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Possible baryon “kinetic supermultiplets” are discussed as candidates for classifying higher baryonic
resonances of negative parity. The “kinetic supermultiplets” had been proposed, in a previous work, as an
extension of the supermultiplet scheme of broken 7(12). The classification of higher boson resonances in
terms of a “kinetic supermultiplet” has proved remarkably successful and led to correct predictions of quan-
tum numbers and accurately verified mass relations. The baryon “kinetic supermultiplet” discussed here
employs the hitherto unused representation 220 in {7 (12), which corresponds to the 20 of SUs, and is tenta-
tively chosen on the basis of its economy. It groups together a baryon nonet with J?=3", another nonet
with JP=4~, and a singlet with JP=4§". The mass formulas are derived up to first order in SU; breaking.
Based on the quantum-number predictions and the mass formulas, we attempt a classification of higher
baryon resonances, and present a tentative scheme of assignments and consequent predictions. An alterna-
tive scheme employing the representation 364 in &7 (12), corresponding to the 56 of SUs, is also examined.

INTRODUCTION

N a preceding paper! (hereafter referred to as I) we
have proposed an extension of the multiplet struc-
ture of broken U(12)? by introducing the notion of
“kinetic supermultiplets.” The “kinetic supermulti-
plets” are represented by reducible T/(12) tensors and
contain separate nondegenerate multiplets. In I the
example of the lowest boson “kinetic supermultiplet”
was discussed in detail and it was shown that it leads to
the scheme proposed by Borchi and Gatto for a classi-
fication of higher boson resonances.® The mass relations
derived in I for the proposed boson kinetic supermulti-
plet were found to be remarkably accurate. An equi-
distance relation predicted in I between the squared
masses of the resonances Ai, A, and B, namely
3[m?(A41)+m2(4,) 1=m?(B), appears to be exactly veri-
fied. A number of predictions of resonant boson masses
was obtained on the basis of the derived mass formulas
and of a preliminary classification of existing resonances.
Since then evidence has been reported for new reso-
nances which seem to fit the proposed scheme quite well.
A predicted 7'=0 meson with J?¢=2++ at (1560450)
decaying into KK may be identified with the f7(1520).4

1R. Gatto, L. Maiani, and G. Preparata, Phys. Rev. 140, B1379
(1965). This paper will be referred to as I. R. Gatto, L. Maiani,
and G. Preparata, Nuovo Cimento 39, 1192 (1965).

2 A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London) A284, 146 (1965); B. Sakita and K. C. Wali, Phys. Rev.
I(fgtégl;s 14, 404 (1965); M. A. B. Bég and A. Pais, ibid. 14, 267

3 E. Borchi and R. Gatto, Phys. Letters 14, 362 (1965).

4V. Barnes et al., Phys. Rev. Letters 15, 322 (1965).
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The D meson at 1280 MeV? could be identified, accord-
ing to the suggested quantum numbers, with the
JFPC=1++ T'=0 meson predicted at 11804190 MeV.
Furthermore there seems to be evidence® about the
existence of a JPC=0*+, T'=1 meson, predicted at
970470 MeV.

In this note we shall discuss a possible baryon kinetic
supermultiplet described by a tensor product of the
representation 220 of I/(12) with the “kinetic” tensor.
The irreducible 220 representation is chosen essentially
on the basis that it allows for the most economical
scheme. Such a baryon kinetic supermultiplet contains
a nonet with JP=%-, and nonet with JP=3~ and a
singlet with JP=3$-. If, instead of a tensor of 220 one
chooses a tensor of 364, each of the above three singlets
is substituted by a decuplet, giving a much more
cumbersome scheme. The classification of the higher
baryon resonances in terms of kinetic supermultiplets,
rather than in terms of ordinary U(12) supermultiplets,’
seems to be required from the evidence for negative
parities of a number of higher baryon resonances, at
least as long as one likes to avoid representations with
large numbers of components. The imposition of the

®D. Miller ef al., Phys. Rev. Letters 14, 1074 (1965); Ch.
D’Andlau ef al., Phys. Letters 17, 347 (1965).

6 W. Kienzle e al., in Oxford Conference on Elementary
Particles, Oxford, England, 1965, Abstract A.96 (unpublished);
CERN—College de France, Institut du Radium—University of
Liverpool Collaboration, in Oxford Conference on Elementary
Particles, Oxford, England, 1965, Abstract A.143 (unpublished).

7"R. Delbourgo and M. A. Rashid, International Center for
Theoretical Physics, Trieste Report No. IC/65/14, 1965 (un-
published).
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equations of motion and the extraction of the irreducible
parts allows us to derive the decomposition of the
kinetic supermultiplet into its component multiplets and
the subsequent derivation of the wave functions. Before
comparing with experiment we derive the mass formulas
up to first order in the SUs symmetry breaking. We
obtain a set of three linear mass relations and two
bilinear ones, accounting for the possible mixing effects
between the two 7'=0 states in each of the two nonets.
We carry out a preliminary comparison with the existing
data on the basis of the derived mass formulas. We find
that a crucial point, for the validity of the scheme, is
the existence of a nonet of baryon resonances with
JP=1~ all lying in an energy region definitely below
2 GeV. Of the established particles, only ¥,*(1405),
appears to be a possible candidate so far. In spite of the
preliminary status of the classification, we feel that an
experimental exploration for possible resonant behaviors
around the predicted masses may be of interest. We also
present a parallel discussion for the alternative choice
of 364, instead of 220, as a basic representation. The
mass relations and the preliminary assignments do not
seem to substantiate such an alternative choice. How-
ever, the preliminary state of the assignments and the
a priort impossibility of excluding further symmetry
breakings in the derivations of the mass relations again
do not allow for a definite conclusion.

THE 220 SUPERMULTIPLET

A kinetic supermultiplet is described in terms of a
reducible tensor which is obtained as a product of a
basic U(12) irreducible tensor and the kinetic tensor
belonging to the regular representation. The imposition
of the equations of motion on the reducible tensor and
the extraction of its irreducible components leads to the
decomposition of the kinetic supermultiplet into its
component multiplets. As for the basic U(12) baryonic
irreducible tensor, one is immediately led to a choice
between the 364 and 220 representations. We shall start
here with the irreducible 220 tensor. The particle con-
tent of 220 is (8,%)+ (1,3), where the first number in the
parentheses denotes the SUs multiplicity and the second
number denotes the spin. The baryon kinetic super-
multiplet described by the product of the kinetic tensor
and the irreducible tensor of 220 will have the content

8,5+ 83+ 1,)+1LH+A,35). M

If in place of the irreducible tensor of 220 one starts from
the irreducible tensor of 364 the resulting baryon kinetic
supermultiplet will have the much larger content

(8,3)+(8,5)+(10,3)+(10,3)+(10,3). @

It thus appears that the choice of 220 for the representa-
tion of the basic irreducible tensor is much more
economical in particle content. We shall show in the
following that it leads to a baryon kinetic supermultiplet
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with appropriate quantum numbers for a classification
of higher baryon resonances of negative parity.

_ We must first summarize the content of 220 of broken
U(12). In the U;Q®U(4) decomposition the wave func-
tions are the following: For the SU; octet

YE gt v[ €cas (Th) o*+e€ote (Th)a"
+‘|!’k[ﬂ'y] a[eabs(Tk) &t e€aes (Tk) ha]
+¢k[7a]ﬂ[€bcs(Tk)as+ebas(Tk)ca] ’ (3)

where Greek indices refer to /(4) and Latin indices to
U(3), T} are the unitary matrices, the brackets [« - -]
indicate antisymmetrization, and

Yiagly=[ (14+0/m)ysClagl (p) » 4)
(p—m)y(p)=0. )

Equations (4) and (5) follow from the imposition of the
Bargmann-Wigner equations. In Eq. (4) C is the charge-
conjugation matrix.2 For the SUj; singlet one has the
wave function

(6)

where the brackets {---} indicate symmetrization.
Imposition of the Bargmann-Wigner equations gives

‘l/{uﬂ'y}fabc,

Ylapy) = @*) o (14+D/m)vuC gy, (M)
with the conditions
P (p)=0, and (p—m)y,=0. (8)

So much for the treatment of 220 in broken 7 (12). We
now turn to the reducible tensor describing our kinetic

supermultiplet.
DECOMPOSITION AND WAVE FUNCTIONS

Let us fix our attention on the T/(4) indices. Multipli-
cation by the kinetic tensor gives for the octet terms,
Egs. (3), (4), and (5),

Yiasry, 5= [ (5C)ap (0045 (ruvsC)ap (P 0) (V). (9)
We note that mixed symmetry in «, 8, and v requires
Y=ty (10)

The imposition of the Bargmann-Wigner equations
gives

Py = Pbun=0, (11)
P a=1mpy, (12)
Pun=—1imy . (13)
We must also impose a transversality condition
PaA=0, PNua=0. (14)

Furthermore each ¢ will satisfy Dirac equations. The
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functions y¥,» and ¥, will be decomposed into terms of
definite spin. We note first that the function

o=y =5t/ mvHy (15)

is a Rarita-Schwinger spinor. In fact it satisfies the
Dirac equation together with
(16)

Prer=0, vY*er=0.

Similarly
xN=3ntp/myba=sntp/mysp - (17)

describes a spin-} particle. In Eq. (17) we have intro-
duced ¢ such that y# ,=vs. It is apparent that y
satisfies the Dirac equation. The required decomposition
is then

Ya=ontX

(18)

with ¢» and X, given by Eqgs. (15) and (17), respectively.
We have thus concluded the discussion of the SU;
octets [see Eq. (1)7, and we have obtained the following
wave functions

8,3): VYiaprrs=[(m+po/m)vsy ],
X [(1+p/m>75c:]m3(7>\)6e ) (19)

8,3): VYiapry. s =L(1+8/m)vsClas(er)r(¥N)s¢  (20)
[together with the Rarita-Schwinger
conditions, Eq. (16)].

Next let us discuss the SU; singlets [Eqgs. (6), (7), and
(8)]. By insertion of the kinetic tensor one obtains the
wave function

Ylapy)0°= W) o (142/m)v*C e, (V). (21)
We have to impose the transversality condition
P)\‘//p.)\=0- (22)

Moreover, the imposition of the Bargmann-Wigner
equations gives

(p_ mppur=0,
Yur=0, and p=0.

The separation of the components of different spin is
uniquely given by the decomposition

(23)
(24)

Yur=8t+ Gt T, (25)
where 8\, @\, and T, will describe the spin §—, the
spin -, and the spin-}~ singlets, respectively [ compare
with Eq. (1)]. The symmetric tensor S, satisfies, in
addition to 8,,= S8\, the conditions

vE8i=0, P”’Su)\=0’

and (p—m)Sm=0. (26)

The tensor @, is expressed in terms of the antisym-
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metric tensor 4, :

Gun=4 MX+%[(7#+P#/7”)'Y”A Ap

+ (n+pn/m)veA,,], (27)

where A, in addition to the antisymmetry condition
A = — A\, satisfies

oA =0, and (p—m)An=0. (28)
The remaining term in (25), Ty, is directly expressed in

terms of y# ,=y:

Tin={ (g,,)\-—p,‘p)\/mz)
+3lioit (1/m) (rupr—map) ¥, (29)
with
(p—mw=0.

Explicit counting of the components, in the rest system,
shows directly that 8.\, @u, and T, describe systems
with spin £, $, and 3, respectively.

In conclusion, the wave functions of the SUj singlets
of our baryon kinetic supermultiplet are the following :

(L3): Ylapy)s*= (S,.p)a[(l-i-ﬁ/M)’Y“C]py (s,
(1,3): Ylapylst= (@w‘)a[(l"i’p/m)')’"c]ﬂv (),
(L) Ylapy) 6= (Tw)al (14+5/m)v*C 1oy (v7)s¢.

The parity of the supermultiplet can be directly verified
by direct application of the parity operation to the wave
functions. All multiplets are found to have negative
parity. Under the the same parity definition the repre-
sentation 364 of U(12), which corresponds to the 56 of
SUs and contains the stable baryon octet and the
decuplet, has parity +1. It has to be noted that the
representation 572 of U/(12), which corresponds to the
70 of SUs, has been discarded as a candidate for classify-
ing some of the higher baryon resonances because of its
positive parity.’

MASS FORMULAS

We shall now derive the mass relations. In compact
notation the reducible tensor describing our baryon
kinetic supermultiplet can be written as Y 4g¢,p” where
A, B, ++-, E are U(12) indices. Without any further
breaking of the symmetry, we can form the following
mass terms

[1]=¢45CP g 4po,0"
[2]=¢4B¢P Y zpe,p”
[3]=y4BCD 1 ppp oF
[4]=§ZABC'DE‘I/ABD.CE

The “central” mass term [1] defines the relative

normalizations of the wave functions. We introduce
next first-order breaking of SUs At such order, the
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following mass term must be included :

[a1]=¢4BC Py (N\g) aT¥rBe, 0",
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[B1]=94EC L5 (\s)p™Y anc, P,

[(v1]=¢4B¢P5(\s) r® aBe, 0T ,

[as]=9A4BCP p(N\g) aT¥ B, 07,
[v2]=¢4892 4 (\s) "¢ £ Fe, D",
[as]=948%P x(\s) 4" EBD, ",

[vs]=¢ABCL ,(Ns) "V EBD, #¥,

[B2]=¢A4BCD 4 (\s) r¥¥ e, 0",
[8:]=¢42%D s(\s) 5™ B, #”
[Bs]=¢42C2 ,(\g) ¥ rp,c ",

[85]=¢ 42D (Ns) o™V EBF 0",

[es]=942%2 s (\s) ™ EBD, 0",

[as]=¢429Py(N\e) AP rBD,c 7,

[va]=y¢4BC2e(\g) pFYunr.c ",

We note that under charge conjugation [a;] goes into
itself, whereas [81] <> [v1]. Also [az] <> [Bo], [v2] <>
Lve]), [8:] <> [8:]. Similarly [as] <> [es], [8s] <> [84],
[vs] <> [8s]. Finally [as]e>[as], [84]¢>[v4], and
[84]¢> [[84]. Before SU; breaking, with the mass term
[1], [2], [3], and [4], one finds that the multiplets
(8,%) and (1,3) are degenerate:

m(8,3)=m(L3),

and the masses of the remaining multiplets (1,5), (1,3
and (8,3) satisfy

3m(1,8)+2m(1,5)=5m(8,3).

From the complete set of mass terms, including first
order SUs; breaking, one can derive the following
expressions for the elements of the mass matrix in terms
of six conveniently chosen parameters, mi, ms, ms, as,
by, and b;:

(8,3| M| 8,3)=L(3ms+2ms)+azy+bsV, (30a)
(8,3|91|8,3)=m;—2azy+5,7, (30b)
(Li|om|1,3)=m, (30c)
(L$|om|L,3)=ms, (30d)
(Li|om|L,3)=ms, (30e)
&2[om|L,3)=(v/3)as, (30f)
8,3[9m|1,3)=—V2a;. (30g)

In Egs. (30), Y is the hypercharge and y=[T(T+1)
—1Y2—17. The multiplet structure of our kinetic super-
multiplet has been shown in Eq. (1). The 7=0 compo-
nent of (8,3) can mix with the singlet (1,3); similarly
the 7’=0 component of (8,2) can mix with (1,3). We
are thus actually dealing with a nonet (octet-+singlet)
of spin § and negative parity, which we indicate as -,
with a nonet §-, and a singlet §—. We call A(37), A’ (30),
2(37), N(37) and E(37) the physical particles of the i~
nonet; similarly A(§7), A’(37), 2(37), N(§) and Z(3)
the physical particles of the §~ nonet; and, finally, we
indicate with A($) the §~ singlet. From the mass matrix
parametrization, Eqs. (30), we obtain, by elimination

[Ba]=¢4BC2y(\g)c™YunD, v ¥,

[84]=¢AZCPg(\s) P 4D 7 -

of the parameters, three linear and two bilinear mass
relations for the physical particle masses. We denote
cach mass by the symbol for the particle. The

relations are

AING)HEG)HIHNE)+HEGD

=23)+22@), G
AN @)= EE)HNEI+ER)
N EIHEE-2GI], 62
EE)+NE)+EG)]
—HBAG)HZEIHNEHEED, (3)
MG B =32V G)+HEE)]
X[V G)+2267)-2@3)]
+10/ABWEIHEGN-2G)], (4
AGIW ) =3BAG)+3N () —2(9)—N ()
—EE)HW )+ 2EG)—42G)]
X[2N () +2247) -2 ()]
HEWE+EEN~EIF. 69)

It may be worthwhile to examine more closely the above
relations. First of all, they are all identically satisfied—
as expected—if all masses of the supermultiplet are
equal. Second, the bilinear relations, Egs. (34) and (35),
become identical to Eqs. (33) and (31), respectively, at
first order in the deviation from the common central
mass value. Starting from the mass formulas, Egs.
(31)-(35), and on the basis of some preliminary assign-
ments, we shall exhibit a complete set of predictions for
the masses of the baryons of the supermultiplet. In
spite of the fact that our speculations should still be
regarded as tentative, it appears that more experimental
effort should be devoted to examine the possible realiza-
tions of the supermultiplet, especially in view of the fact
that, as we have seen, it offers the most economical
picture for higher baryon resonances of negative parity.

COMPARISON WITH THE EXPERIMENTAL
DATA

We note that in Eqgs. (31)-(35), ¥ (37) and E(3~) only
occur in the combination N (37)+4E(%7), and the same
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TaBLE I. A possible scheme of higher baryonic resonances. (Masses are in MeV.)

T=0, =0 T=1, ¥=0 T=3 7=1 T=% ¥=—1

¥ I’;::E}gggg: predicted: ¥#(1530-:40) N*(1510)° predicted : E#*(1520=-60)
3 ¢

i {predictel(;(i I(/'loil(%%70:i:30) Yr#(1660)¢ Nx(1518) E*(1816)f

vl

predicted: Yo*(1760425)

o Reference 11,
d Reference 10.

a Reference 12.
b Reference 13.

happens for N(3~) and E($~). The identification of
N () with N*(1518) is strongly suggested from the
quantum assignment, J¥=35-, to this resonance.® Un-
fortunately to apply the mass formulas one needs as an
input the value of N ($7)+E(37), and the identification
of E(§) is less secure. It has been suggested that
E*(1816) has JP=3-? We shall here tentatively
identify =(3~) with £*(1816). It has been proposed that
Y1*#(1660) also has JP=3$-10 suggesting the identifica-
tion of 2 ($~) with such a resonance. A further identifica-
tion that is strongly consistent with the quantum-
number assignments' is that of A($~) with ¥*(1519),
which most likely has J?=3~. For the other isotopic
singlet of the 3~ nonet we do not have any assignment
to propose and we shall derive a prediction for its mass
from our mass formulas. Turning now to the 3~ nonet
we note that for A’(3~) the most likely candidate would
be Y *(1405), consistently with its attributed quantum
numbers.!? For the other isosinglet member of the 3~
nonet we do not have a well-established candidate.
Evidence however has been repeatedly reported for a
V*(1660), the so-called A-° resonance, with the
quantum numbers required to fit its identification with
A (37).3 We shall thus identify A’(3~) with the sug-
gested V¢*(1660). A last identification that we make
here is that of NV (37) with recently discussed N*(1510)
with J£=3-1 For the members Z(3~) and E(3™) of the
3~ nonet we do not have any identification to propose
with any of the reported resonances. Similarly we do
not have any established candidate for the SUjs singlet
member A(§7). We can however, predict the masses of
@), EG), AE), together with that of the other
missing particle A’(3) from our mass formulas, Egs.
(31)-(35). From Egs. (33) and (34) we obtain A’($7)
=1670430 MeV (the errors come from the reported

8 L. D. Rosen, Phys. Rev. Letters 12, 340 (1964).

9 G. Smith ef al., Phys. Rev. Letters 14, 25 (1965).

0 D. Berley et al., in Proceedings of the Twelfth International Con-
Jerence on High- Energy Physics, Dubna, 1964 (Atomizdat, Moscow,
19161512/1. Ferro-Luzzi, B. Watson, and R. Tripp, Phys. Rev. 131,
2248 (1963).

2 M. H. Alston e/ al., Phys. Rev. Letters 6, 698 (1961).

1BW. Y. Chan et al., Proceedings of the International Conference on
High-Energy Physics at Dubna (Atomizdat, Moscow, 1965);
R. Armenteros, CERN, TC, Physics Report No. 64-39, 1964
(unpublished) ; D. Berley et al., Phys. Rev. Letters 15, 641 (1965).

A, W. Hendrey and R. G. Moorhouse, Phys. Letters 18, 171
(1965). o

e Reference 14,
£ Reference 9.

experimental errors on the input masses), and, together
with Eq. (31), we also obtain Z(3~)=1530440 MeV
and E(37)=15202£60 MeV. Finally, from Eq. (32) we
derive A(37)=1760425 MeV. The scheme is now com-
plete with all its predicted masses; however, we still
have to verify the consistency of the remaining quad-
ratic equation, Eq. (35), with the proposed masses.
Inserting all the relevant mass values into Eq. (35), one
finds the equality

(2.33240.02) GeV*=(2.354:0.12) GeV?,

which is apparently well consistent. It may be worth-
while to note that the quantity A=3[N(E)+E(E)]
—2(§7) which appears twice in the right-hand side of
Eq. (35), is, with our assignments, A=7417 MeV.
Neglecting A in Eq. (35), one obtains in its place the
simpler equation [the asymmetry between A(3~) and
A’(3) is only apparent ]:
AGIN G)AG)+AG)—AG)IAGY).

This equation connects the isosinglet members of the
nonets, which only involve input masses and is well
verified in our proposed assignment. The complete

scheme, summarizing both the adopted identifications
and the predicted masses, is reported in Table I.

THE ALTERNATIVE SCHEME USING 364

The kinetic supermultiplet based on the 364 repre-
sentation has the content reported in Eq. (2), namely,
it consists of an octet+decimet with JP=3}—, an
octet+decimet with JP=3- and a decimet with
JP=%~ For the SU;reducible baryonic octet+decuplet
we shall use the name “baryonic octodecimet.” The
reducible tensor describing our kinetic supermultiplet
Yase,p® is now completely symmetric in the U(12)
indices 4, B, C. The decomposition according to
UB)®U(4) can be written as follows: For (8, 1) and
(8, 2) we have terms

[V 1ap1y.5%€atr (Th) "+ ¥ 18 110 5%€00r (Th)a”
+‘//k[7a]ﬂ,5efcar(Tk) brjﬁde;

for (10, %), (10, 2), and (10, 3) we have
‘//l[aﬂv),&‘(dl)abca(le,

where ¥¥papy,¢ and Ylagyl,s® are the same tensors
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appearing in Egs. (19) and (20). Asusual (7')." are the
unitary spin matrices and (d)asc (=1, - - -, 10) are the
SUj; decuplet wave functions.

The mass terms, calculated up to first-order breaking
of SU;, have the same forms of the terms [17], - -+, [4],
[ai], ---, [84] of the 220 kinetic supermultiplet con-
sidered before, and they also have the same charge-
conjugation properties. By explicit calculation one
obtains the following expressions for the elements of
the mass matrix [the notation is the same as in

Egs. (30)7:

(10,59 |10,5)=ms+ A5V, (36a)
(10,3 || 10,3y =ms+ A,V , (36b)
(10,5 |9m|10,3)=m1+ A,V , (36¢)
(8,3|9118,3) =1 (3ms+2ms) —3FsY+2Dyy, (36d)
(8,3|m|8,3)=ms—3F, Y —4Dyy, (36e)
(8,2|m|10,2)=2+/(5)D3(E-Y*—E=%), (36f)
(8,39 [10,3)=2v2D;(T-Y*—EE*), (36g)
with the following relations among the parameters
Fy, -+, As
3D3—3F, =43, 37
3F3+D3=—1$(345+245). (38)

The off-diagonal matrix elements connect octet and
decimets of equal spin and are nonzero only between
states of the same hypercharge and isotopic spin, i.e.,
between states

(Y=0,I=1): Z,(octet), Y., *(decuplet)

and
(Y=—1,I=1%): E.(octet), ZE,*(decuplet)

where the index # stands for “unphysical.”

Mixing effects will thus occur in each of the “baryonic
octodecimets” between 2, (/) and YV,*(J?) and be-
tween 2, (J?) and Z,*(JP). In the following we call the
physical particles of each baryonic octodecimet A(J ),
N(JP), 2(JP) and =*(JP) (resulting from the Z,— ¥,
mixing), Z(JF) and E*(J?) (resulting from the E,—E.*
mixing), N*(JF) and Q(J?). In the nonmixed %~
decuplet the particles are N*(§7), Z*(37), E*(§7), and
Q(57). One sees that the mass matrix is given in terms
of seven independent parameters, and, by eliminating
them, one expects 13 independent sum rules among the
20 isotopic-spin multiplets of the kinetic supermultiplet.
IFour of the 13 relations are quadratic and are obtained
through a diagonalization of the nondiagonal part of the
mass operator. We do not report here these quadratic
equations, but give instead the explicit form of the

remaining nine linear relations:

NE)=N), (39)
SN () =3V @)+ (), (40)
N =2 @) =2 GI—E ), (a)
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N () -2 ) =2 ) -0, @)
ST =AG)HAG), (43)
24 (9)+AG) = (8/9)[22* ()
NV E)+E)], (9
B HE G =4AG)+ (11/3AG)
—TE)-NG)-NE), @)
EH()HEG) = (14/9AG0)+ (10/9)AG)
+H30G)+HIVEG)
—3E)-NG), (@6)
A+ E) =G+ Q0/9AE)
HIN )+ -G, @)

We have again denoted the mass value by the particle
symbol. Equations (41) and (42) express the equi-
spacing law of the nonmixed §~ decuplet. We note that
all 1nasses are fixed from the above linear relations once
the following masses are known: N(37), A(3-), N($),
AGE), N*(3), Q(3), 2¥(57). As for a possible particle
assignment we note that, in addition to the negative-
parity baryonic resonances considered before, in dis-
cussing the assignments to the 220 kinetic supermulti-
plet, the following negative parity states can now be
included among the candidates: N*(1688), a recently
suggested 7'=2, JP=}"resonant state (Sy resonance)!?;
I#(1765) with possible JP=5-1; and the sug-
gested Z*(1933) with possible /=3 and undetermined
parity.l” A possible scheme would then assume the
following identifications: A(3~)=¥*(1405), N (")
=N*(1510), N*(F~)=N*(1688), A(3")=V*(1519),
N(37)=N*(1518), 2(37) = ¥1*(1660), E(3~) ==*(1816),
() =V*(1765), and E*(37)=E*(1933). However,
when one applies the mass equations one obtains un-
pleasant results. In fact a large number of unobserved
low-mass states is predicted and it seems difficult to
find reasons for their absence in the reported mass
spectra. In particular one is led to predict Q(3~) and
E*(3) at masses below 1 GeV, which seems to us an
unacceptable result. We recall, however, that the pre-
dictions follow from our adopted mechanism of mass
breaking and we cannot exclude that by including
additional mass-breaking terms the scheme based on
364 might become consistent. Alternatively one may
consider the exclusion of some of the accepted reso-
nances from the assignments, but we shall not dwell
here on a discussion of such possible alternatives. We
merely note that, in any case, of the two proposed
resonances with 7’=0 JP=4}-, ¥(*(1405) and V¢*(1660),
only one can be included in a scheme based on 364 (for
the whole set of l-values), whereas they both fit in the
scheme based on 220.
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