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In this paper we present an S-operator theory of weak interactions which fulfills all requirements of con-
sistency, including unitarity. In an expansion to first order in G the results are identical to those obtained in
first-order perturbation theory from the standard Lagrangian formulation of weak interactions, but higher
order corrections can be calculated. They are finite apart from a single infinite parameter which can be
absorbed in a coupling-constant renormalization. It is shown that the renormalizations of the coupling
constants in u decay and # decay are different. Higher order corrections to e-», scattering are discussed. The
complete renormalization of the theory is carried out. One of the main differences from standard Lagrangian

theory is that the theory is not crossing symmetric.

1. INTRODUCTION

T is well known that the V— 4 theory of weak inter-
actions in its Lagrangian formulation is not renor-
malizable. Several attempts have been made to recast
it into a true Lagrangian field theory yielding finite
results for observable quantities to all orders in per-
turbation theory but the attempts have failed so far
in this respect.! On the other hand, the answers ob-
tained in first-order perturbation theory are all finite
and show excellent agreement with experiments. This
has led some authors® to define the weak interaction
Lagrangian as an “effective Lagrangian’ which should
be treated only to first order in perturbation theory.
This means, of course, that one uses the Lagrangian
formalism as a guide line to derive the type of inter-
action but that one then discards it immediately. It is
very tempting to go one step further and drop the
Lagrangian formalism altogether. This can be done by
formulating the theory of weak interactions as an
effective S-operator theory. The effective S operator
is then given by

G
Su=I-= f dh @ (), M)

where?

FME) = (@)v (L+ve)y, ()
Hu@r A+rsly, (%), (2)

if we confine our attention to purely leptonic processes
as we shall do for the most part in this paper. All the
field operators obey the free-field equations if electro-
magnetic processes are neglected. Of course, the effec-
tive S operator (1) will reproduce all the results of the
first-order Lagrangian theory exactly, but the trouble-
some higher orders are excluded in a trivial way.

* Supported in part by the U. S. Atomic Energy Commission.

T On leave from the University of Vienna, Vienna, Austria.

! For example, G. Feinberg and A. Pais, Phys. Rev. 131, 2724
(1963) ; 133, B477 (1964).

2 For example, T. D. Lee, in Particle Physics, CERN-Report
61-30, 1961 (unpublished), or T. D. Lee and C. N. Yang, Phys.
Rev. Letters 4, 307 (1960).

3 We use the notation of S. S. Schweber, H. A. Bethe, and
F. deHoffmann, Mesons and Fields (Row, Peterson and Company,
Evanston, Illinois, 1955), except that our vs=4veyiyzys.
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The effective S operator of Eq. (1) can only be valid
at low energies, of course, because it is not unitary. In
this respect, it is plagued by the same difficulties as the
first-order Lagrangian theory. For example, the cross
section for elastic electron-neutrino scattering as calcu-
lated from (1) will increase quadratically with the
neutrino energy and at about 300 BeV in the c.m. sys-
tem it will intersect the upper limit set by unitarity.?
It should be emphasized that unitarity is a purely
formal requirement in order to have a consistent for-
malism (conservation of probability). It thus differs in
an essential way from physical requirements such as
time-reversal invariance or even microcausality which
have to be checked experimentally.

We propose here an S-operator theory of weak inter-
actions which, in an expansion to first order in G,
coincides with the effective .S operator (1), but which
also allows for a calculation of higher order effects. The
S operator is defined by the relation (3) below.

s=exp] —g [ap @i l. o

It is immediately seen that the only difference with
regard to the Lagrangian formulation is the absence of
the time-ordering operator in front of the exponential.
It is precisely this fact that makes higher order con-
tributions meaningful. As a matter of fact, higher order
terms are all finite apart from a single infinite pa-
rameter which can be absorbed in a coupling-constant
renormalization.

In the Lagrangian formulation, the time-ordering
operator is essential to ensure causal propagators, that
is, microcausality. We do not feel that its presence is
necessary in an S-operator formulation as the concept
of propagators does not enter at all. However, the
problem of microcausality is an intricate one and will
be taken up again in the concluding section. The theory
as it is presented here fulfills all requirements of con-
sistency, including unitarity. Its (finite) results can
thus be checked experimentally and if they turn out
correct, one will have to restrict the postulate of
microcausality.
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For a particular matrix element of (3), each term in
an expansion with respect to G can be represented for-
mally by a number of graphs. However, these graphs
are not Feynman graphs as their lines do not corre-
spond to particle propagators. A discussion of the vari-
ous types of graphs which occur in such an expansion
is given in Sec. 2. In Sec. 3 it will be shown that for
decay processes higher order corrections only con-
tribute to a renormalization of the coupling constant.
Section 4 will be devoted to electron-neutrino scattering
as a typical example for scattering processes and in
Sec. 5, the general renormalization of the theory will
be discussed.

2. THE STRUCTURE OF THE S OPERATOR

In order to study the type of contributions to a
matrix element of S, (3) will be taken between two
general states for which the total number of particles
is four.

¢
(ol sm>=<a1exp{;v—7 f daL B (L9,

X (1 +75)¢e:+H-C-]} |8

+ (similar terms with g or ¢ only). (4)

Actual calculations are much simplified if one applies
the following generalized Fierz transformation (see
Appendix A):

Yoy (A vssbera(1+vs)da
= =20, (1—vs)CP Ya"C (1 +vs)ds. (5)

Here, “transpose’ refers only to spinor space and € is
the familiar unitary (4X4) matrix with the following
properties:

Cly,C=— 'YuT ,

()
ClysC="s", ©)
#@RT =T
’ 7
o ™)
and B
Yo(x)=Cy@)Cr=cPT(x), (®)

where ¢C(x) is the charge-conjugated spinor corre-
sponding to ¢ ().

It was explained in the Introduction that to first
order in G the contribution S to the matrix element (4)
coincides with the conventional one obtained in the
Lagrangian approach. Equation (4) can be rewritten
in the following way:

(o S18)= 512G / Badtyla] Fa() L—vs) O (2)

XuT (2) (1 4v5)te (&) :Q W () (1 —75)
X @1;.;,,7' Wa" (y)e A4y ()] 8, (9
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where @, b, ¢, and d stand for p or ¢, depending on what
kind of particles the states a and 8 represent. In general,
several combinations will contribute and one has to

sum over all of them. The operator Q is given by

1 e (o)
O = (i) (S—T—49)

0
21 31 5! (10)

where S is the .S operator, 7 is the identity operator,
and Q is defined by

Q=V2G f 4 {Pu(x) (1—vs) @Y, T ()¢, T (x) @1

X (15, (2) +F,(2) (1—v5) @, T (2).7 ()
XC (1+vs)ty, (#)+H.c.4-P. () (1—1s)

Xeh, (@S (@) e Aty ()} . (11)
To evaluate (9) it is important to notice that if “final-
state interactions’ are neglected* one may consider the
particles of the initial states |B) annihilated at the
point y and the final-state particles of |a) created at
the point x. The remaining field operators acting at
these two points are then “contracted” into Q. Of
course, the particular choice of the points & and ¥ is
arbitrary, but it can easily be shown that different
choices amount to a relabelling of the space-time argu-
ments of the field operators and that the result is inde-
pendent of such a relabelling, as one would expect. This
situation does not occur in conventional field theory
because of the time-ordering there. The application of
Wick’s theorem then leads to a sum over all permuta-
tions of the space-time points at which interactions
take place. This property of conventional field theory
leads to crossing symmetry and it then follows that the
theory presented here will not be crossing symmetric.

After the field operators which create and destroy
the particles in the initial and final state are taken out,
one is left with a vacuum expectation value of the
following general structure:

O] By (@) + Vo™ () Qb (9) - ¥, (3):]0),

n,m<4, (12)
where the number and type of field operators occurring
in (12) depends on the states (| and |B). A vacuum
expectation value of this form can always be repre-
sented as a sum of terms each of which is a product of
S+ functions (or S~ functions), for which the following

4By final-state interaction we refer to the fact that in u decay
the electron and the », may rescatter. For other processes all
initial particles are annihilated at one point and the same is true
for the final-state particles.
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F1G. 1. Fourth order graphs for
¢-v, scattering. Z
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relations hold:
Sagt(x—y; m)
= (i7“3n+m)aBA+(x—'y; m)

= (2 )3/d4k et @ (B) 5 (k2 —m?) (k+m)as  (13)

= —z(O]\Pa(x)l;ﬁ(y) l O> )

and

Sga~ (y—x; m)=—1(0|Pa(2)¥s(y) | 0)

=—i(y*dutim)g At (x—y;m). (14)

A graphical description of the expansion (9) is then
obtained by representing each function S%(x—y) by a
solid line from x to 9. It should be emphasized again
that these graphs are ot Feynman graphs. For instance,
all the lines correspond to particles oz the mass shell
and they do not describe the propagation of virtual
(nor real) particles.

At each “vertex,” 4 lines have to emerge. Figure 1
gives as an example all fourth-order graphs contributing
to e-v, scattering. Since the 2 points at which initial and
final particles emerge are fixed, each nth-order graph
occurs exactly (z—2)! times. Thus, the #! from the
exponential is not exactly cancelled. As a consequence,
a summation of certain chains of diagrams will not lead
to the familiar geometrical series but to a so-called
Saalschiitzian series.

Owing to the fact that all lines correspond to particles
on the mass shell, no vacuum graphs will occur. For the
same reason graphs of the type shown in Fig. 2 do not
occur in e-v, scattering.

Fic. 2. A graph con-
tributing to u-v, scatter-
ing, but not to e-»,
scattering.

For practical purposes, rules for calculations of dia-
grams (analogous to the Feynman rules in the usual
theory) are collected in Table I. Only those factors are
given which differ from standard Feynman rules. How-
ever, it will become clear in Appendices B and D that
it is often more economical to start from the Fierz-
transformed .S operator as given in Eq. (9); for that
form of the S operator graphical rules become cumber-
some and a direct computation is preferable.

Tasre I. Diagrammatic rules for an nth-order graph.

1 —=iGT"
from the expansion - —
nil V2
from the multiplicity (n—2)1ifn>2
at each “vertex” Cya(l4v8) Jaslr* (1 +vs) Ivs
for each particle line ST (w1 —xk)
for each antiparticle line 25~ (x1—xx)

3. THE DECAY OF THE MUON

Following the general rules previously derived in
Sec. 2 and neglecting e-v, scattering in the final state,
the most general graph contributing to p decay is
easily seen to be given by Fig. 3. From the mere struc-
ture of this graph one can infer that one will encounter
the same difficulties as in the calculation of wave-
function renormalization in standard quantum electro-
dynamics® because both u lines connected to the
“black box” have the four-momentum of a free particle,
i.e., p?=m? and the internal line will thus contribute a

€
Ve
q
’ K’ @# ’
p

F16. 3. The most general graph for u decay.

8 G. Liiders, Z. Naturforsch. 7a, 206 (1952) or J. M. Jauch
and F. Rohrlich, Teory of Photons and Electrons (North-Holland
Publishing Company, Amsterdam, 1956), p. 221.
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factor 6(0). In quantum electrodynamics this problem
is of a formal nature® and can easily be circumvented,
for example, by making explicit use of the adiabatic
hypothesis. In an S-operator formulation this is not
easily possible and an undetermined constant will re-
main, which is infinite in the limit of sharply defined
masses.
Equation (9) specialized to p decay reads

(9:19205| S| 9)
__—i\/'ZGr M m,2
() LEEEE,
xg w2 (P)LC 1+, (2218

1/2
} 200 (1—v5)2,, (35)

X [ dAxd4y eiz(artaataa)—iny

X{0apd® (x—3)+Rpalx—y)}, (15)

where the first term in the curly bracket gives the
standard first order S-matrix element for p decay and

Rpa(x—y)=—iV2GO|¥,f ()Q" e (y) 1—75) €, " (9)
X[ (A+va)s, () ]*:10).  (16)

Since only odd orders of G contribute to u decay, Q' is
given by
()P

31 5!

4+ =10 1sinQ].  (17)

For normalization purposes, the neutrinos have been
given a small mass which will be set equal to zero in all
final results.

Defining the Fourier transform of R,g(x—y) by

R (x—y) = /d"'k e_ik(’_")Ra,e(k) . (18)

(2m)*

Equation (15) takes on the simple form
(q19295| S| p)

=—iVIG(2r) %@ (Q1+Q2+93—P)[:

mamgm,? V2
X (1) (1—5)25, (75) s, (@2) (1 +v5) Jo0 (B)
X{8as+Ras(p)}, (19)

where Egs. (6) and (7) have been used to get rid of the
matrix €. (Summation over « and § is understood.) As
R.s(F) depends only on a single four-vector, its most
general form will be

Rop(k)=[(a+bk) (1+cve) JasR,,

where a, b, ¢, and R are certain constants. The y algebra
in Eq. (19) is now easily carried out with the following

(20)
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result:
[, (82) (1478) 10, (§) Ras ($)
=4,,(G2) (1+7vs)#. (D) R (a+mub+ac—mubc), (21)

so that the total effect of higher order corrections to u
decay (neglecting final-state interactions) can be ex-
pressed through a renormalization of the coupling
constant.

Gu=G{1+[a(14c)+mb(1—c)IR}.  (22)

udecay is the only example of a purely leptonic process.
The essentials of the calculation above do not depend
on what kind of particles are involved and, therefore,
the results can be taken over to semileptonic decays
of baryons with only trivial modifications.

A calculation of R,s(k) to order G is carried out in
Appendix B with the result

Gem. B

Raﬂ(k)=—[(mu‘}‘k)(l—l")'s)]aaé—%;—x&

+0(md/m2H+0(G*), (23)
where
A= lim §(p2—m,2) (24)
p2omy?

is the formally infinite constant, entering the theory.
The fact that A is infinite comes from the fact that
the internal u line in Fig. 3 has been given a sharp
mass 7,. Actually, the mass of the u has a certain width
of the order 1/7, (7, being the u lifetime) because the
muon is an unstable particle. It thus seems reasonable
to replace the sharp d function in (24) by a Lorentzian

of width 1/7,:

1 T
A= lim - —mM————
pomd | g A(P—m 2R T

T2

(25)

If this is the right value for A it leads to m,R=—1.2
X107 in Eq. (22) so that a lowest order calculation is
totally unreliable. But the summation of chain diagrams
shown in Fig. 4 is easily achieved. In coordinate space,
a graph with » bubbles in the chain is related to the
one with (#—1) bubbles through the simple iteration
formula

Raﬁ(n) (x—y) = (_ 1)n+1 [(2%—- 1) ‘]2X3! /d4z

2n+1)1(2n—3)!
XRay ™D (2—2)Rys® (3—y), (26)

where R, (z—7) is, of course, the Fourier transform
of (23). The factor in front of the integral stems from

€ (] e e
CVRN v
M® \;/ m \;/ © ¢ o . m Yu
Ve Ve Ve Ve

F1c. 4. Chain diagram for u decay.
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the fact, that the endpoints of each graph (of nth order,
say) are fixed so that its multiplicity is (n—2)!. As
pointed out in Sec. 2, this leads to a Saalschiitzian
series. In this particular case Eq. (22) reads

G 0{1 ek 7
| — -——-—————-x" 5
g = (21!
where
G*m,8
x= A (28)
4872

The summation of the Saalschiitzian series in (27) is
carried out in Appendix C, leading to

1 14/
G,.=G{———ln
/% 11—4/x

with A given by (25) this gives G,=20.9G. This is a
much smaller renormalization than the one derived
above from the lowest order calculation, but it is still
very large. However, it will be shown in Sec. 4 that a
simple summation of chain diagrams is still a very poor
approximation (at least in e-», scattering) in the sense
that it still increases quadratically with » momentum
at high energies. Thus, one is tempted to conclude that
the full expression for Rng(k) inserted in (22) will give
a substantially smaller renormalization. In any case,
the important conclusion so far of a qualitative nature
is that there exists a non-negligible renormalization of
the coupling constant in u decay due to higher order
weak corrections.

It hardly needs to be said that the conclusion above
has important implications for the conserved-vector-
current theory and the persistent small difference be-
tween G, and G4.% For that reason we next consider the
decay of the free neutron neglecting effects of strong
interactions. Of course the calculation is similar to that
of u decay but the operator @ in Eq. (17) has to include
the term [cf. Eq. (11)]

’—]—%lnll—xl}; (29)

2=VIG / a0, () (1—ve)

XeP" (@p,” ()€ (1+ys)¥a(®) --+H.c.

The lowest order contribution to R.s'(k) for n decay
is shown in Fig. 3. Details of the calculation are again
found in Appendix B. The result is

(30)

_ G*m S
Rag' (B)=—[(M n+k)(1+"/5)]aﬁ—6;’r2—‘)\A/ , (31)
with
A=gIn|e+ (- 1))
+(1/15) (28— 98— 8) (£—1)12=173,
E=Ma—M,)/m=2.6.

8 C. S. Wu, Rev. Mod. Phys. 36, 618 (1964).

(32)
(329
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F16. 5. Lowest order weak correction to # decay.

A’ is defined similarly to A, Eq. (24), with m,2 replaced
by M.’. Because of similar arguments to those pre-
sented after Eq. (24), the most natural value for the
parameter A’ is

N=72/r,

(33)

where 7, is the neutron lifetime. The summation of
chains now leads to [cf. Eq. (29)]

+/x

1—+/%'

In

G5=G{

~F +iml-e], 69

o' = (2G*/ T )NM wm A’ .

where
35)

The quantitative information of Eq. (34) is of no par-
ticular interest for the same reason as before when g
decay was discussed. The qualitative conclusion, how-
ever, that there is a different weak renormalization of
the coupling constants in x decay and # decay is of the
utmost importance. This difference in G, and G5 may
very well be as large as a few percent and may thus
account for the persistent experimental difference.

4. ELECTRON-NEUTRINO SCATTERING

There are several scattering processes involving only
leptons. The e-», scattering provides a typical example
for all of them and it will be the only scattering process
studied here. It was pointed out in the Introduction
that the most interesting feature of this process is the
behavior of the elastic scattering cross section at high
energies. For simplicity only the last term in @ [Eq.
(11)] will be considered here; that is, muons and their
neutrinos will be totally neglected. This does not
affect the results in any essential way.

For scattering of an electron of four-momentum H
on a neutrino of four-momentum ¢, into an electron
neutrino pair with four-momenta p, and g¢s, the S-
matrix element is given by [cf. Eq. (9)]

(p2q2| S| prg1)

V2G M,

=a ’) _'e N 1._..
s Ry [plop20q1oq20]u2% (P2) (1 —rs)

X0, (q2)0e (1) (1 +v5)u, (§1)

X / d4xd4y etz (peta2)—iy (p1+a1)
X{8® (x—y)+K(x—»)}, (36)
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where
K(x—y)=V2G0|¢." (x)C 1 (14s5)

X (€)Q% () (1—7s) €,  (9)[0)  (37)
and Q is defined in Eq. (10). Again, the term with the
d function in the curly bracket represents the first-order
contribution, being identical to that of standard La-

grangian field theory.
Introducing the Fourier transform of K (x—y),

1 -
K@—y)=——[ d*k e * =K (k),

(27)* (38)
reduces Eq. (36) to
(p2g2| S| prg1)
Ww2G My
o 2wy 1"1’20(110920]1/25(4)(?2+Q2—P1—-ql)
X o(P2) (1—=78)2,(§2)0e(P1) (1+75)2, (G1)
X{1+K (pr+g)}, (39)

from which the spin-averaged differential elastic cross
section is readily obtained:

de G* (E+q)¢ N
AL LTS 5T

(40)
i@ 2* E

Here E and ¢ are electron and neutrino energies in the
center-of-momentum system. Furthermore,

s=(prtq)? (41)

is the total emergy in this system. (For invariance
reasons, K depends only on s.)

Up to third order in G, only bubble diagrams of the
type shown in Fig. 1(a) contribute. The calculation is
carried out in Appendix D with the following result:

_ VIG (B—m2y G (R—mp2)
R(k)=—i— e —
e B 22 B

+0(G%), (42)

This leads to the following cross section:

do G*q¢ 2G'°
—_—————— —'—+O (me2/q2)+O(G6) . (43)
aQ = 3o

Because that term of Eq. (42) which is linear in G is
purely imaginary, there is no interference term of order
G? in the cross section (43). The cross section as given
by Eq. (43) is plotted in Fig. 6. It is seen that there is
practically no deviation from the first-order result until
the unitarity limit is approached. At that point the
cross section has a maximum and then it decreases
sharply. Unfortunately it is in this energy region that
all the higher order terms become important. In fact,
the cross section (43) even becomes negative for suffi-
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F1G. 6. The e-», scattering cross section to order G*.

ciently large q values. There is thus a need to include
higher order terms in the expansion of K(%). The
easiest thing to do is again to sum the chains of bubble
diagrams. This leads to the following Saalschiitzian
series (see Appendix C):

e i (»r—1)! 2L1—.1(:1 i (
= X =2+ - , 44
= (1) nii=s) )
with
x=—i2V2G@*/r=—1&. (45)
Equation (44) inserted in Eq. (40) yields
do G* £+1
—=—¢4+——1[F I’ (1+ &) +tarctan’t]
Qe =? & .
-2 1n(1+52)—g arctang;, (46)

with ¢ defined by (45). For large ¢, (46) diverges as
¢* In?(Gg?) and hence worse than the lowest order term.
This proves nothing but the crudeness of the chain
approximation.

In an attempt to go one step further, one may calcu-
late the fourth-order graphs of Fig. 1(b). This is done
in Appendix D. One can then easily sum up diagrams of
the type shown in Fig. 7 with the following result:

L (31/—' 1)'
= 7% 1))
v=1 (3V+1)!
e: C C e
Ve ®<v

T1c. 7. Diagrams summed for e-», scattering.
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with
V2G® (29)8
=—1 ——q—E (fa)?. (48)
3 (2n)®

1|‘\B |:1 a?+4at ]2 Laret 3a(1—a):|
arctan

a7 et 1—2a—a?
140

i
PR s A I —
—%In(14af) a[z 1n[1~a2+a4:|‘/2

T V3 V3
+V3———arctan
6 2

2] —3%iarctana®. (49)
1—2¢

K as given by (49) diverges at large ¢ as badly as (44).
The conclusion one draws from this fact is that the
interference terms between different classes of dia-
grams will be important to depress the cross section
below the unitarity limit. Therefore, in order to obtain
the cross section accurately enough for comparison with
future ultra-high-energy neutrino experiments, one will
have to endeavor the task of computing all diagrams of
each order step by step up to a sufficiently high order
of G¢.

SHBI+(x_y, m#)=Saﬂ+(x_y) m#) +%G Iaﬁ(x'—y) ’

where
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5. RENORMALIZATION

In Sec. 3 it has been shown that higher order correc-
tions to decay processes lead to a renormalization of the
coupling constant. This renormalization depends upon
the masses of the particles involved. It has been dis-
cussed in detail in Sec. 3 and we have no further com-
ment on that.

There is, however, another type of renormalization
connected with internal lines of unstable particles. A
typical example is shown in Fig. 2. It is also recalled
that all particles are on the mass shell so that this type
of correction to an internal line can only occur if it
represents an unstable particle. The three particles in
the “bubble” must form a possible decay system of the
“mother particle.”

The correction to the internal u line as shown in
Fig. 2 looks like a self-energy correction. It will be
shown, however, that it does not lead to a mass re-
normalization but rather to a new kind of coupling
constant renormalization. (As the lines do not corre-
spond to particle propagators, an interpretation in
terms of a mass renormalization seems impossible.)

An internal y line, say, is represented by a function
Sagt (®—7y, m,). Including only the lowest order correc-
tion shown in Fig. 2, the “renormalized line” will be
represented by

(50)

Tus(x—y)=— / d"zld"zz[(ya%—- imu> A—=ys)y*(14vs) (7:96;—im”>:|aa

X {Trl}y"(l—l—'ygf,)('y—{)——inze) (1—75):IA+(21“22y me) }

21

and

a
A, (aem) =—A% (w,m)
oxH

The computation of the integral (51) follows the stand-
ard pattern outlined in Appendix B. Inserting the result
in Eq. (50), one obtains

Saﬂ’+(x'—y7 my)
G*m,5
=Sa +(x_y; my) 1+144 2A+O(me2/mn2)

T

(53)

where A is defined in (24). As the particular structure of
the bubble does not enter the calculations in an essen-
tial way, one arrives at the very important conclusion
that self-energy-like graphs in internal lines change the
function representing the line S+ by a multiplicative
factor. It has been noted above that an interpretation
of that factor as mass renormalization is unphysical.

XAt (=21, M) AT (32—, mu) At (31— 32, 0)A, 7 (21— 2, 0)  (51)

(52)

It is not even possible formally, since (see Appendix E)

At (x, m2+m?)
om?)  om? x?
= A*(x,m?) {1—{————-} —_ ds At(x,s) (54)
m? m? 4Jo
and the last term in Eq. (54) is missing in Eq. (53).
But an interpretation as coupling-constant renormaliza-
tion is straightforward. Each internal line is connected
to 2 vertices and the square root of the renormalizing
factor in Eq. (53) can be absorbed into each of the 2
coupling constants, thereby leading to a coupling-
constant renormalization. The new feature is that the
vertices connected to external lines will have a different
renormalization because in scattering processes, ex-
ternal lines are not renormalized. (Remember that all
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initial lines emerge from the same point and similarly
all the final lines emerge from a single point.) In order
to be able to renormalize the theory from the very
beginning, one has to compensate for this fact by
renormalizing the state vectors as well.

Define a renormalization constant ¥ for each particle
through

ST (,m0) =V oS ag (x,m4) (55)
so that, for example,
G*m,8
V.,=1+ A+O(m2/m2)+0(GY). (56)
14472

Y. and YV, are, of course, unity because these particles
are stable. The whole theory can now be formulated in
a renormalized way with (11) replaced by

Q=2 f P51 (VG0 (L= 75) @, 0,7 (L va)

+ (V1 2G)u(1—vs)ed,, " e (1+vs)¥s, +H.c.

+G‘l—/e(1’—’Yﬁ)e"i’v‘T‘//eTe«l(1+75)¢v¢} O (57)
and the following renormalization of state vectors
la) —|a)=Y"2|a). (58)

If calculations are made with (57) and (38), all graphs
with internal line renormalization parts (self-energy-
like parts on internal lines) have to be dropped.

It should be pointed out that e-», scattering provides
a means for measuring the (“bare”) coupling constant
G. This is so because at energies far below the unitarity
limit higher order corrections can be neglected, thus
leaving the coupling constant unchanged. Hence all
renormalization constants Y, are measurable quan-
tities. If the interpretation (25) is adopted, they all
are finite.

6. CONCLUSION

In the preceding sections, an S-operator theory of
weak interactions has been presented; it yields finite
answers and fulfills all mathematical requirements, in
particular unitarity of the S operator. The question is
how this theory may be tested experimentally. Of
course, the most direct test would be e-», scattering (or
possibly v,+n — u-+p) at ultra-high energies. Since no
appreciable deviations from the first-order term are
predicted by the theory until one almost reaches the
unitarity limit at about 300 BeV in the c.m. system,
this check has to wait until ultra-high energies are
accessible.

Fortunately, there are other predictions of the theory,
which can be tested at low energies. These are the
differences in coupling constants. It would be premature
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to regard the difference of G, and Gy as a success of the
theory but if a refined measurement of the coupling
constant in e-», scattering or even ordinary u capture’
shows a definite deviation from both G, and Gg then
that may be taken as evidence in favor of the theory.

There are many other processes in which the theory
can be checked. These are mainly processes where
strongly interacting particles participate. The most
obvious check of the theory in this field is of course the
Ky*-Ky® mass difference, the only measured quantity
proportional to G2. Other processes forbidden to lowest
order such as e-», scattering or »,p scattering can
eventually provide means to check the theory.

All this can be summarized by saying that this is a
theory that allows one to calculate every possible
process. Such a theory is bound to lead either to success
or to failure.

A final word about causality is in order. It has been
pointed out in the Introduction that the fact that
internal lines are not represented by causal propagators
is not disturbing. The graphical analysis of S-matrix
elements is purely formal and does not represent any
virtual process developing in time. On the other hand,
it is often stated that analytic properties of the S-
matrix elements are consequences of microcausality. A
check on the lowest order diagrams shows that they
have fewer singularities than the analogous ones in
standard Lagrangian field theory. (Note that the G*
diagram in e-», scattering happens to be the imaginary
part of the corresponding Feynman diagram in the
conventional theory.) Initially, all matrix elements are
only defined in their physical region as they carry a
© function which restricts them to this region [see
Appendix D, Eq. (D2)]. But an analytic continuation
is trivially achieved. Though it seems that fewer
singularities occur, the theory is based on a unitary
S operator and all singularities required by unitarity
are necessarily present. There is of course the possi-
bility that complicated diagrams introduce singularities
incompatible with microcausality. (Further elaboration
on this point might eventually be desirable.) If this is
not so, the matrix elements of this theory satisfy ordi-
nary dispersion relations. However, it should be re-
peated that the theory is not crossing symmetric.

APPENDIX A: FIERZ TRANSFORMATIONS

In this Appendix we derive the generalized Fierz
transformation of Eq. (5) in the text. To this end it is
convenient to start from the well-known Fierz identities®

60:476;)8:% Z I‘pviraﬁi: (Al)

i=SVTAP

7 Note that any first-order process with 2 incoming and 2
outgoing particles is proportional to the unrenormalized coupling
constant G.

8H. Umezawa, Quanium Field Theory (North-Holland Pub-
lishing Company, Amsterdam, 1956), p. 119.



142 CONSISTENT

where

=1 if =S

=yr if i=V

1
=—g# if

V2

1=T (A2)

=qybys if 1=4

=5 1f ’I:=P.

If Eq. (Al) is inserted in an expression like

%/—/aO\PMZ(,Ot//d = ('/—/GO) aéaﬂ‘pbd (SZCO) p5pﬁ‘l’dﬂ ) (A3)

one obtains the well-known transformation of (A3) into
‘paol‘xbd\zcol‘l’b )

where O’ is in general a linear combination of Dirac
operators, related to O via the Fierz matrix.® To be
specific, this kind of Fierz transformation shall be called
a Fierz transformation of the first kind.

To prove Eq. (5), a “Fierz transformation of the
second kind,” it is best to start with the right-hand
side of Eq. (5) and insert Eq. (A1) in the following way :

(A4)

THEORY OF
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Va(1—y5) CP YT C (14ys)¥s
=[Ya(1—75)J08as[CFL T [WaTC TP
Xapﬂ[(1+75)¢b]ﬂ
=—1Y i Ya(l—y)Ti(I4+ys)¥wpaTCTiCYT, (AS)

where the minus stems from the anticommutativity of
the field operators. The combination (1—v5)T¢(14s5)
assures that only V and A4 survive in the sum over ¢
and if one uses the properties of €, given in Eq. (6) of
the text, one arrives directly at Eq. (5) of the text.

APPENDIX B: COMPUTATION OF R,s(k)

The quantity one has to compute for the renormaliza-
tion of the u-decay coupling constant is R,s(%) whose
Fourier transform is defined in Eq. (16) of the text.
To order G? it is given by

Rap(x—7y)
(V2G)?

f 245019, (#) (D) =19 F7 (2)

X, T (2)C7 (1 +vele(2) 1 9o(y) A—v5) P, T (v)
XLe(1+va), (9)18:10).  (B1)

Recalling Egs. (13) and (14), this can be recast into
the form [cf. Eq. (52)]

.__G2
Res(e=y )=T/ a2l (1—vs) @JasiL e (1+ys) ]2 (1—vs)@]shL € (14y5) Je8
XSBBx+(x_Z; mu)SmaF()’—Z, O)Sazﬂx+(z_y: O)Sﬂzaa+(z—y) M)

G? 9
= —'*g/d‘iZI:('Ya_—im‘A)eT(l""Y&)T'Y)\T(l_“'YB)Te_-lT:] A+(x—'z> mM)A; ?\+(z—y) 0)
X Ba

d
x {Tr[e—1<1+75>(75;—ime)(1—va>ewf]A+(z—y, ma}w (—3,0). (B2)

One can combine two of the A+ functions with the same
space-time dependence into a spectral integral®

At (wm) A F (2,0)
—1:1 © dS g“y auav
=—[ —](s—m2)P—— (s—m?) (s+2m? —}
4872 m2s2{( ) 4 ) )2s
XAt (x,s).

Contraction with g» and insertion of the definition of
A+, Eq. (13), yields the form required in (B2)

(B3)

1
grA, + (x mz)A; T (x)O) =
s 16w ()

/ d*k O (k)

k2_m2)2

X0 (k2 —m?) e“"’”—(-——}:z—— (B 4)

9 W. Thirring, Principles of Quantum Electrodynamics (Academic
Press Inc., New York, 1958), Appendix II.

A collection of formulas of the type (B3) can be found
in Ref. 10. Insertion of (B4) and the definition of A+

in Eq. (B2) leads directly to the Fourier transform
Raﬂ(k)

Eaﬂ (k) =

G2

®(k)6(k2_m2)]aﬂ(k) ) (BS)

1273
where

Jap(k)

= [d‘k’@ (B O (k—E") O (B2 —m2)s (m,2—2kk +£72)

(k2__ me2)2

><[(k+m,.)(k—k')(1+75)]ap———2—-—. (B6)
Using k
ku
/ &R by f (R E - / &K (RE)f(kEY,  (BT)

1 H. V. R. Pietschmann, Phys. Rev. 139, B446 (1965).
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one can write the integral (B6) in the following form :
Jag(R)=[(mu+k) (14s) JapJ1 (k) (B8)
where
Ji(k)= /d“k’@(k')@(k— kO k2—m2)o(k'2— 2kk'+m?)
(2kE' —m2—m@)? m2—kk'

2k —m,2

(B9)

My

The integral (BY) is most easily evaluated in the rest
frame of k. The result inserted in Egs. (B8) and (B5)
yields directly Eq. (23) of the text.

The computation of R,s' (k) as given in Eq. (31) of
the text follows an analogous pattern with trivial
changes in the mass values. Instead of (B4) one has to
use

1
g AT (o, M)A (m) =—
g 167 (2r)*

k2_ (M2+m2)
X @[kZ_ (m+M)2:|6—ikx___k2____

X (M -mi+ k=2 (MPm? MR +-m?k2) ]2,

/ d*k O(k)

(B10)
so that (B9) will change into
Ji (k)

= / % O (F)O (k— k') O[k— (me+M )]
B2— (M 2+m2) M2—EE
Iz M.,

X [M?4+me4+k/4,_ 2 (Mp2me2+M'p2k’2+me2k’2)]1/2 .
(B11)

X8 (k2 — 2k 4 M.2)

A computation of (B11) in the rest frame leads to
Egs. (31) and (32) of the text.

APPENDIX C: THE SUMMATION OF CERTAIN
SAALSCHUTZIAN SERIES

The summation of the following three infinite series
is required [cf. Egs. (27), (44), and (47)]

© (2V‘— 1) ! )
TE ot e
w (v—1)!
52=Z X, (CZ)
y=0 (V+1)!
siop BTV (C3)
= Bu1)!

All three are of the Saalschiitzian type. A Saalschiitzian
series can be defined through a generalized hypergeo-
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metric function!!

© (a),,(b),.(c)nx"
3F2(G,b,€ ’ d3e: x) =”§0 W ) (C4)

with
(@)o=1, (a)a=T(a+n)/T'(a)
=a(a+1):-- (a+n—1). (C5)
(8)n- * - (€)n are defined in the same way. If
a+b+c=—1+d+e, (Co)

the series is called Saalschiitzian.
S1---Ss can now be expressed through generalized
hypergeometric functions in the following way :

Sl:%x 3F2(1:1)%; 2:% 5 x) ) (C7)
Se=143x sF2(1,1,1; 3,1; x) =1+32F (1,1; 3; %), (C8)
S3='1'1§x 3F2(171:%52;7/3;x)- (CQ)

Equation (C8) shows that S, can be expressed through
an ordinary hypergeometric function. Its summation
can thus be carried out by using the integral
representation!!

T'(c) 1

F(a,b; c;x) S TEE— 'rb*l(l—‘r)"‘b‘l(l—-‘rx —odr
T (c—b)J o )
if Rec>Reb>0, |arg(l—x)| <w. (C10)
Thus
11—¢ 1—x
Sg=1+xj ——dt=24+——In(1—x), (C11)
o 1—ut x

which confirms Eq. (44) of the text.

We will demonstrate 2 different methods to sum the
series 51 and S3. Of course, either method could be
applied in both cases.

From the definition (C4) one can directly derive the
following relation between generalized and ordinary
hypergeometric functions:

sFa(1,a8,0; a+1, b+1; %)
a

b
=——F(,a;a+1; x)+—F(1,0; b+1; ).
b—a a—b

(C12)

Inserting the special values of the parameters as given
by Eq. (C7) and using the integral representation (C10)
yields

%
—in(l—=z), (C13)

which is the result used in Eq. (29) of the text.
To sum the series .53 one can use the representation
of the generalized hypergeometric function through

11 A, Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. I.
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Meyer’s G function'
sF2(ab,c; de; x)
T'(d)T (e)

T rore

1—b,
1—d,

|1——a, 1—c¢
31,3(3\:
0,

together with the Euler transform!

e, b, ¢
G3,31»3<x >
0, d, e

1
= dyy=(1 —y)“*e“‘Gm“(xy
T(a—e)Jo

) (C14)

1—e

b, c>
0, d

if |argx| <w, Red<Rea<1l (C15)

and!
a, b\ T(1—a)T(1-0)
62'21,2<x )=_________
0, ¢ r'(l—oc)
XF(1—a,1—b;1—c;x) (C16)
to obtain

3F2(1s17%; 2’7/3) x)=3F2(1 173 ) 7/3 2; x)
rl
= ] dy F(1,4;7/3;29). (C17)
0

The exchange of parameters in the first equality of
(C17) is necessary to avoid improper integrals which do
not converge uniformly. Inserting the integral repre-
sentation (C10) once again yields

1—a

1 t1/3
Si= /dzf = l————————
—tz 3a [14+a+ta2]v2

2a+1+ 1 Hn(l—s), (C18)
———arctan: ———3In x),
av3 V3 aV36
where
a=x'53, (C19)

G3

8
K(lb) (x....y) =
3i
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If the argument in Eq. (C18) is pure imaginary it leads
directly to Eq. (49) of the text.

APPENDIX D: ON THE COMPUTATION OF
HIGHER ORDER GRAPHS IN
e-v. SCATTERING

In order to obtain higher order corrections to e-v,
scattering one has to compute K (x—7y) as defined by
Eq. (37) of the text. To lowest order in G, K(x—y) is
given by

e i -
K(z—y) =\/—§(0lrl/e7 @ e (1+ys) ()d.(y)
X (1=v5)€d,7 ()| 0)+0(G?)

e (1—5)e
—\77[ (1+7v5)JasL(1—75)C]4s

X Sayt(@—y, me)Spst (x—y, 0)4+0(G*). (D1)

By means of Egs. (13) and (B4) this can be cast into
the following form

G
A = d*k O (1) © (R2—m 2)e—ik (e
K(s—y) \r(@f 90 (B—m2)e
(k?_m2)2

x——];;—“—+0(<;2). (D2)

The Fourier transform of Eq. (D2) gives exactly the
first term of Eq. (42) whereby the © functions are
dropped. Note that they only restrict 2 to lie in the
physical region of e-», scattering.

The only graph contributing to second order in G is
the one with 2 e-v, bubbles. In momentum space, it is
simply the square of the first-order graph multiplied
into the weight factor 2. This gives the second term of
Eq. (42).

Using the same technique as above, the contribution
of the graphs shown in Fig. 1(b) to K(x—7y) can be
written in the following form:

Tr[ (14ys)yrey ayrsy syriy] / d*a1d*%ol\; (=21, M)A, T (31— 32, M)A, 5T (22—, M)

Inserting Egs. (B3), (52), and (13) yields the Fourier transform of K (x—7), defined by Eq. (38):

Kub (p)=
® m

2G3
R / dthd'q O (1) (-9~ ) O (P KN (—me)

X[ (k+p—q)*—m e BL(p—9)* B[ (g—k)*1¢ss (k+p—9),n(p— ‘I)uz(q_'k)uaT

XAt (21— 22, 0)A;,,2+(x—22, O)A;u:+(zl_y7 0). (D3)
kZ_me2)2
x[(k“’ mz>~—+<k2+2m 2~ Fut ] (D4)

Using the § functions in the integrand of (D4) to obtain

Tr[ (14ys) 0—@)v*(q— k) (k+p—q)v,g ]=4(p*—m2)?

(DS)
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and

Tr (14vs) (D— @) k(g— k) (R+p— @) kg 1=2(p*—2m7) (p*k*—m.*),

and inserting Egs. (D5) and (D6) in Eq. (D4) yields

—V2G3

Kav =
(®) )

44"
(B—me)?
]

B

Xo(g*—m)L (k+p—q)*—mTo[ (p—9)* oL (g— k)]

Since there is no dependence on the azimuth angle of g,
three of the & functions in (D7) are sufficient to elimi-
nate the integration over d%. The fourth 6 function can
then be used for the integration over d&°. The remaining
integral can be carried out in the rest frame of p. The
result of this elementary integration is

_,,;\/2‘(;3 ps
36  (2r)®

Rav(p)= +0(mi/k). (DY)

When Eq. (D8) is inserted in Eq. (40), it has to be
taken at

P=s=02g), (D9)
where ¢ is the neutrino energy (in the c.m. system).
Taking out the weight factor 21/4! of the graph in
Fig. 1(b) yields the result given in Eq. (48) of the text.

APPENDIX E: PROOF OF EQ. (54)

It is well known? that the A* function can be repre-
sented through a Hankel function of the first kind,

m
A* (w,m) = H1 O (m\/3), (E1)
/%
where
z=xkx,. (E2)
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/ d*kd*q O (8) O (K +p"—¢°) © (¢*—&°)

[ (B—m®) (P~ mdP+ (R +2m) (PQ‘Z”‘”(”Z‘E)]
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(Do)

k2
(D7)

For a small variation of 7 one gets (to first order in &)

A om) <1+6m) m [H o
x, m—+om) = ) P 1D (mn/3)

om d H.®
+:/—zd_m 1 (M\/Z)l (E3)

Using the relations'?

d 1
—H,® () =—H,® () — Hy® (x) (E4)
dx x

and

¥2H,® (x) =/dx ¥H, D (%), (ES)

yields, after some trivial rearrangement of integration
variables,

om
At (x, m~+om) = At (x,m) [ 1+2—}
m

om ™
-——x2[ kdk At (x,k).  (E6)

m [

If m is replaced by m? this is exactly Eq. (54) of the
text.
2 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,

Higher Transcendenial Functions (McGraw-Hill Book Company,
Inc., New York, 1953), Vol. II.



