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Perturbed Bound-State Poles in Potential Scattering. I*
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Department of Physics and Astronomy, University of M'aryland, College Park, Maryland
(Received 5 October 1965)

The perturbation formula of Dashen and Frautschi is studied in nonrelativistic potential scattering. A
formalism based on the Jost function is presented and is shown to be equivalent to the Dashen-Frautschi
approach. It is shown for both cases that unless the Born approximation is satisfied for the unperturbed
problem, the mass shift cannot be calculated in a simple way. It is pointed out that the Born approximation
is not expected to be valid if the bound state is assumed to exist. The formalism is illustrated by the use
of a soluble square-well potential. The infrared problem is also discussed. It is pointed out that the infrared
divergence is automatically eliminated at the binding energy and is not "spurious. "

I. INTRODUCTION

~ 'HE recent calculation of the proton-neutron mass
di6erence by Dashen and Frautschi' and their

subsequent work on the octet enhancement' are based
on the assumption that the strongly interacting particle
can be regarded as a bound state of two particles. Their
results depend crucially on the relativistic analog of the
perturbation formula in nonrelativistic potential scat-
tering. Since this formula is the key to their numerical
results which have drawn considerable current interest,
it seems extremely important to understand correctly
the perturbation formalism in the potential scattering.

In this paper, we examine first the first-order correc-
tion to the binding energy using the Jost-function
formalism. We then show that the Jost-function
approach is equivalent to the formulas used by Dashen
and Frautschi. It is shown that the input function in
the Dashen-. prautschi formula depends on the un-

perturbed potential and the unperturbed wave function
unless the Born approximation is valid for the original
problem. It is pointed out also that the Born approxima-
tion is not expected to be valid if the bound state is
assumed to exist. We then use the soluble square-well
potential to illustrate the Jost-function formalism. The
infrared problem is also examined.

In Sec. II, we introduce first the unperturbed and
perturbed potentials, wave functions, and Jost func-
tions. We then derive the first-order correction to the
position of the bound-state pole in terms of the Jost
functions. In Sec. III, the Jost-function formula of the
preceding section is shown to be equivalent to the
formula derived and used by Dashen and Frautschi.
It is shown that unless the Born approximation is valid
for the unperturbed problem, the mass formula does not
have general applicability. It is pointed out also that
the validity of the Born approximation is incompatible
with the existence of the bound state. In Sec. IV, we
illustrate the Jost-function approach using a soluble
square-well potential. We show that the result of the
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Jost-function calculation and that of the conventional
perturbation theory coincide for a weak perturbing
Yukawa potential. The infrared problem connected
with the Coulomb-potential limit of the Yukawa
potential is examined in detail. It is shown that the
bound-state condition eliminates the term causing the
infrared divergence.

II. JOST-FUNCTION APPROACH

We consider an attractive potential V0(r) and call
this unperturbed potential. Then the Schrodinger
equation for the /th partial wave can be written as

q»(r) = j»(k»)+(1/k)
r

X L»»i(kr) j»(kr') —ji(k»)»»»(kr')7

where q & is the /th radial wave function. We define j&(x)
and n»(x) as

j»(x) = (-,'»rx) V»+;(x),

»»»(x) = Q»rx) ~N»+)(x) .

If we add a small perturbing potential 8V(»'), then the
perturbed wave function 4&(r) satisfies the equa, tion

@»(») = j»(kr) + (1/k)

r

X f»»&(kr)j&(kr') —j&(kr)»»&(kr')7

XLVO(r')+4 V(r') 7+»(r')dr'. (2)

The perturbed wave function satisfies also the "full-
Green's-function" integral equation

4»(r) = &p»(r)+(1/k) rp»(r —r')8V(r')4'»(r')«', (3)

which, to lowest order in 5V(r), takes the form

r

+»(r) = ~»(»)+(1/k) «(»' ")~V(»')~(")«' (—4)
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We now restrict ourselves to the S wave and drop the
subscript l. The generalization to higher partial waves
seems to be trivial. Then the integral equations in
Eqs. (1), (2), and (4) take the following familiar forms:

where

&&f& &(x)= (1/k) [exp(&ikr)]Vp(r)[+(r) —4 (r)]dr

+(1/k) [exp(~ikr)]&&V(r)C (r)dr.r

&p(r) = sinkr+ (1jk) [sink(r —r')]
~ 0

r

0'(r) =sinkr+(1/k) [sink(r —r')]
0

X V y) (ri)d„i (5) If the Born approximation is valid for the unperturbed
problem, both%'(r) and &p(r) become sinkr, and l&f&+& (x)
takes the following simple form:

X[Vo(r')+l&V( ')]I (r')dr', (6) &'&f & & (x) = (1/k) [exp(aikr)]SU(r) sinkrdr.

r

4'(r) —y(r) = (1/k) v&(r r')5V(r—') y(r')dr'.
0

In order to obtain the 5 matrix from the above
solutions, we next introduce the Jost functions fp(+k)
and f(+k), respectively, for the perturbed and un-
perturbed problems.

5f&~& (x) = (1/k) [exp(&ikr)]&& V(r) &p(r)dr

(7) If, on the other. hand, the Born approxiination is not
valid, we have to use Eq. ('i) for [%(r)—&p(r)], and the
above &&f&+& (x) becomes

fo(+k) =1+(1/k) [exp(+ikr)]Up(r) y(r)dr, + (1/k') [exp (~ikr)] Vp(r) dr

In terms of these Jost functions we can now write the
phase shifts go and g for the original and perturbed
problems, respectively.

exp[2i»o]= fo(k)/fo( —k),
exp[2i»] = f(k)/f (—k) .

In the following discussions we will be led to study the
property of the Jost functions in the complex energy
plane. We thus use x as the energy variable, that is,

x=k',

and adopt the following notation for the Jost functions.

fo'"'(*)= fo(k), f'" (*)= f(k),
fo' '(x)=fo(—k) f' '(x)=f( k)—

I.et us now assume that the unperturbed problem has
a bound state at x= —xo, and therefore

fo& &( xp)=0—
For the perturbed system,

f& &(—xp —exp)=0,

(10)

f(Tk) =1+(1/k) [exp(Wikr)]

X[Uo()+~V()]+()d' (8)

r

q (r r') && V(r—') po(r') dr' (13).
0

We return now to the bound-state condition of
Eq. (11),which can be written as

fo& & (—xp —&&xp)+&&f& & (—xp —
&&xo) =0.

By taking only the first-order terms in &&xp and &&V(r),

we arrive at the following expression for Sxo'.

&&xo=&&f& ( xo)/fo& '( xo).

This is the 6rst-order correction to the binding energy.
In a later section we shall show, using the square-well
potential, that the energy shift calculated in this way is
the same as the result in the conventional perturbation
theory. Before carrying out this task, let us examine
whether the above formula is equivalent to the mass
formula given by Dashen and Frautschi.

III. DASHEN-FRAUTSCHI FORMULA

For completeness we derive here the Dashen-
Frautschi formula for the energy shift. The S-wave
scattering amplitude A p (x) is assumed to have a bound-
state pole at x= —xo. Thus near this pole, the amplitude
will be of the form

~o(x) =&/(x+xo),

where bxo is the shift in the binding energy.
In order to calculate l&xo, we note from Eq. (9) that

f&+& (x) can be written as

f&&+&(x)= fo&+'(x)+&&f&+&(x),

where R is the residue of the bound-state pole.
If we add a perturbing potential, both the binding

energy xo and the binding strength R will receive
corrections bxo and bR, respectively. The difference

(12) between the perturbed and unperbed amplitudes will
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then be
—~~xo

1)A (x)= +, (16)
(x+xo) (x+so+&xo) x+xp+ exp

near x= —xp. Theperturbed pole position x= —(xp+()xp)
is assumed to be very near that of the original pole. It
is important to retain exp in the denominators of the
above expression since we are not excluding the possi-
bility of

( x+xp ( bring much smaller than ()xp, which is
assumed to be a nonvanishing quantity.

Next, we multiply both sides of the above equation
by t fp( '(x)]'/(x+xo) and perform a Cauchy integral
along the counter-clockwise contour that encloses the
poles at x= —xo and x= (xp+()xp) only. Then, to
lowest order in exp,

where the contour C is described above. This contour
can equivalently enclose all other singularities in the s
plane clockwise. This is the Dashen-Frautschi formula
for the first-order energy shift.

Before discussing the applicability of this relation,
let us show that the above mass formula is equivalent
to that of the previous section. We write the amplitudes
A(x) and Ap(x) as

A(x) =
2ik

f "(*)
f' '(X)

1 fo(+) (x)
Ao(x) = — —1

2ik fp( '(x)—
The mass formula then can be written as

1 1 '1 dz f '-)(z)
bxp= ——

E fo(-)'(—xo) 2rri. az+xo f' )(z)

f(+) (z)fo( ) (z) f( ) (z)fo(+) (z)

1
~xo= ——

&-fo' '(—xo)- 2wi

Lfp( ) (z)3'»(z)dz
X , (»)

o z+xp

right-hand side is t')f( )(—xo)/fo( ) (—xo) This is just
the expression we derived in the preceding section.

Ne can of course evaluate the above integral in the
spirit of Dashen and Frautschi by enclosing all other
singularities clockwise. But, unless the Born approxi-
mation is satisfied along the integration contour, in
which case the input information takes the following
simple form

(1/sik)(8f(+ (x)fo( (*) &f—'(x)fo'+'(x)}

= —(1/ko) 1)V(r) sin'krdr, (20)
0

there does not seem to be any easy way of using the
mass formula of Eq. (19). As one can illustrate using
various simple forms for the unperturbed potential, the
Born approximation is not expected to be valid if the
bound state is to exist. Unfortunately, therefore, the
mass formula of Kq. (17) does not seem to have general
applicability in the potential scattering. '

IV. SOLUBLE SQUARE-WELL POTENTIAL
AND INFRARED PROBLEM

In order to illustrate the formalism discussed in the
preceding sections we now study the soluble square-well
potential. We calculate the first-order correction due to
a weak Yukawa potential using Eq. (14), which has
been shown to be equivalent to the Dashen-I'rautschi
formula, and point out the result is exactly the same as
that of the 6rst-order energy shift in the conventional
perturbation theory. It is well known that the result in
the conventional theory is finite even if the perturbing
Yukawa potential is replaced by a Coulomb potential.
We shall show also that the result in the Jost-function
formalism is finite and, in fact, coincides with that of
the conventional calculation.

We consider first the unperturbed square-well
potential

Vp(r) = —Vp for 0(r(a,
=0 for a(r,

where Vp is positive. Then the scattering-state solution
for this unperturbed potential is

2ik p(r) =k sinKr/K for 0&r&a
(nr+k)/))K sin(ka+))) for a&r (21)k Sll1KC Sl

Now, in the approximation of retaining only the lowest
order terms in ()V(x), the above formula is simplified to with the relations

21

bf(+)(z)fo( ) (z) bf( ) (z)fp(+)—(z)
X

dS
Sxp= ——

E fo' '(xo) 2rri c z+*o

K = (Vp+ k') *,

K cotKa=k cot(ka+r)).

The unperturbed Jost function is

fp' ) (x) = Lexp(ika)/2ik]
X$(K—k) exp(iKa)+ (K+k) exp( —iKa)j. (22)

'By "general applicability" we mean the case where bxo is aBy taking the residue ate= —xp and by relating the f l f /'() d f ( )( ) l d b d t d fr(
quantity R to the Jost functions, one can show that the them ia a straightforward wa), .
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Now, for the perturbing potential,

5 V(r) =nLexp( —Xr)j/r,
we write the perturbed wave function as

" exp( —Xr')
e(r) = ~(r)+a o (r r') —

v (r')dr'
kr'

to lowest order in 5V(r). After a straightforward calcu-
lation, we obtain

bf & &(x) =-—(Vo/ko) exp(ikr) P% (.)—y(r)3«

~ exp(ikr) exp( —Xr) sinEr
A df

+a sinEa
"exp(ikr) exp( —Xr) sin(kr+g)

dr. (24)
Er sin(ka+q)

After evaluating the above integrals we arrive at the
6nal expression for bxo.

bx ob
f' &( xo)/f—o& —&'( xo)— —

ok dp,

e{r)—o (r) =— (simrt I+exp( —„.)jE ), go+4E'

—(2E/p) cosEr LI—exp (—pr) j} (23)

for r(a. The wave function +(r) can also be obtained
for other values of r, but is not necessary for the present
purpose. Using the above expression we can now calcu-
late hf& &(x):

Using the bound-state solutions for this problem, one
can obtain bxo in the conventional perturbation theory.
The result turns out to be the same as above.

As for the infrared problem, we erst note that the
expression in Eq. (25) remains finite in the limit X -+ 0.
The only possible source of divergence is in the last
term of Eq. (24) containing the integral

sin(kr+it)
dr exp(ikr) exp( —Xr)

r sin(ka+g)

which can be written as

exp(ikr) exp( —Xr)

exp (ikr) —exp (—2ig) exp (—ikr)
y, . (26)

exp(ika) —exp( —2ig) exp( ika—)

In the above integrand, the exponential factor exp(ikr)
could cause the divergence. But at x= —xo, the ex-
ponential factor exp) —2'] vanishes, and the term
causing the infrared divergence is eliminated. .

The above mechanism illustrates the fact that the
bound-state wave function is localized and that the
infrared divergence is eliminated by this localization
effect. Bashen and Frautschi' attempt to treat the
infrared problem by introducing a fictitious photon
mass and by subtracting an in6nite quantity using an
unjustihed method. Thrir treatment of this problem is
therefore incorrect.

4nkoEo' "dpg1 —exp( —pa)g

&+ako ). v(a'+4Eo')

where ko ——(xo) &, and Eo= (Vo—ko') '*

(25)
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