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These results lead us to the following conclusions
concerning the lowest order radiative corrections to
Iiluon-decay:

(I) There is no infinite renormalization of the direct
term (proportional to D). There is no renormalization
of CI.

(2) The coupling constant Ce suffers an infinite
renormalization.

When we compare the model proposed by Fronsdal
and the conventional approach, we see that the situa-
tion in Fronsdal's model as far as p decay is concerned
is worse than in the conventional treatment, because
of the occurrence of an infinite coupling-constant
renormalization.

III. g DECAY OF NEUTRON

We consider the radiative corrections in lowest order
to the process

tt —&P+e +v, .

We proceed in exactly the same way as in the case of
the p, decay. We state the results without going into the
details of the calculation.

FIG. 5.Diagrams pro-
portional to C22.
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When we have only to deal with the direct four-
fermion interaction, the lowest order radiative correc-
tion gives a divergent renormalization of the coupling
constant. Also, after introduction of the charged scalar
intermediate boson, we get in addition to an infinite
renormalization of g an infinite renormalization of C2,
contrary to the statement made by Fronsdal. So in this
case Fronsdal's model does not give an improvement of
the conventional approach either. This result contra-
dicts Fronsdal's statement that the coupling constant
rcnormalization ls finite ln this CRsc.
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A simple and straightforward method to identify and. remove the kinematic singularities of helicity
amplitudes is constructed from the Trueman-Wick crossing relations. A set of amplitudes free of all kine-
matic singularities and zeros is obtained for two-particle ~ two-particle reactions of any spins and masses,
except that for boson-fermion interactions with general mass assignments there is still a kinematic sIt'2

singularity left in the amplitude.

I. INTRODUCTION
' 'N dynamical calculations of scattering amplitudes,
~ ~ it is necessary to usc kinematic-singularity —free
amplitudes, which have only singularities of dynamical
origin and satisfy the Mandelstam representation. D. X.
Williams' has succeeded in constructing a complete set
of invariant scalar amplitudes free of kinematic singu-
larities and suitable for dynamical calculations. How-
ever, his amplitudes are not suitable for Reggeization.
To Reggeize, erst we have to remove all the kinematic
singularities from the so-called parity-conserving helicity

D. N. Williams, Construction of Invariant Scalar Amplitudes
Without K.inematical Singularities for Arbitrary-Spin Nonzero-
Mass Two-Body Scattering Process, Lawrence Radiation Labora-
tory Report l3CRL-1113 (unpublished}.

amplitudes and then analytically continue their partial-
wave helicity amplitudes with definite parity in the total
angular momentum plane. ' Therefore kinematic-singu-
larity —free helicity amplitudes are not only suitable for
dynamical calculation but also suitable for Reggeiza-
tion. This is our motivation for investigating the
kinematic singularities of helicity amplitudes.

Recently, Y. Hara has proposed a method to remove
the kinematic singularities of helicity amplitudes by
using perturbation field theory, with emphasis on
threshold behavior of partial-wave amplitudes and
crossing relations. ' In this paper, we develop a more

'M. dwell-Mann, M. Goldberger, F. Low, E. Marx, and F.
Zachariasen, Phys. Rev. D3, 8145 (1964}.

s Y. Hara, Phys. Rev. D6, 8507 (1964}.For comparison of his
results and ours, see Ref. 9.
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straightforward method using only the Trueman-Wick
crossing relations for helicity amplitudes. Perturbation
field theory is not needed. A complete set of amplitudes,
which can be shown to be free of all kinematic singu-
larities and zeros, is constructed for interactions of two
particles of any spins and masses, except that for boson-
fermion interactions of general mass assignments there
is still a kinematic s'I' singularity left in the amplitude.
Our results are consistent with the usually assumed
threshold behavior of partial-wave helicity amplitudes
with definite parity.

II. KINEMATIC SINGULARITIES IN THE
CROSSED-CHANNEL ENERGY

VARIABLE

The partial-wave expansion of a general helicity
amplitude for a reaction a+9 —+ c+d, with s being the
energy squared and t being the square of the energy in
one of the two crossed channels (say, D+b —+ c+A) is'

f,g,b'(s, t) =Qg(2J+1)F,d, ,b (s)dy„'(8,), (II.1)

where
g=g —b p=t,-

0, is the scattering angle in the s channel, which is taken
to be the angle between particles a, and c; and d),„J is the
d function of the rotation matrix element. In the
s-channel c.m. system,

cos8, = [2st+s' sQ; m's-

+(m '—mb')(m ' mq')]—/SgbSgg& (II.2)

where

S,b'= [s—(m—,—mb)'][s —(m +mb)'] =4sP, bs,
(II.3)

S,z'= [s—(m, —mz)'][s —(m, +my)']=4sP, qs,

where IP,q, P,q are the initial and final momenta in the
s-channel c.m. system. We see that cos8, is an analytic
function of t. In general, the d function is related to the
Jacobi polynomial by'

(J+M)!(J—M)! '"
dq„'(8,) =~ [cos(8,/2)]~"+"~

(J+1V)!(J—1V)!

&&[sin(8,/2)]~"-"~P(z m)'~" "~'"+" '(cos8.), (II 4)

4M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959). Our
normalization convention here is diBerent from theirs. The two
are related by

fcd, ~(s t) —2~ f g-~g - .(s)t)
cd

fcg.,&(s t) is related to the 5 matrix by

Scq; f,(S,t) —&ca;Nb

(2 )4'$4(p +p p p )(p op/op opto)
—1/ f'~ $(s t)

white f ~ br w (r, ') has a simpler .relation to the diGerential cross
section i.e.1

= If".b'w (r—,t) I',
.so, we have set equal to zero the azimuthal angle, which is

independent of the invariant quantities s and t. We use a, b, c, and

d as notations for particles as well as the helicity states of the

where

i@=—maximum of (~X), ~&~),

cV™'~"m0' (['[,[ ~[),
so that Eq. (II.1) becomes

f,s, ,b'(s, t) = [cos(8,/2)]~~+&'[sin(8, /2)]~"—
&~ pz(2 J+1)

)(F,q gb'(s)P&z ~&(l&—vl I&+&l)(cos8) (II 3)

We have put other constant factors into F,~.„'(g).
When there is no spin, Eq. (II.S) simply reduces to the
familiar Legendre expansion of the amplitude,

fpp;pp (s ') =Pz(2J+1)Fpp. pp Pg(cos8). (II.6)

We see that the presence of spins has introduced into
the helicity amplitudes a definite set of t zeros and
singularities through the factors [cos(8,/2)]~"+&~ and
[sin(8, /2)]~" &~. We argue that these t zeros and singu-
larities are the only kinematic ones. The remaining t
singularities are associated with the failure of the Jacobi
expansion to converge, a dynamical effect unrelated to
particle spins. From the expression of sin(8, /2) and
cos(8,/2) in s and t in Appendix A, we easily see that the
kinematic t singularities of f,z, ,b'are all on the boundary
of the physical region.

Thus the new amplitudes, defined by

f z b'= f q. b'[—coss8,] t'+&'[sinrs8, ]—~"—&~

=P'(2J+1)F,g,.b~(s)

XP(' ~)(I& vl I&+el)(cos8) (II 7)

contain only dynamical t singularities. ' By assumption
of maximal analyticity in S-matrix theory, f.z', b'

satisfies a fixed-s dispersion relation in t. In the next
section, we shall discuss the kinematic singularities in s.
After we remove the kinematic s singularities, the ampli-
tudes will satisfy the Mandelstam representation.

III. KINEMATIC SINGULARITIES IN THE
DIRECT-CHANNEL ENERGY

VARIABLE

Under crossing, the s-channel and the I!,'-channel
helicity amplitudes are related by'

corresponding particle. Which meaning they take can be easily
understood from the context. We use A, J3, C, and D for the
corresponding antiparticles and their helicity states.

~ Gabor Szego, in Qrthogonal Polynomials (Edwards Brothers,
Inc. , Ann Arbor, Michigan, 1948}.The author would like to thank
David Gross for informing her about the Jacobi polynomial.

6 Y. Hara has used this condition. See also Ref. 2.
7 T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322

(1964). We make the convention that the phase factor in front of
the d function in Eq. (III.i) is unity. This convention corresponds
to taking 8„ the angle between particles a and c in the s c.m.
system, and taking 8& the angle between particles D and c in the
t c.m. system.
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where

f.~;.b'($)t) = p dA ' (Xg)db b b(Xb)A ~ '(X.)dD d"(X A)f: A', Db'($)t) )
cl A I Dl bl

cosX,=[—(s+m ' m—b')(t+m ' m—.') 2—m, '(m. ' m—,'+mb' m—q')]/S, b9"„)

cosXb ——[(s+mb' m—,')(t+mb' m—~') 2—mb'(m, ' m—o'+mb' m—g )]/S bKbd,

cosX,= [(s+m, ' m—d') (t+m, ' m—,') 2—m, '(m. 2 m—,'+m b' m—q') ]/S.e K«)
cosx~ ——[—(s+mg' m—,') (t+mq' m—b') 2—mq'(m, ' m—.'+mb' m—q') 5/(s. drab~.

(III.1)

(III.2)

From Eq. (III.2) we can easily obtain the functions sinX;; however, it is more illuminating to write them in the form

where

sinX, =2m, [)t)(s,t)]it'/S, bV„, 'sinX, =2m, [t()s),t)5't'/S, qV'„,

sinxb=2 mb[)t)( st)]' t'/s, bE bz, sinxd ——2m&[)t)(s, t)]'"/s.z9"bd,
(III.3)

)t)(s, t) =—st(P, m —s—t)—s(mb' —md'-)(m, '—m, ') —t(m, '—mb')(m, '—md')
—(m, 'mq' m,—'mb') (m, '+ma' m.—' mb—'),

p(s, t) =0 giving the boundary of the physical region. From Eq. (III.1) and the definition of f(s, t), we obtain the
crossing relations for the f's:

f,d, ,b'(s, t) = [sin-,'8,]—
l "l[cos-,'8.] l +"l

X Q (dA.. .(X.)db. b (Xb)d„..„. (X,)dD. g "(X.)[sin-', 8)] "' "'l[cos-,'8)] "'+"'lf;A., D b '(s, t))
A', b', c', D'

OR A')D'b' ($)t) f')."A'D' b' (III.4)
A', b', c', D'

where
X=D 5) p =G c4)

the elements of the crossing matrix 5tt; being defined by
this equation. Now by the result of Sec. II, f'(s, t) is free
of kinematic t singularities, and similarly f (s,t) is free
of kinematic s singularities. Therefore all the kinematic
s singularities of f'(s, t) are in the crossing-matrix ele-
ments in Eq. (III.4) and thus in the functions that are
explicitly known. From the kinematics in Appendix A,
we see that in addition to the pure s singularities and
t singularities at S,b=0, S,~——0, s=0, V'„=0, V'b~=0,
and t=0, in the 5K's there are also mixed s and t singu-
larities on the boundary of the physical region, i,e., at
p(s, t) =0. In Appendix 8, we show that such apparent
mixed s-t singularities of 5R cancel and all the5K's have
only pure s singularities and pure t singularities. This is
what one would expect from Eq. (III.4), since f'(s, t) is
free of t-kinematic singularities and f (s,t) is free of
s-kinematic singularities, and neither f'(s, t) nor f (s,t)
has dynamical singularities on the physical boundary.
Then all the pure s singularities of 5R's are the kinematic
s singularities of f'(s, t). If the pure s singularities of

where

f;A. ,D '( bt)=st,f): A,. D .'(s, t),

/Age
( )J)+Ja—J))—Jb( )b'—))'

(III.5)

and q; is the intrinsic parity of the ith particle. Com
bining the f"s, which are related by parity symmetry.
on the left-band side of Eq. (III.4), we obtain the
crossing-matrix elements:

each OR are factorizable and all OR's in Eq. (III.4) have
the same type of pure s singularities, one can easily
make f' free of kinematic s singularities by multiplying
it by a factor which makes all OR's in Eq. (III.4) free
of s singularities. If this is not the case, one has to seek
linear combinations of f' such that the combina, tions
are still free of kinematic t singularities and also suitable
for the factorization of the kinematic s singularities. In
the following, we shall discuss the factorizability for all
cases, with any mass assignments.

In proving the factorizability, we assume that parity
is conserved in the interactions. Under parity symmetry,

~)."A', D' b' ' ($)t)=OR))'A'iD'b ' ($)t)+)t OR 0))A', D' b' —' -($)t)—-
—[sin—g ] I& ))l[cos&~g ] l~+))1[sjni8 ]l&' )))'l[cosi8&]l~'+))'I

X fdA. '(X.)db b"(»)d .'(X.)dD A"(X~)+n)(—)" '+'"-"+" '+"~"'
&&dA, ,so(& X,)db. b b(sr —Xb)d;, ~(n —X,)dD)A ~(n ——XA)) . (III.6)

Equation (III.4) can then be written as

f.A; b'(s, t) = Z ~.A;D b""'"(s,t)f.A;D b '.
In obtaining Eq. (III.6) from Eq. (III.4), we have
used the relation

A ', b', c', D'~& 0
(III.4') db, '(~ 8.)=( )' "d i,'(8,—). —(III.7)
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From Eq. (III.6), we see that in proving factoriza-
bility of kinematic s singularities, mainly we shall play
with the d functions. The following relation is useful:

d& c&(8)—~ [slllg] —
t

—et[1—COS8]t +"t

X [cos-', 8]"(P&$ "I'&{cosg), (III.S)
where

when J is half integer,
=0 wlMn J ls lntegeI'

tPI$ cI'&(cosg)—= [cos-'8]&'~—'&

)(p1$ &tr&(t" cl l"+cl&(cosg) (III 9)

The (P'~ "I'&(cosg) is a polynomial of cosg of the order
of J—It/2.

In the following, we shall study the locations of the
kinematic $ singularities of f'($, t) for the general mass
case (i.e., m, &mb, m, /mA and not both m, Wm, and
mb/mA) and find suitable factors for removing the
kinematic s singularities. For special mass assignments,
where pairs of masses are equal, the same method

applies, but care must be exercised in taking the limits
of the above formula. The results for all mass assign-
ments are listed in Sec. LV. To avoid introducing kine-
matic zeros, we have obtained the kinematic factoIs for
special mass assignments from studying each case
individually.

Prom the kinematics in Appendix A, it is clear that
the sines and cosines of the angles and the half-angles
of X, Xy, Rnd tII have blRnch points Rt S„g=0, l.e., Rt

$=(m.+mb)' and $= (m.—mb)'. To investigate the
analytic properties of these functions, which are origi-

nRBy de6ned in the physical region, we erst analytically
continue them at fixed t outside the physical region of

the $ channel. Then we vary $ around $= (m,+mb)' or
$=(m, —mb)' in a counterclockwise sense. ' ~e find

that the following functions are analytic at both
$= (m.+mb)', $= (m.—mb)':

$~y SlnX@) Srbg COSX,r, q Sg, y Slnxy
q $@y COSxy)

[cos-', X. cos-', Xb+sin-', X. sin-,'Xb]&& [$—(m.+mb)']'",

[COS2Xc COS2Xb —Sln~Xc 81n2Xb])([$—(mc —mb)2]I&b

[COS28c COS2Xc+slnggc SlngXc]X Scb c

COS2~s COSgXa Slng~s SlIlgXa
p

sin —', 8, cos2X,+sin~X, cos-', 8„

[sin-,'8, cos2X,—cos-', 8, sin2X, ]gS,b. (111.10)

Similarly, for X„X~,and 8„we find the following func-
tions are analytic at 8,&

——0:

Sgg Slnxg
q Sgg COSxg ) Scd Slnxrg, Sgg Cosxg

q

[cos-,'X, cos-', Xi+sin-', X, sin-,'Xd]&([$—(m,+mA)']b,

[COS2Xc CosgXg 811—12Xc sln2Xd]+[$ —(mc m@) ]—b c

COS28c CoscXc+slnggc 81112Xc,

(cos-', 8, cos-,'X,—sin28, sin~IX, ))&S,A,

(CO828c SlngXc+S11128c CosgXc))(Scarc

cos-, g, sin-', X,—sin-,'8, cos-,'X, (III.10')

are analytic at S,d ——0. The functions 3 ~$,~ sin8, and
$,&S,d cos|I, are analytic at 8,&

——0 and S,&=0. The
functions sin8, /2 and cosgc/2 are analytic at S,b=0 and
g,~

——0, Prom these results, we can easily show that the
crossing matrix M in Eq. (III.4 ) has singularities at
S,q=0 and S,q=0, and these singularities are not
factorizable.

Let us look now at the amplitudes

fcd, cb =fcd, cb ~f c A;cb——

The crossing-matrix element between f,q, b'&+& and

[Mc A. , I&.b. '" '($,t)]+
=Ac'A';D' b' ' ($)t)+M c'A';D' b' ' ~

Using Eqs. (III.6) and (111.8), we obtain 3ll+ up to
a constant:

—(1—COSX.) t"'—ct ('1—cosXb t'—'t

3I+~ (Sin-', 8,)t"' "'t(COSI~gc) t"'+"'t(Sing, ) tl-ct
]

—
[ ]

tP'$ "o&2&(COSX,)
sinX, ) 'E sinXb

1+cosX t"'
t (1+cosXb t'—'t

g(P&~' ""&(cosXb)(1+cosg,) (cos-', 8,)"'(cos-,'X,)" (cos-,'Xb)"b&Il, b —sinX. k —sin X,

&((P'~c "c&2&(—COSX,)(P&$b "b&I&(—COSXb)(1 —COS8,) (Sin218,)"(SinI~X,)'c{SinIXb) Cb d;,~c(X,)dD.A~&(XA)

(1—cosX,) t"'—t(1—COSXb) tb' bt

tP'~- "'"(cosX )tP&$b "'"&(COSXb)(1—cosg,)"
sinX, ) 'E sinXb )

(1+COSXc) t"' 't (1+COSXby t'-'t
&&(»n28.)'(coskX.)" (co82Xb)""~g.b(—)"~"'(

/ ] /

tP&'-"&'&(—cosX.)
E —sinX, ) E —sinXb )

X tP & J b """'(—COSXb) (1+Cosgc)~(cos21 gc) c(sin2Xc) cc(sin-,'Xb) "b
dc~ chic(Ir Xc)dD.A$&(Ir—X&), (II—I.11)

' I am indebted to Dr. John Stack for a discussion about this.
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with
QA, gc

2m+I)=—I) —II I

—
I
X+II I, )I.,=— (—) ' g+'+",

'g bgD

where

v;= 1 when the ith particle is a fermion,
=0 when the ith particle ls R boson,

8=0 fol' BB~ BB, FF~ FP, FP ~ BBInteractions (B stRllds for bosoll Rlld F stands for fel'Illloll),

~=1 for BF—+ BF interaction with the convention e,=v, =1, vq=vq=0.

The expression given by Eq. (III.11) is convenient for observing the analytic structure at $,(,=0. To observe the

analytic structure of M+ at S,z ——0, we write M+ in the following form:

(1—cosX, ~" '~ 1—cosXg)~o' "~

M+~ (sin-,'8&)~"' g'~(c s128&)~~'+"'~(sin8e) ~" g'
I

—--
I

(P(~e ee(')(cosX )
sinX, sin Xg )

1+cosX, i"—'i 1+cosX„
&&(P(~" "'("(cosXq)(1+cos8,) (c os-,' 8)'(c os-,'X)"'( cos-', Xq) "&)),z —slnX~ —Sln+d

y(p(Ze —el )(—cosXe)(P( g—gI~){—COSXg)(1 —COS8e) (slne8e) (Sln2Xe)"'(Sln —Xg)"" dx'g (Xg)db'0 {Xg)

cosX tc'—cl y —cos
( ) (2'—e)+ (5'—5) 6'(J " )')(cosX,)(P(~ .

g g'(()cosXg)( 1 cos8—.)"
slnX(; Sln+g

$1+cosX, ~" e~ (1+—cosXq) ~D'—"~

&&(sin-,'8,)e(cos-', x,)"(cos-',xd)"&II,g(—)g(~")I
I I

(P(~' "'(g)(—cosX,)
4 —sinX, 4 —sinXg f

)((P(~" eg")(—cosX&)(1+cos8,) (cosl8, )'(sin-', X,)' (sin2IXg)" dz, ~ (g) —X,)d(, &~'(Ir—X&), (III.11')

~ „—( )J'e+&g+e+&

Using the result in Eqs. (III.10) and (III.10'), and
after some work, we 6nd the singularities of M+ at
s= (m.+m(,)' and s= (m.am(, )':

L~—(m.+m,)'j-1.
I ~—(m.—m&)'j-'.

X Ls—(me+my)'j-&»Ls —(m,—mg)'] l» (III.12)

where

nl ng ng(——&)—,—pl ——pg= pg(&) for BB ) BB;

nl=n2=ng(&), PI=Pg(&), P2=Pg(+) for BB~FF,
(c, d being fermions);

nl=ng(&), nu=ng(W), PI=P2 ——Pg(+) for FF —-) BB,

(a., b being bosons); and

=,(~), .=,(~), p=p, (~), p=p, (~)
for FF —+ FF.

ng(~) = —I&—
I I+(max(~e. ~) «p.+&b -' (.g.+.~)—

+k(l ~—I I

—
I ~+I I)j)+k(a.+»),

pg(+)= —Ix—Ill+{max (wg, g) of I J,+Jg—-', (I).+ag)

+k(Ill —~ I
—

I ~+~
I )]&+-'("+"),

where "max q of e" means the greatest even number
that is equal to or smaller than n when q is +1, or the
greatest odd number when g is —1.For FB-+ FB inter-
actions~ l.e,

&
'v= I) v&='v& —~~ Rnd 8y —'vd —0) we hRV

~+gC (g b)
—eg'(+)(g ~)

—Pg'(+)

where

(III.12')

n, '(a) = —
I
X—p I+ (max (Wg. l)

C~.+~~+-:(I~—
I I

—Il+v I j),
p, '(+)= —

I
x—p I+ (max (a)),g)

of LJ,+Ja+-', (I X—III —IX+III)]) .

We see that the singularities of fe(+) at S,(,=0 can be
factored out. In addition to the singularities at S,q=0,
S,q=0, there is a, singularity at s=0. In this case of
1n, xtnp, m, /mgp the entire s' ' singularity is introduced

by the factor sin(8, /'2). For reactions of the type
BB~ BB, FF—+ FF, FE—+ BB, the difference of

I
l).+pl and I)l—)(I

I
is even, so we can remove the s'f'

singularity from fe(+) simply by multiplying it by
(s)&(~'"(~" "~ ~ "+g~)l. For reactions of the type BF g BF,
hedifferenceof l~—

&I and I)+I I
isodd, sowecann()t

remove the sl(' singularity from f'+'. Multiplying by a
factor of (s)&(~ex(~"—g~ ("+g~)l, we can remove its possible
pole only at s=0. It still has a branch point at s=0.
However, f'(+' is closely related to the partial-wave
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helicity amplitude of definite parity, and by the
Mcoowell reciprocity relation' the partial-wave helicity
amplitude of definite parity has a simple reQection
property in (s)'t'. Thus we can conveniently work with
the s'~' plane; in fact, in the calculation of the partial-
wave amplitude of BF~ BF interaction, we are forced
to work in this plane. Therefore, for BB—+ BB,
FF —+ FF, and Frt' —+ BB interactions, the functions

[fbd;ab +f d d;—db—5
X[s—(m, +mb)'7' '[s—(m, m—b)'5i b

X[s—(m, +md)'5lsb[s (m—, m—d)'5 :s'-
)((s)bi~b~«(l& —v, ll&+el)I (III ]3)

are analytic in s and t. For FB—+ FB interactions, the
functions

Lf d b'~f '-.b'-5(, ~ b)"'"'(~')' "'
y(s)iI~~~o' ll& "I I "+"I)I (III j3')

are analytic in (s)'t' and t and finite at s=0.

IV. SUMMARY

In the following, we list all the amplitudes that are
free of kinematic singularities. ' We can easily show that
these results are consistent with the usually assumed
threshold behavior of partial-wave helicity amplitudes
with definite parity. ' '

The definition of f' by

f,d, b'(s, t) = [sin8, /25 lb "I[cos8,/25 I "+&lf,d, ,b'(s, t)

is always used. For FB~FB interactions, we take the
convention that particles a and c are fermions.

"The max g of e" means the greatest even number
smaller than or equal to e when p is +1 or the greatest
odd number with g is —1.

Using this result, we can easily find the kinematic
singularity-free helicity amplitudes for the nucleon-
nucleon scattering cVlV —+ TV'. In this case,

~~= J~—~c—~a —
g )

Va Vy &c Pg

+I y rtfs

1 ~

%e find that

(s 4m )f—+,+;, (.s 4m )f—+,
(cos-, 8,) 'f+., ~ ', (sin-,'8,) 'f+ , +', .

(s) 't'(sin-', 8, cos,'8,) 'f++-,

are free of all kinematic singularities. These results are
in agreement with those obtained by M. I.. Goldberger
ef al'o

&. m =m, —=mg, mg ——mg
—= m2

The following amplitudes are free of kinematic s and
t singularities for BB~ BB, FB—& FB, FF —+ FF
interactions:

(~)"(s) '"f';.b'(s, t),
where n, is the same as that of Kq. (IV.1),

&t—= I?
—t I,

g= ([s—(mt+ms)'5[s —(mi —ms)'5) 't'.

A. Equal Masses, m = m~ ——m, = mg—= m

The desired amplitude here is

(s 4m')i" (—s) lS f,d, .b'—(s,t),

For J'F —+BB interactions, one can easily find the
kinematic singularity-free amplitudes by the method
for the general mass case.

Applying this general result to the +'V ~ miV inter-
(IV &) action, we tind that

where
A,=c 6 ) @=c [cos(8,/2)5 'f+s, +s' and s't'[sin(8, /2)5 'f+s,. s'

n, =——,',(s,+sb+s,+ed)+ (the max rt,

of [J,+Jb+J.+Jd ——,'(s,+vb+t, +ed)5)
—l~-t I- l~+t I

(~) o& [l(l~ —~!—l~.—I I)I+I5,
with

v, =1, if J; is half integer

=0, if J, is integer

are free of kinematic singularities. These results agree
with those obtained 6rst by G. Chew et al."

C. Pl~= my=—my Pl =mg:—Bl2

The following functions are analytic in s and t for
BB—& BB, It F —+ BB,FF —+ FF interactions:

[f,d .b'a f, d .b'5. (s 4mi') i. "t+&—

X (s—4mss) &«&+&(s) i&, (IV.2)

gA'g c

( )2(&a+&b)

g, =rt (—)lb-b I

' Qur results are consistent with those of Hara's; however, our
approaches are diferent. To find the kinematic singularities of
f,q; q'~ f, d;,~ at S q ——0 and S,d ——0, Hara used the assumption
of the threshold condition of the partial-wave helicity amplitudes

with de6nite parity. He did not pin down the exact value of the
power of the singularities. We 6rst 6nd the exact power of kine-
matic singularities at g,b=0 and g,d

——0 of (cd;,b &f c d; b atld-
then we do 6nd that our result is consistent with the threshold
condition of the partial-wave helicity amplitudes with de6nite
parity, but the power is not equal to that obtained from the
threshold condition. Hara's results may have kinematic zeros.

"M.L. Goldberger, M. T. Grisaru, S. W. McDowell, and D. Y.
W»g, Phys. Rev. 120, 2250 (1960).

"Q. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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where

no(+) =——
I
X—p I+ {max (ag.o) of [J.+Jo —p(e,+so)

+2(l &—t I

—
I &+t I)])+o(~.+»),

p (&)=——
I

X—t(l+ {max (&7),&$) of [J,y Jg o(5—,+ tip)

+l(I) —
t I

—Il+t I)])+o('+"),
~=—the m» (~ ) oI LI(I ~.—Jol —I&.—J.I) I+1],

'gA'g c

( )o(za+zo)( )x—y

VJ bf/D

gA'gc

( )zd+&c+s+o () s
—( )Jg+&c+&+c

'9 b'gD

For M&'~ BF interactions, the result for the general
mass case applies except that the s'I' singularity needs
to be re-evaluated.

Applying Eq. (IV.2) to SX, with
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The boundary of the physical region" is

y(s, t) =0
=st(p, mp —s—t) —s(m oo—mg') (m. '—m, ')

—t(m. '—m o') (m.'—mg') —(m.'md' m—om o')

X (m. '+my' m—.' m—oo) . (A1)

Ke de6ne 8, as the scattering angle in the s channel

(i.e., a+5-+c+d), which is taken to be the angle
between particles a and c. In the s c.m. system, we have

cos8, = [2st+so sP—m o

+(m '—mo')(m '—ma')]/S~os, a,

and taking only the plus sign of Eq. (IV.2), we easily
obtain the kinematic singularity-free amplitudes:

S.,'=—[ —( .—m,) ][s—(m.+m,)o]=4sP.~',

S.g=—[s—(m, —ms) '[s—(m.+my)'] =4sP,g',

sin8, = 2[st(s,t)]'"/S, oS,q for 0 &~8, ~ &sr.

(A2)

(s—4m~ o) '(ofoo,y y'

(sin8, ) '[s(s—4m ')] **foo,+ '.

[fed;go +f a d; o ]-—

&& [s—(m, +mo)']l"[s—(m, —mo)']& '
&& [s—(m,+md)']t»[s (m. m—~)']l—»(s) l&~, (IV.3)

where n, , n, , p~, and po are the same as those of Eq.
(III.12) and

y, —=max of (I)(—pl, I X+t(l).

For 8F—& BF interactions, the amplitudes

[f',. ~J- -',. ]~(S.)"'"'&&(S")"'("()'"

'(an) == —
I
x—t(I+{max (wq. o)

of P.+~ +lo(l) t I

—I)+t I)]), —
p, '(w) ==—

I
z—t(l+ {max (wq. g)

I [J.+~.+-', (I~-.l-l~+. I)]&,

are free of kinematic singularities except for the s't'
singularity.

D. General Mass Case (m, Wmo, m, & mq and
Not Both m, =m„mo ——ms)

For BB~ 8B,FE—+ 88, FF —+ FF interactions, the
following amplitudes are free from kinematic s and t

singularities:

Ke want to show that the elements of the crossing
matrix relating f' and f' in Eq. (III.4) do not have
mixed s and t singularity. As we see from the kinematics,
all the mixed s and f singularity of the sines and cosines
of the angles 0„8&, and angles X; are on the boundary
of the physical region p(s, t) =0. In some special mass
cases, p(s, t) =0 gives s=0 and t=0, but that is not our
concern here. We consider only the part of (t (s,t) =0 due
to the vanishing of its factor of mixed s and t. Then at
p(s, t)=0, the cosines of all the angles are either +1
or —1 and are analytic there. The sines of all 8„8&,and
X s have (p)"' singularity. Whether the sine or cosine
of the half angle has (g)'" singularity will depend upon
whether the cosine of the angle is +1 or —1 at &=0.
One can show that at P(s, t) =0, except at s=0, t=0
given by P(s, t) =0,

cosX~ cosXc= cosX b cosXd = cos88 = % .l. ) (B1)

(82)COSXrs COSXb= COSXc COSXc{=COS0)= &1 .
"T.K.ibble, Phys. Rev. 117, 1159 {1959).

0~ is the scattering angle between particles D and c in the
t channel (i.e., D+b ~c+A). In the t c.m. system,

cos8~= [2st+t' t P, m-
+(mg' —mo')(m. o—m. ')]/v'. ,V'od, , (A3)

sin8g ——2[t(t (s,t)]'t'/ V'„v os,

where
v',.'—= [t—(m,+m, ) '][t—(m.—m, )']=4tp..',
9"og'—= [t—(m o+ my) '][t—(mo —my) ']=4tP oa'

APPENDIX 8
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Equation (B1) implies that at p(s, t) = 0, if

sin-', 8,=$'~' i.e., cos8,=+1,
either

sin2X, =&'~' and sinx2X, =P'~', i.e., cosX,=cosX,=+1,
or

cos~~X, =P'~' and cos-,'X,=P'~', i.e., cosX =cosX,= —1,
and either

sin-,'Xb p——'~' and sin-,'X~——p"', i.e., cosXb= cosX~ ——+1,
or

cos2Xb=p'" and cos2Xd=g'12, i.e., cosXb- co—sX~ ———1;

either

Ol

cos-,'8,=P'~', i.e., cose, = —1,

sin-,'X,=p'" and cos-,'Xb ——p'~' i.e., cosX, = —cosXb=+1,

cos-,'x, =p'~' and sin-,'xb=g'~', i.e., cosx, = —cosxb ———1, (B3)

etc. , and a similar argument for cose~.
From Eq. (III.4), the crossing-matrix element is

OE, A ,
.n b""'"=[sin-,'8,] ~"—~~[cos-,'8, ]'"+~~

XdA a (X,)db b '(Xb)d. . ~(X,)dD d &(X„)[sin28,]~"' ~'[cos28,]~"'+~'~. (B4)
Up to a constant, we have

db ~(8) ~ [cos-'8]~"++~[sin-'8]~"—&~P J bI~'~"—
&~ ~ "+&~&(cos8).

When cos8= &1, the Jacobi polynomial is a constant,

Therefore at P(s, t) =0,
db„~(8) ~ [cosz'8]~ "+&'[sin-,'8]~"—&~ . (B5)

BR ~ . b'A ~b.~ [sin-,'8,] ~" &~[cos-,'8,] '"+&~[sin-,'X,]'A' ~t[cos-'X ]~A'+'~[sin-'Xb]~' "[cos-'Xb]~'+ ~

X[sin-'X ]~" '&[cos-'X ]~"+'[sin—'X ]' ' "~[cos-',Xq]&D'+"~[sin-,'8&]&"' "'[cos-'8]'"'+"'~. (B6)

If cos8, =+1 and cos8~=+1, then cosX, =cosXb=cosX. =cosXA=+ 1 or —1. Using Eq. (B3) and Eq (B6), .we find

(B7)
where

I= —l~ —~f+ I~'—~'I+ f.4'~~I+ I&'~bl+
I "~~I+ ID'~d f.

The top signs are for cosX,=+1 and the bottom signs are for cosX,= —1. It is easy to see that e is even integer.
To show that e is always positive, we use the inequality

I~I+fbi ~ I~~&l ~ Iol —I&l,
where a, b are any numbers. Therefore

I~' —ol+ I

&'—&I+ I"—~l+ ID' —dl ~~
I
~(~'—~)~(b' —b)~("—~)~(D' —d) I

= I(~—&)—(~—d) —[(D'—&') —(~'—-4')]I = I(7 —b) —(x'—~')
I
~ Ix—ul —lx' —b'I

Therefore n) 0 for cosX,=+1, similarly for cos X,= —1. We can do the same thing for other cases of cos8, =+1,
cos8~= —1; cos8, = —1, cos8~=+1; and cos8, = —1, cos8, = —1. Therefore, none of the 5R's has mixed s and t
singularities.


