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Nonrelativistic Quark Model for Baryons
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A nonrelativistic quark model is proposed for baryons, according to which any two quarks are assumed to
interact with each other through p-wave forces. Such forces are shown to be capable of producing strong
binding in a three-quark system in a spatially antisymmetric state of angular-momentum unity, and making
the model compatible with an extension of the L56] representation of SUs. If the strength of the quark-quark
force is adjusted to Gt some central baryon mass (mo), the model predicts a 2-quark bound state at a mass
~-, (M+mo), where M is the central mass of a quark. The validity of the nonrelativistic description is shown
to depend on the smallness of a certain "inverse range parameter" P compared with the quark mass M, and
this condition is shown to be fully compatible with the present experimental knowledge on baryon sizes, as
measured by the charge radius of the proton. Further, using an SU3-invariant interaction, an "equal interval
rule" for the baryon masses is shown to follow dynamically from the assumption of a mass difference between
the singlet and doublet quarks, under the same condition, P&&3II, as above. It is argued that a P-wave
quark interaction, which leads more easily to the formation of antisymmetric spatial states than of sym-
metric ones, gives a sort of "saturated system" at the 3-quark level. This reduces considerably the (un-
desirable) prospects of very strong binding of a larger number of quarks, compared to the situation with
s-wave forces (which facilitate the formation of symmetric states in multiquark systems with stronger and
stronger binding as the number of quarks is increased). By ruling out the generally stronger s-wave forces as
the main bond between two quarks, the model leaves scope for their action in quark-antiquark systems,
which should require stronger binding in order to generate the (less massive) mesons.

INTRODUCTION

'HK "quark" picture of baryons and mesons pro-
posed independently by Gell-Mann' and Zweig'

has proved of great value for attempts at dynamical
formulations of a theory of elementary particles by
many authors, using SU3 symmetry and various rela-
tivistic generalization of SU6 symmetry. ' In a less
fundamental way, several authors have tried to explore
dynamical models of baryons and mesons with nonrela-
tivistic quarks through appropriate Schrodinger equa-
tions. 4 ' Through such limited approaches it is already
possible to understand the Gell-Mann —Okubo (GMO)
mass formula, the equal interval rule for the baryon
decouplet, the Schwinger mass formula for mesons' and
the —

~ ratio for the nucleon moments. ' In spite of
these successes, the assumption of nonrelativistic quarks
would at first sight probably appear unjustified, because
of the huge binding energies that must be required to
oRset the effect of the quark rest masses. However, it
has been argued by Morpurgo' that this feature by
itself need not prove an obstacle to a nonrelativistic
description for the quarks. The more important part,
as he shows by simple quantum-mechanical arguments,
is played by the range of the Q-Q or Q-Q interactions, '
which should not be much shorter than the inverse mass

M. Gell-Mann, Phys. Letters 8, 214 (1964).' G. Zweig; CERN Reports 8182/TH. 401 and 8419/TH. 412,
1964 (unpublished).

3 See, e.g., Proceedings of the Coral Gables Conference on
Symmetry Principles, 1965 (unpublished).

4 N. N. Bogolubov et ul. , Dubna JINR Reports D-1968,
D-207S, P-2141, 1965 (unpublished).' G. Morpurgo (to be published).' J. Schwinger, Phys. Rev. Letters 12, 237 (1964).

7 B. Struminski, Dubna JINR Report P-1939 (1965, un-
published).' We shall from now on use the abbreviations Q and Q for quarks
and antiquarks, respectively.

of, say, a vector meson, to make the huge binding
energies compatible with nonrelativistic quarks. While
a similar condition is not fulfilled in a Fermi- Yang model
of the pion, there is a priori nothing against the assump-
tion of a "long range" Q-Q or Q-Q force' (since very
little is known about quarks anyway). If this idea is
taken seriously, it is appealing enough to warrant in-
vestigations of a more detailed nature. In particular it
may be interesting to ask if the available data can dis-
criminate between certain types of Q-Q and Q-Q inter-
actions that must be assumed in a composite quark
model of baryons or mesons. This question has been the
main motivation behind the present investigation.

One baryon model consists of three nonrelativistic
quarks which interact in pairs. In the limit of SU3
symmetry, these interactions are taken to be identical.
Symmetry breaking is considered only to the extent of
taking unequal masses 3f2 and JI& for the "strange"
and "nonstrange" quarks, respectively, where the differ-
ence 63I= JI/12 —3E1 is small compared with the central
mass 3I= -', (23Et+3fs).

In Sec. 2, we discuss some evidences bearing on the
nature of the input Q-Q interaction on the basis of
available data. In particular we present some qualitative
arguments favoring a p-wave interaction rather than a
more conventional s-wave force. The final choice made
to facilitate the treatment of the "three-body problem"
at hand, is a separable p-wave Q-Q force. In Sec. 3, we
calculate the binding energy of a 3Q system in the limit
when the mass diRerence between the quarks is ignored,
and obtain a relation between the masses of the 2Q and

3Q systems. The validity of the nonrelativistic descrip-

' The term "long range" is used in a purely comparative sense:
the inverse range must be compared with the mass of the quark,
rather than with that of the baryon.
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tion is shown to depend on the smallness of the param- large binding energy in a 3Q system as nearly to offset
eter p/IM', where p is an "inverse range" parameter of the effect of the quark rest masses, must in general be
the interaction. In Sec. 4, and in the Appendix, the strong enough to bind a 2Q system as well. Now if the
masses of the baryons are calculated for unequal quark Q-Q interaction strength is so adjusted as to reproduce
masses, and an "equal-interval rule" is established under the mass of a 3Q system at the level of the baryon mass,
the assumptions P((3f, DM'((M. In Sec. 5, the main simple quantum-mechanical arguments suggest that the
conclusions are summarized and the model is also shown mass of a 2Q system should be of the order of a quark
to be compatible with the right order of magnitude for mass. Thus insofar as the mass of a quark may be sup-
a baryon size. posed to be high enough for observation with present-

day experimental facilities, a 2Q system could elude

2. THE Q-Q INTERACTION observation as well, and to that extent would not be
able to discriminate between s- or p-wave Q-Q inter-

In the limit of SV6 syminetry, the L56jrepresentation
w»c»sa«llysy~~le«1cstate»spi»n«»tarysp1n, F,r exam le 1f four quarks are allowed by
is generally believed to be the one aPProPriate for or otherwise, to be in a totally s~metric state (and this
baryons. In particular& this is the only representation
which Rives the correct —

~ ratio for the nucleon forces), thenbyanalogywiththefamousn-particlecasc,
moments, 'I though not their absolute values. If the
quarks Rl'c RssllIIled to obey FclIIII statlstlcsq I't Is cleRr much la cr than 3Q
that the t 56$ representation must be associated with a
spatially antisymmet»c state. A~~th~~ possibility 1s to h 1 th th b d f t' 1 h
relax the requirement of Fermi statistics for the quarks,

hrough thc to'tally symmetric 4Q stRtc ls clcal'1 I'uled out a d 1
introduction of additional quantum numbers. "If such
R relRXRt1on 1S perm1sslble~ thCrC need be no h1ndrance 1nt t' ' ' t k d f rc t t d)p

symmetric state at the three particle ]e el so th t 't
spatial state for a L56j 3Q system. at least plausible that a larger number of quarks, under~at do these respect've requ're»cuts of sy metr' the action of p-wave forces, could have relatively a much

ta"es '»ply 'n "c ms of an '"pu" higher eilergy tha11 R 3Q system.
Q-Q interaction? Normally one would expect a totally In this re~p~~t we ~~~~~t help rccalhng an ~~~logygy

with the help of potentials wh1ch are epee with respect 3~ s stemsl2 13 Rnd 4~ systcms14 Rs possible models for
to the interchange of coordinates (e.g. , of the Serber

ype), i.e., potentials winch are dominant in s waves.
p wa e,„t t, „ f th f t „bl t It

S1mllarly for a totally Rntlsymmetrlc state one mould found that with an t .
11 tt t t t

require odd potentials, i.e., those which have p-wave ~called type p Interactlo»n In Ref I4) R 3~ state of
dominance, J"I0=1 0 was too tightly bound for the ~ meson, "

Thus wc have essentially to choose one of these two though other states like 0-0- had repulsive kernels
alternatives and the question thatmust now be a w red Further, a 4' state of 0-0+ with such ~- forces had a
ls whether there Rre Rny slmPIc criteria which can much higher energy than the sum of the pion masses
distinguish one from the other We feel that there are These res~ts thus Indicated that with P wave forces the
already some Physical evidences bearing on th' P nt' energy of a multiparticle state coukl depend quite
For example, if the idea of nonrelativistic quarks for
baryons and mesons makes any sense at all it must In particular, certain 3-particle states could be strongly
account for the fact that the mass of R baryon 's much attractive while their 4-particle counterparts exhibited
higher than that of a meson, which in tuln imPbes that little attraction Th1s fact ml ht bc taken Rs su cst1vc
R Q Q»t«action mus" bc subs"Rn"'ally stronger "han of the present idea that a P-wave Q-Q interaction oA'crs
a Q-Qforce. The simplest wav to meet this requirement m ch Ie s chance of a str n 1 b und 4Q ste th» «assign thc odd &P- Rvc)»t ««"n « th Q-Q does an s-wave force. Secondly, the prediction of a
system~ Rnd reserve t egc"c R ly s ro"R "~ ) tlghtlybound Rntlsymmctrlc3Irstatcwltll pwavc folccs,

which made such interactions look rather unphysical
Prefereilce for R P-wave over Rll — ave Q-Q for bears for t}e ~ part, cle ~ y $

'I hon systems 1nvolvlng Rn epee number ol quarts ~ v v present S1tuatlonwh1ch demandsverystrong binding 1n a
force, whether p- or s-wave, designed to produce such a

"().%. Greenberg, Phys. Rev. Letters 13, 598 {1964).
& Such ideas have been used, particularly by the Dubna group.

The author is indebted to Dr. A. N. Tavkhelidze for this
information.

"A.
¹ Mitra, Phys. Rev. 127, 1342 (1962); hereafter referred

to as A.
"A. N. Mitra, Nuovo pimento 33, 1235 (1964).
I4A. N. Mitra and S. Ray, Phys. Rev. 137, 3982 (1965);

hereafter referred to as B.
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(pll I
p')=-»~-"(p) (p')p p' (2.1)

where, following 8, the shape factor is chosen as

3Q system. The fact that p-wave forces can in principle
provide a strong binding, at least in certain quantum
states, should be regarded as a particularly welcome
feature in a context where precisely such forces are being
looked for.

As for the shape of the p-wave Q-Q force we shall, as
in 8, choose the separable structure as a convenient
device to treat a three-body problem. In the approxi-
mation of ignoring symmetry-breaking interactions,
which makes the forces spin- and unitary-spin inde-
pendent, only the spatial structure of the 3Q wave
function comes into the dynamical picture. These spatial
structures can of course be translated in terms of appro-
priate representations of the SUB or SU6 groups. For
example, with Fermi statistics for the quarks, a totally
antisymmetric wave function must be associated with
the representation [56j. Effects of orbital angular mo-
mentum in the spatial structure can also be included,
on the lines of Mahanthappa and Sudarshan, "by an
appropriate enlargexnent of the group from SU6 to
SU2802. For example, for a "vector" 3Q state, the
desired extension of [56j is (56,3). However, since our
basic object in this paper is to calculate a few dynamical
effects of Q-Q forces, we shall not dwell any further on

group structures, so that spin and unitary-spin functions
will not explicitly enter into our calculations. It will
thus be enough for our purposes to regard the quarks
as nonrelativistic "scalar objects" which are identical
except for a possible mass difference between the strange
and nonstrange components of the triplet.

For a 2Q system with equal masses M, the Q-Q force is

where

o =X2r212P2. (2 6)

The mass 3E* of the 2Q system is then given by

2M—M*=-2'M 'P2(3(r —5) . (2.7)

The interaction between Q(i) and Q(j) in the over-all
frame is given by

(P'P II'* IP''»')=~(P. —P.')(p' ll" lp''), (32)

where
P,+P,= —P2,

2y;, =P,—P;,

(3.3)

(3.4)

and the two-body c.m. potential in (3.2) is as given by
(2.1) and (2.2). As in A, the 3Q system obeys the
Schrodinger equation

D.(P;)q = —(P V;;)q, (3.5)

where

3. THE 3Q PROBLEM WITH EQUAL MASSES

In the approximation where the mass difference be-
tween the strange and nonstrange quarks is neglected,
and each Q-Q pair has an interaction of the form (2.1),
the dynamical problem is almost identical to the
formalism developed in Refs. 12 and 13, except for the
fact that the nonrelativistic bound-state situation ob-
taining in the present case should provide a much better
justification for some of the approximations made in
them.

Let the momenta of the quarks be taken as P1, P2, P2,
where

P1+P2+ P2 ——O.

v2(p) = exp( —p2p-2) . (2.2) D (P.) 1~ 1(P 2+P 2+P 2)+n2~ 1 (3 6)

If the strength parameter X is sufficiently large (as we
expect it to be), the 2Q binding energy n12/M can be
deduced from the two-body Schrodinger equation,

(P +n1 )P(I2) = »v(P) dq p qv(q)II'(q), (2 3)

in the standard manner" "as

n'= 3%2—3ftgp. (3.7)

Substitution of (2.1) into (3.5) yields, in the usual way,
an explicit structure for 4' which, for a fully antisym-
metrized axial-vector state is of the form (see A for
details);

and n2/3f is the 3Q binding energy related to the central
mass mo of a baryon by

q4dqe "~ [q2+n12j ' (2 4)

O'=MD '(P;)p p;; 24 P2v(p;;)F(p2) .

The "spectator function" F satisies the equation

(3.8)

On the assumption that P' is small compared with n12,
the integrand on the right of (2.4) has a sharp peak at
q'=2P' (see Appendix I of 8), so that (2.4) reduces to

[1—Xh(p2)]F(p) =3K dq q' sin'Ov(P+-, 'q)v(q+2P)

BP2+n 2 2P2e. (2.5) )& [P'+q'+P q+n'j 'F(q), (3.9)

"K. T. Mahanthappa and E. C. G. Sudarshan, Phys. Rev.
Letters 14, 163 (1965).

where an integration has been carried out on the
azimuth angle of g on the right-hand side of (3.9). The
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function h(P') is given by the dimensionless "strength parameter" 0. must be
extremely large, so that 3o.—5=3o —3.8. Eliminating P
between (2.7) and (3.17) then yields the relation

p M*=0.533II+0.48mp,

3&P2[3P2~5p2+&2]—1 (3 11)

[1—Xh(P')]F(P) =8m.X q' dqF(q)
0

where, under the (extremely good) approximation
P'«n', the integration in (3.10) has been carried out as
in (2.4). Indeed, from (3.7) the condition P'«n' is a
very generous one on P, and requires the range P ' to be
"large" only in comparison to 3I ', not the inverse
baryon mass mo ', so that it may even be "short" for
all practical purposes.
.For further manipulation of (3.9), we must make use

of the approximations described in A and B, especially
in the latter. Indeed, the presence of the huge binding
energy term n' in the energy denominations of (3.9),
(3.10), etc. , greatly enhances the validity of the approxi-
mations that had been made in B for a "resonance
problem" (E)0). Thus the neglect of angular correla-
tions on the right of (3.9), an approximation which was

already found to be good in B, should be very well

justified in the present case. This gives

which predicts the mass of the "di-quark" to be some-
what larger than half the quark mass. "

To obtain some ideas on the nonrelativistic assump-
tion, we note that the two basic momenta p; and Pp'

have distributions governed essentially by the functions
p'(p) and F'(P), respectively. Since both these fun. ctions
are Gaussian (or nearly so) with parameters P'and —,4P',
respectively, (p@') and (P&') are both of order p'. The
condition for the nonrelativistic approximation is then
merely

P'«MP, (3.19)

which is also the condition for the approximation of
"peaked integrands" that we have extensively used in
the derivation of the mass formula.

4. MASS FORMULA WITH UNEQUAL
MASS QUARKS

We next consider the case when the common mass M~
of the two nonstrange quarks is taken to be di6erent
from the mass 3E2 of the strange quark. The "central
mass" of the quark may be defined as

Xexp[ ,'P '(P'+—q-')][P'+q'+n'] '. (3.12)— M= p(2Mg+Mp) (4.1)

G(P) =8nX q4dq e &"4'"e 'G(q) [1 Xh(q')] '—
X[P'+ +qn'] '. (314)

To solve this equation, it is now merely necessary to
make use of the approximation that had led from (3.10)
to (3.11), since for a'))P', the integrand in (3.14) has
a sharp peak at

q2 —
q

2 —~X4PP 2/2 (3.15)

and the factor 1—M(q') which is a slowly varying func-
tion, does not have any zero in the entire region
0&q& ~. This approximation which is again good in
the present case, leads Anally to the explicit formula

~2+4p2 3~F2—3~p24ji/2

whence the central baryon mass mo is given by

3M mp=1.05P'(3o —3.8—)/M.

(3.16)

(3.17)

The ansatz

F(P) =G(P)e "~'&~'~ [1—Xh(P')] ' (3.13)

where G(P) is assumed a slowly varying function,
reduces Eq. (3.12) to

and the mass differences expressed in terms of the
dimensionless parameter

p=AM/M=(Mp Mg)/3M, — (4.2)

TAsLE l. Masses of the quarks involved in the internal structures
of the various baryons.

Baryon

Q masses
Mass

differences
Dynamical

corrections

N. N*

3&I—3aM

+4P'e/3II

(Z h.) Y+ =; +

2&I+Sfg M'1+2%2
0 3aM

3&2
66M

—8P'e/3E

which we expect to be a small quantity.
The kinematics are somewhat more involved in this

case, but a procedure essentially similar to Sec. 3 is valid
for the calculation of the various baryon masses. The
masses of the quarks which are involved in the internal
structures of the various baryons are summarized in
Table I. For convenience both the baryon SU3 repre-
sentations [8] and [10]are treated simultaneously in
the present analysis. This is not to suggest that the
interaction parameters P and X in our potential (2.1) are
the same for the two cases. Indeed, within SU3 sym-
metry there is no reason to take them as identical for

Both the equations(2. 7) and(3. 17) show that to make
the quark masses compatible with the 10-BeV region, respectively.
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(P12+P22)M1—1+ P22M2— (4.10)

the treatment of the L8] and L10] baryons. Since the
various combinations of the quark masses involved in
Table I already give the "equal interval" rule, one
would, within SU3 symmetry, expect the present scheme
to work much better for the decouplet than for the octet
case (which requires an SU2-violating interaction to
account for the Z-A. mass difference). This expectation
is of course based on the assumption that the "equal
interval rule" for baryons will not be affected by the
"dynamical corrections, " provided the basic Q-Q inter-
action is SU3-invariant. This result is of course known
from perturbation calculations and group-theoretical
considerations. What we want to show here is that the
conclusion will be maintained also by our dynamical
calculations on the basis of a Schrodinger equation
which takes account of the quark mass differences. We
shall also obtain explicit expressions for the dynamical
corrections to the equal interval rule and show how their
smallness is related to the inverse range parameter P of
the Q-Q interaction.

As our basic interaction is taken to be SU3-invariant,
we shall use the same expression as (2.1) for the Q-Q
potential, the quantity 3E now representing the central
mass (4.1). However, the expression for the kinetic
energy will now depend on the number and types of the
quarks involved, and can easily be written down from
Table I. The cases 33' & and 33II2 which are particularly
simple, can be directly adapted to the formalism of
Sec. 3, with the modifications

Pi'+P2'+P2'~ (1+2)(P1'+P 'yP ') (4 3)

Pi'+P2'+P2' —+(1—22)(P +P +P ) (44)

in the operator D (P,) of Eq. (3.6), for the two cases
3'& and 3%2, respectively. Proceeding exactly as in
Sec. 3, one now obtains the following expressions for the
binding energy parameters for the I'=1 and I'=—
baryons:

a2p72')+4p2(1+2)=3. 15p2g (4 5)

a2(il —)+4p2(1—22) =315p2g , (4.6)

for which the corresponding masses are

m(AT* ) =mg 3AM—+4'p2/M (4 7)

m(II )=mp+6AM —8P22/M, (4.8)

the "central mass" mo being given by

m, = 3M—3.15P'(g.—3.8)/M. (4.9)

These formulas bring out the explicit dependence of the
"dynamical corrections" on the parameters P and 2.

The cases of I'=0, —I baryons are somewhat more
complicated, since these involve the unequal mass com-
binations 2M1+M2 and 2M2+Mi, respectively. These
mass differences will produce "symmetry-breaking
terms" through the kinetic energy operator:

This will bring in two "spectator functions" F(P) and
F,(P) instead of a single function F(P) as in the previous
cases. However, under the assumption 2=6M/M«1 it
is clear that the difference F3—F=—hF must also be of
0(2), so that a perturbative procedure for the calculation
of the binding energy can be developed on this basis, in
addition to the approximation techniques already used
in Sec. 3. The necessary details are sketched in the
Appendix, where it is shown that to 0(c), the binding
energy is Uncharged from the "zeroth order" estimate
(3.17) of Sec. 3. The complementary case of V= —1

baryons which needs the combination Mi+2M2 obvi-
ously admits of an identical treatment, except for the
replacement 2 ~ —2, so that to 0(2) this binding energy
also remains unchanged.

The dynamical corrections to the binding energies of
the various baryons are listed in Table I. It is seen that
the corrections are all of order

Dm/mp=P22/Mmp, (4.11)

so that they are small for the two simultaneous reasons
P/M«1 and 2«1.We, therefore, find that for the "equal
spacing rule" to hold to a high order of accuracy, the
parameter P (inverse range), need only be small com-
pared with the quark mass, but not necessarily com-
pared with the baryon mass.

azy= 0.85 F=O.&m

"R. Hofstadter et al. , Phys. Rev. Letters 6, 293 (1961).

(5 1)

5. SUMMARY AND CONCLUSIONS

It appears that our model has several desirable fea-
tures. First, it has a built-in justification for the non-
relativistic approximation to the quarks, in spite of a
binding energy comparable to their masses. Secondly,
by employing p-wave potentials, it largely eliminates
the undesirable prospects of strongly bound nQ states
with e&4. Further, while it cannot rule out a bound
2Q state, the mass of such a state is not too low to be
easily observable. Next, a mass difference between the
singlet and doublet quarks, which can easily be accom-
modated in the model leads in a simple way to the
"equal interval rule" with an SU3 invariant interaction,
the dynamical corrections to the mass being very small.
In this respect the model works somewhat better for
the decouplet than for the octet baryons, insofar as an
SU2-breaking interaction (absent in the model) is
needed to account for the Z-A mass difference.

The quantity P, which plays the role of an "inverse
range" of the interaction, is restricted to be small com-
pared with the quark mass M, in order that the non-
relativistic model be qualitatively valid. Within this
restriction, it may be interesting to see if its magnitude
can be compatible with the "size" of a baryon. In this
connection, a reasonable estimate may be provided by
the charge radius of the proton which, according to the
estimates of Hofstadter et al. ,

'~ is given by
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(Pl l' IP') = —~ M 'g(p)g(p'),

a'(P)=s "' '.
(s.3)

(5.4)

The procedure which is identical to the one described
in Sec. 3, yields for the masses M* and mo of the 2Q and

3Q systems, respectively, the following values

2M M*=P'(o 1—.5)jM— (s.s)

3M mo p'—M '—p—o 2 4+2—as4'.~'j, (5.6)

M*=0.76M+0 41m p. . (5.7)

A comparison with (3.18) shows that (5./) allows a
somewhat higher value for M*, but this advantage is
more than offset by the price to be paid in terms of
strongly bound nQ states with n&4, and, perhaps, a
repudiation of Fermi statistics for the quarks. It looks
more reasonable to reserve these (stronger) s-wave
forces for Q-Q systems which need larger binding to
produce the meson masses.

Applications to electromagnetic properties like mag-
netic moments and form factors will be the subject of a
future paper.
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APPENDIX

We sketch here an outline of the steps for the calcu-
lation of the binding energy of a I'=0 system. The case
of F=—j. requires merely the replacement ~ —+ —~ in
all the steps.

Let the momenta Pq and P2 be associated with the
two equal masses (Mq), so that the various relative
momenta in this case are given by

(My+My) qgg =MgP3 —MgPg,

(My+M2) tiara= MgP2 —MgPg, (A1)

2qg2 ——Pg —P2,
and of course)

By+F2+F3——0.
The energy denominator corresponding to (3.6) is now

Ds(P;) =-,'Mg '(Fp+Fg')+-,'M2 '882+8„, (A2)

where 8„ is the relevant binding energy. When these
definitions are inserted in the Schrodinger equation
corresponding to (3.5) the latter yields, instead of (3.8),
the following wave function:

MDB(P~)4 S(q23)f23 X P1F(F1)+$(qal)gal X PRF(F2)

+~(qg2)qg2 ~ P3Fg(FS), (A3)

where we have made use of the antisymrnetry in Pq and
P2 only, without taking a corresponding liberty on the
third particle (of unequal mass). Substitution of (A3)
back into the Schrodinger equation, now yields two
coupled integral equations of the type (3.9), connecting
F and P3 and these reduce to a single equation only in
the limit 3I~——352, when FS=F. Using the approxima-
tions described in Sec. 3 of the text and retaining terms
up to the erst order in e, these coupled equations are

L1—~a,(F~)y(F)

4s hq4 dq expL —-'P—'(F'+q') (~5 ——,
'

g)j
&&F(q)EMPw+q'(1 2~)+&'(1 ~

—~)j '

q ~qF&(q) expL k~ '~'(a+i&) —8P 'q']

'8 Por an excellent article on three-body form factors, see L. I.
Schi8, Phys. Rev. 133, 8802 (1964).

19 This is opposite to the situations for a Lost,'1y homed system,
like a deuteron, whose size is measured essentially by the binding
energy parameter aa through the asymptotic form exp( —mar) of
the wave function. In the present case of a tzghd'y bolnd system,
the binding-energy parameter is far larger than the in.verse-range
parameter, so that the asymptotic form is governed mainly by the
range of the potential.

XLMB„+q'(1 —-', e)+F'(1+c)j—', (A4)

L1—u, (F2)jF,(F)

=8sA q'dqF(q)gcVB +F'(1—2~a)+q'(1+g)j—'

&«xpL '&'F' —lP-'q'(x+—:)-j, (As-)
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where

Mg(P") = 'P'o-[cVB +-'P'(1 ——,'e)+-'P'(1+-'e)7 —' (A6)

Xhp(P') =-'P'o[MB„+-'P'(1+e)+—'P'(1 —e)7 ' (A7)

To solve these simultaneous equations, we note that the
mass-difference parameter e appears in (a) the potentials
and (b) the energy denominators. For calculating the
corrections to the binding energy up to 0(e), it is most
convenient to consider these two effects separately. We
note also that AF—=F,—F is of order (e).

A. Lkllf sects in the Potentials

To calculate these sects we can set &=0 in all the
energy denominators, so that h&(P')=h&(P')=h(PP),
[see Eq. (3.11)7.Next, the ansatz

F(P) )G(P)
=[1—Xh(P')7 'e "'"~'e (, (A&)

Fp(P) (Gp(P)

where G, Gp are slowly varying functions, reduces (A4)
and (A5) to

G,(P) =2 dq K(P', q')G(q)[1 —-', eq'P '7,

G(P) = dq K(P',q')[(1 peP'P ')Gp—(q)
0

+(I+gpeeq'P '+-,'eP'P-')G(q)7, (A10)
where

K(P,q )=4mlb. qpe & ~4~p'e '[1—Xh(q)7

X53IIBp+P'+qp7 ' (A11)

which is identical with Eq. (3.14), and hence yields the
same solution as Eq. (3.17) for 8„:

8„=331—m„= 1.05P'(3o —3.8)/M . (A14)

Thus the correction to the binding energy, arising from
the "potential terms, "vanishes to 0(e).

Cp=CB[1—ge7(A —2eP') '

where

A =MB„+4p'—2p'o. ,

8=-PpP'
o,

g=-P'P'(MB„+4P') '.

(AIS)

(A19)

(A20)

(A21)

To solve these equations, we note that according to the
"zeroth order" solution (e=0) of Sec. 3, A=B. We
therefore, set A =8+oB in the above equations which
are then found to yield

B. AM EGects in the Energy Denominators

In this case, we put &=0 in the potential terms, and
then proceed by defining

F(P) =G(P)e ' "'e'[I—Xhy(P')7 ', (A15)

Fp(P)=G, (P)e—' '~ e'[1—Xh (P')7-' (A16)

If now in the resultant equations for G and 63 we make
use of the approximation of "peaked integrands", as in
Sec. 3, these reduce eventually to the coupled algebraic
equations

C=-,'8[C(1+ye) (A ——,'eP') '+Cp(A+ eP')-'7, (A17)

From the last two equations we find immediately that
to 0(e) the quantity

oB/8=0 (A22)

Gp(P) = G,(P)+2G(P)

satisfies the equation

Gp(P) = K(P' q')Gp(q),

to order e, so that we obtain once again, the zeroth
order solution (3.17) or (A14).

Combining (A14) and (A22) we conclude that the
dynamical corrections to the binding energy of the F=0

(AI 3) baryons vanish comp/etely to 0(e). An identical result
holds for the 7'= —1 baryons (through e ~ —e).


