering angular distribution at (=2.5 fermi '. This
occurs as a result of a cancellation of the elastic single
scattering amplitudes which predominate at small
angles with the elastic double-scattering amplitude
which predominates at large angles. It is also evident,
however, that the elastic scattering is quite weak in
intensity for q&2.5 fermi '.

We have shown in the preceding section that the
angular distributions of scattering may, by means of
the high-energy approximation, be resolved into their
various single and double interaction components, In
Figs. 4, 5, and 6 the various components of the angular
distributions are shown for antiproton-deuteron colli-
sions at 2.0 BeV. These calculations' are based on the
wave function Q2.

Plotted in Fig. 4 are the single and double scattering
and interference terms which contribute to the angular
distribution for elastic plus inelastic scattering. By
referring to Eq. (3.16) and recalling that the neutron-
and proton-scattering amplitudes have been assumed
equal, we see that curve A in Fig. 4 represents the con-
tribution to the total scattered intensity from the two
nucleons considered individually. It furnishes the major
contribution to the scattered intensity at all angles for

o 10
O

(h

o 0.5

O

0

-0.5

l.5 2 2.5
Momentum Transfer q, (Fermi )

I

3.5

FiG, 5. The theoretical components of the elastic-scattering
angular distribution for antiproton-deuteron collisions as a func-
tion of momentum transfer g. The incident-antiproton laboratory
kinetic energy is 2.0 BeV, and the deuteron wave function used
is p2, Eq. (4.21). The terms of Eq. (3.18) to which the curves A,
8, and C correspond are indicated in the Ggure. Curve A repre-
sents both the sum of the single-scattering contributions and their
interference term. Curve 8 represents the contribution of the
interference of the single- and double-scattering processes, and C
is the angular distribution for elastic-double scattering. The curve
labeled

i fig) is is the antinucleon-nucleon elastic-scattering angu-
lar distribution and is shown for reference.
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A: a[i-s'(A2)](f(q))~
the nucleon scattering matrix in the high-energy
appl oxlmation.

Since the interaction between an incident spin--,
particle and a neutron or a proton is spin-dependent,
the nucleon scattering matrices may be regarded as
operators in spin space. These operators may be ex-
pressed in terms of the Pauli spin operators e, for the
incident particle, and e„and e„,for the neutron and the
proton, respectively. In the high-energy approximation
the nucleon scattering amplitude operator is given by
the generalization of Eq. (2.3),

ik
M;(q, k,e,a;) = e—xp(iq b)l';(b k,e,c;) d&'&b,

2r
j=e, p. (5.1)

l.5 2 2.5
Mornenfum Transfer q, (Fermi ')

FxG. 6. The theoretical components of the intensity of inelastic
scattering in antiproton-deuteron collisions as a function of mo-
mentum transfer q. The incident antiproton laboratory kinetic
energy is 2.0 Beg and the deuteron wave function used is pg, Kq.
(4.21). The expressions vrhich the four curves represent are de-
rived from Eqs. (3.16), (3.18), and (3.19) and are indicated in
the Ggure. The physical processes which give rise to these con-
tributions are the same as for the correspondingly labeled curves
of Fig. 4.

is observed in the forward direction is contributed by
double-scattering processes. The inelastic angular dis-
tribution shown in curve C of Fig. 3 is the sum of the
four curves in Fig. 6.

V. SPIN-DEPENDENT EFFECTS

In this section we consider the inhuence of the spin
dependence of nuclear forces on the deuteron total
cross section. ' We do this by expressing the spin-
dependent deuteron scattering matrix in terms of the
nucleon scattering matrices and the deuteron wave
function. We begin by discussing an expression for

The function I'; is to be regarded as an operator in
spin space, as is the scattering amplitude 3E;. The
total cross section for unpolarized nucleons is given,
according to the optical theorem, by

4x
0,=—Im4 TrM (O,k), j=e, p, (5.2)

where the symbol Tr stands for the trace taken over
the composite spin space of the incident particle and
the target nucleon, The trace occurs in this expression
together with the factor ~~ because the particles are
initially unpolarized and we must average the cross
section over their possible spin orientations.

We observe that bemuse of the spin-dependence, the
interactions of the incident particle with the neutron
and proton are not in general commuting operators, a
property which is reAected by the fact that the func-
tions F„and I'„, for the neutron and the proton, will
in general not commute. To give as simple an insight
as possible into the spin-dependence of the double
scattering, we shall use an approximate form for the
spin-dependent scattering amplitude of the deuteron,
which we construct as a generalization of Eq. (3.4).
We take this to be

ik ik
Vlf, (rf ee„,e~) = (f ~

exp(~iq s)— exp(iq b)I'~(b~o )d&"b+ exp (—2iq s)— exp(iq b)i'„(bee„) d&"b
2x 2~

ik
exp(iq b) —',{I' (b—2s, e,e„),I'~(b+~s, ea~)}d&'&b~i), (5.3)

2Ã

where {I'„,I'„} is the anticommutator of I'„and I'~,
defined by

The use of this anticommutator in the double-scattering
term of Eq. (5.3) is indicated by the fact that the in-

dividual collisions with the neutron and proton may
take place in either of two orders.

This expression is only an approximate rendering of
the scattering amplitude in the high-energy approxima-
tion. The further approximation which has been im-
plicitly made lies in neglecting the commutator of the
spin-dependent parts of the interaction of the incident
particle with the neutron and proton when the neutron
and proton are so close together that the interaction
regions surrounding them overlap appreciably. The



approximation may be a good one to the extent that
the deuteron is loosely bound or that the spin-depend-
ence is weak.

To obtain the deuteron scattering amplitude, 5Ef;, in
terms of the neutron and proton amplitudes, we invert,
Eq. (5.1) to express r„and I'„ in terms of 3E„and M„,
and substitute the result in Eq. (5.3). We then obtain

=(f~M (q) exp(-', iq s)+M„(q) exp{—-', iq s)

techniques of Ref. 2 may be used to show that the
operator F assumes the form

1'=1—exp{iLx,{b)+X,(b)(oi+e,) (b xk)
+X.(b)oi s2j}. (5.9)

The phase-shift functions in this expression are given
by the integrals

00

&;(b)= —— V, (b+s}ds, i=c, s, a, (5.10)
Sv

which are taken along straight-line paths as in other
exp(iq 's)2%~(q+2q)~ ~i( q+~q)} applications of the high-energy approximation. If we

(5 4) deane
N(b) =kbx, (b), (5.11)

To And the deuteron total cross section O.q we use the
optical theorem,

4x
0„=—Im-', {Trawt (0}}, (5.5)

2
S(q) Re{-', Tr(PgM (q)M„(—q)$} d&'&q.

k'
(5.7)

To furnish a concrete illustration of the formalism
let us assume that a complex spin-dependent potential
operator exists. We may assume, for example, that the
interaction potential between two spin--, particles (e.g.,
the incident particle and a nucleon) has the specific form

V(r)= V, (r)+V, (r)(ei+s2) L+V.(r)ei e2, (5.8}

where L is the orbital angular momentum operator for
the incident particle in units of A,

L=h 'r&y,

and e~ and e2 are the Pauli spin operators for the
pRrtlclcs.

We begin by investigating elementary collisions be-
tween two spin-~ particles in order to obtain the form
of the scattering matrix in the high-energy approxima-
tion. This analysis will show how the various spin
amplitudes and the corresponding phase-shift functions
are derived from the interaction potentials. When the
interaction takes the general form in Eq. (5.8), the

where the brackets {}mean the average in coordinate
space, taken with respect to the deuteron ground state.
TI'3 means thc trace ovcI' the spin spRcc of thc lncldcnt
particle and the triplet states of the deuteron, and may
be obtained by using the triplet-state projection opera-
tor, E3, given by

Ea=-', (3+v. o,), (5.6)

ln conncctlon with thc tI'Rcc ovcI' thc composite spin
space of the neutron, proton, and incident particle. In
this way we obtain the expression for the cross-section
defect

+rii{b)ei (b&k)e, (bxk)

+I', (b) (e,+e2) (b x k)fd&'&b, (5.12)

r, (b) = 1—-', exp(ix, (b))
X{{expL—3i&,(b)$+3 expLix„(b) j}cos „(b)
+{expL —3Ã.(b)$—expLix. (1)j}sin'I (b)),

(5.13)r.(b)=-,' expLix, (b))
X{expL-»x.(b)j-expLix. (b)3}, (5 14)

r, (b) =exp{iLx,(b)+x.(b)1}sin2N(b), (s.ls)
r, (b)= i exp{iLx,(b)+x,—(b)j}

Xsinu(b) cosN (b) . (5.16)

If we recall that these formulas describe small-angle
scattering and specialize to the case of potentials with
axial symmetry, we And that the scattering matrix may
be expressed in the general form

M(q k 0'1 ir2)

=A (q,k)+B(q,k)ei s2+C(q, k) (ei+e2) A

+D(q,k)ei. ~2 a+a(q, k)ei ge, g, (S.17)

where the unit vectors are dehned by

j= (k—k') j)k—k'(, (5.18)

in which
8= ggE)

X= (k+k')/~ k+ k'j .
The algebraic form of Eq. {5.17) is in fact the most
general one the scattering matrix may take when re-
stricted by the assumption of charge symmetry and
invariance under rotation, reQection and time reversal.

and use the algebraic properties of the spin operators
to express the exponential in Eq. (5.9) in terms that
are linear and bilinear in the e's, we obtain the relation~

ik
M(q, k,e,,e2) =— exp(iq b)Lr, {b)+r.(b)ei o2

2'
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b, I', (b) d"'b,A (q, k) =— exp(iq.
2

(5.21)
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2

C(q,k)= —k jg(qb)I', b bdb,
0

(5.22) and

c.(q)=c,(q) =c(q).
defect then becomesThe cross-section e ec(5.23)

(5.30)

8o.= ——$(q) Re(A' —-'pc')d'@q.
k2

00
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th
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'on vector of the incident plane

vector measure
k

'
the propagation vector o e ne

} 0' th tt'The angle 0 isin the scatterer.
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measured with respect to the direction of the incident
beam, which we take to be that of the positive s axis,
and y is the azimuthal scattering angle measured with
respect to the positive x axis. The elastic-scattering
amplitude may be expanded in a series of spherical
harmonics which takes the form

oo l

f(g, v)=Z, 2 fi-(g, v),
l~m —l

(A1)

where

f ia (g, y) = (2l+1)(Si„—g~c)e'"+Pi"(cosg) (A2)
2ik

we obtain the expression

2 zl co

f(g +) g()+1)ezi(l+$) sin-', 8 cosa

2mzk p

l

X[g z (I+,')"S&„e'-"&~~ & 1]d&—(AS)

for the scattering amplitude. By defining

and

(A6)

and the coefhcients Sl are determined by the scattering
interaction. In particular, for azimuthally symmetric
potentials Si may be written in the form 8 o exp(2ig&)
where bl is the phase shift for the 3th partial wave.

Near the forward direction the associated Legendre
function is related to the Bessel function by the
asymptotic relation

Pi (cosg) (—)~(l+-', ) J [(2l+1) sin-', g], (A3)

which is due to Macdonald. ' If we insert Eq. (A3)
into Eq. (A2) and replace the Bessel function by its
integral representation

z
—nl 2g

[(2/+1) sinlg] ei(zion sin, 8 cosa+i@and& (A4)
2' p

scattering interaction, the summation over / in the
integrand of Eq. (AS) contains many terms and may be
accurately approximated by an integral. If we define
an impact distance k by the relation kb=l+ —',, the
integral may be expressed as one carried out over the
variable b. It is convenient for this purpose to define the
complex phase shift x(bye) via the relation exp[i'(b, f)]
=A(l,f). We may then rewrite Eq. (AS) as the
approximate expression

ik
f(g Zs)

— ezibb sin)8 cosa[1 eix(b, Z~]bdbdn (A9)
2' p p

for the scattering amplitude.
By taking 0, to be the angle that the impact pa-

rameter vector, b, makes with the positive x direction
and using the sma/1-angle expression

(k—k') b= 2kb sin-', g cos(u —q+~)
we obtain

ik
f(g,.) = -—p['(I -1') b)(1- ~['x(b)])«»,

2'
(A10)

where the integration is over the plane of impact
parameter vectors.

APPENDIX B

A number of applications have been made in the text
of the fact that the formulas which describe small-
angle scattering in the laboratory system are of essen-
tially the same form as those which describe it in the
center-of-mass system. To demonstrate this property
we consider the transformation of the expression (23)
for the scattering amplitude from the center-of-mass
system to the laboratory system.

We let y be the ratio of the incident-particle total
energy in the laboratory system (i.e., kinetic energy
plus rest energy) to its rest energy, and X be the ratio
of the mass of the incident particle to that of the target
particle. We define relativistic factors y~ and y2 to be

l

g (t lk) p z
—m(t+1)aS eimp

m l

we may write Eq. (A5) as

(A7)
~&——(1+X~) (1+n~+Xz)-»z

yz= (X+y)(1+2XyjX') "'

f(g, v) =
2xik

2% Qo

p ()+1)eziil+q) sins8 cosad+[+ ()p) 1]
p lM

(AS)

Because the wavelength of the incident particle is
assumed to be much smaller than the range of the

and use subscripts C and I- to denote quantities associ-
ated with the center-of-mass and laboratory systems,
respectively. The familiar Lorentz transformation from
the center-of-mass system to the laboratory system
yields's

kr, ——(yi+ Xps) k o

» H. M. Macdonald, Proc. London Math. Soc. 23, Ser. 2, 220
(&9j.4)'.

» See, for example, K.S.Mather and P. Swan, 2Vucleur Scutter-
Azg (Cambridge University Press, Cambridge, Englg, gg, 1958).
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fl, (kr.',kl) = [sin'dc+ (yc cosmic+&ys)'js'4

X ('Yl+X'ys cos()c) fc(kc ykc) ~

For small-angle scattering we may write the latter rela-
tion Rs

fr, (kr, ',kr, )= (y t+) ys) fc(kc', kc) .
We also note that since b is a vector perpendicular to
the dlrcctlon of the lncldent pRI'tlclc Rnd since thc
Lorentz transformation does not affect transverse com-
ponents of the momentum we have

L I

Hence for small-angle scattering we may write the scat-

tering amplitude (2.3) in the laboratory system as

fL, (kr, ',kg)
ikg= (yt+Xy, ) exp[i(kc —kc') b)I'(b) ~ t'~b
2Ã

exp[i(kr, —kg') bjl'(b) d@&b.
2'

The phase shifts are not changed by the transformation
to the laboratory system so that the function 1'(b)
takes the same form in the expression for fq and fz, .
We see, therefore, that Eq. (2.3) represents the scatter-
ing amplitude correctly in the laboratory system as soon
as the laboratory values of k and k' are used to evalu-
ate it.
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e nonleptonic decay modes of the intermediate vector meson are discussed using 5UI symmetry. The
decay rates into two pseudoscalar mesons and two baryons are calculated, estimating the e8ects of the strong
interactions. It is found that for a W mass of 2.5 and 3.0 BeV the baryon decay rate is comparable to the
leptonic decay rate vrhereas the meson decays are negligible.

INTRODUCTIOÃ

' ~ XPFPIMENTS to detect the intermediate vector
& meson using high-energy neutrino beams have

been concerned, mainly with thc scRlch foI' the leptonjc

d,ecay products of the vector meson, after it has been

produced, by neutrino-nucleon collisions. ~

Thc interpretation of the results of these experiments,

which places the lower limit of the meson mass at about

2.0 BCV, d,epends on what one takes for the branching

ratio into leptons. '
TheI'c have bccIl scvcI'al cstjIIlatcs of the decays into

mesons, pseud. oscalar and vector. ' 5 These results jn

d,icate that the total nonleptonic d,ecay rate is com-

parable to the leptonic decay rate. However, in the

@~ork supported, in part, by the U. S. Atomic Energy
Commission.' G. Bernardini et a/. , Phys. Letters 15, 86 (1964); R. Burns
et al. , Phys. Rev. Letters 15, 42 {1965).
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3V. Namias and I. %'olfenstein, Nuovo {imento gg, 542
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4 G. Feinherg and H. S.Mani, Phys. Rev. Letters 9, 44g (1965)
5 M. A. S. Sbg, J. M. Cornball, and C. H. oo, Phys. Rev

Letters 12, 3QS {1964).

DECAY INTO TWO PSEUDOSCALAR MESONS

For the interaction Lagrangian d,ensity of the weak
interactions wc take

Z(x) = —g[g (a)W (a)+H.c.l, (2.1)

two-body and three-body decays„ the full effect of
the strong interactions on thc decay rates is not in-
cluded, . %hen the CGects of the strong interactions
Rlc included ln R simple IIlodcl ln thc foul-pion decay
the decay rate is found, to be much smaller than the
correspond, ing two- and, three-bod, y d,ecays. Therefore,
it is important to attempt to include the strong inter-
actions in all calculations of nonleptonic d,ecay rates.

In this paper, we shall calculate the decay rate into
two pseud, oscalar mesons and, into two baryons, as-
suming SU3 symmetry, but breaking the symmetry
whcI'e lt ls posslblc to do so. Thc eftects of thc stlong
interactions will be taken into account, either by the
use of a simple mod, el as in the pseud, oscalar-meson
decays, or by extrapolating experimental form factors,
as in the baryon d,ecays.


