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The lowest approximation to the three-body final-state interaction problem is a simple superposition of 3
two-body interaction terms, as given by the Watson final-state formula. The first rescattering correc-
tion corresponds to the "triangle graph" of perturbation and dispersion theory; for example, the process
8' ~ 2+ (13) —+ 1+(23) —+ 1+2+3,i.e., where first particles 1 and 3 interact strongly, then separate in such
a way that 2 and 3 come together and interact strongly. For the case in which the (13) interaction is domi-
nated by a resonance, we discuss the kinematic conditions under which such a rescattering correction will
contribute appreciably to the total transition amplitude. We then evaluate this term exactly in the non-
relativistic (N.R.) case; that is, we evaluate the N.R. triangle graph. An analogous expression is proposed
for the relativistic case, with suitable reinterpretation of the variables, The method is generalized to include
spin and angular momentum, and to incorporate (23) rescattering to all orders, for the cases in which this can
be parametrized either by a scattering length or by a resonance. Specific application is made to the mmE case.

1. INTRODUCTION

t 'HE general problem of analyzing three-body final-
state interactions is of great present interest, both

from the experimental and the theoretical point of view.
This is particularly the case when there are two-body
resonances accessible for one or more pairs of the three
particles.

To be general, we consider the reaction

b+t —& W ~1+2+3,
where the symbols b, t, 1, 2, 3 refer to "particles" (which
term includes complex nuclei). Here W need not have a
true existence as a compound state, but it does have a
unique four-momentum and mass. (Of course, we can
also consider the case where W is a true decaying
particle, e.g. , K —+ 3vr. ) In Fig. 1 we show possible inter-
mediate states leading to structure in the 6nal three-
body state. Figure1(i) contains no final-state interaction
effects (FSI), and if we ignore all dependence on mo-

(iib)

mentum-transfer variables (e.g. , the b-to-3 momentum
transfer, etc.) it gives a constant matrix element for
fixed beam energy. Figures 1(iia—c) show FSI in only
1 two-body channel, and the appropriate matrix ele-
ments are fairly well understood (cf. the work of
Watson, ' and Omnes'; but also the rather different
results obtained by Phillips, Griffy, and Biedenharn ).
In these figures the complete (reiterated) two-body
scattering is to be incorporated, which leads to a Breit-
Wigner form in the case of a fairly narrow resonance.

Finally Fig. 1(iiia) shows the beginning of the(infinite)
set of rescattering corrections. In this diagram the Anal

(23) rescattering is again to be understood as reiterated
to all orders. This diagram is our present interest. In the
particular case that the (13) interaction is dominated by
a resonance R [which would already be evident in

Fig. 1(iia)], it has been proved by the present authors'
that in a well-defined approximate sense it is valid to
replace the process shown in Fig. 1(iiia) by that shown

in Fig. 2. In this figure E. represents a particle with a
discrete complex mass ma (the imaginary part being
related to the width of the resonance). R is necessarily
unstable, i.e., Rein) mt+ms. '

The fundamental property of the process shown in

Fig. 2 is that, for a suitable range of incident beam
energies, the process can take place as a sequence of

(lie) (ilia)

FIG. 1. Classification of three-body final-state
interactions processes.
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since all mg occur, there is no single graph like Fig. 2 for this case.
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real intermediate states."It follows that the perturba-
tion-theory evaluation of Fig. 2 has a singularity in the
physical region, which should be observable experi-
mentally for suitable processes. In order to develop
criteria of choice of "suitable" processes, it is therefore
essential to have a closed form analytic expression for
the matrix element. This is the primary purpose of the
present paper.

For the general relativistic case, dispersion-integral
representations have been known for some time, being
first given by Barton and Kacser' (see also Fronsdal and
Norton' ). In fact the method of evaluation of the exact
relativistic matrix element for the most general triangle
graph has been given by Wu. "However, Wu's result is
not very useful for practical mgmerical calculations.

Similarly, methods have been given" "for numerical
integration of the dispersion-integral representation.
The drawback here is that one has no general result at
the end of computations made for a specific process.

Since Wu's method of evaluation, while exact, leads
to a form of Anal result which is so unmanageable from
the practical point of view, it is clear that one needs
some sort of approximate analytic expression for the
matrix element. We emphasize that we are not simply
asking for the dominant, or singular, part of the matrix
element near the rescattering singularity, but need also
the regular part of the matrix element. The former is of
course easy to determine, but it turns out to be a very
weak singularity of the logarithmic type, and hence the
regular part of the matrix element can well be com-
parable to the singular part. Of course only the singular
part varies rapidly near the singularity, but one still
needs the regular part of the matrix element. "

For want of anything better, we propose the use of the
nonrelativistic (N.R.) matrix element, but evaluated
numerically using relativistic kinematics where ap-
propriate. Thus the main part of this paper consists of a
discussion of the nonrelativistic matrix element. We
obtain the latter in several ways, to demonstrate their
equivalence to each other, and their relation to the
relativistic approximate calculation. Nonrelativistic
Feynman graphs have been discussed and evaluated
fairly extensively in the Russian literature, in particular
by Blokhintsev, Dolinskii, and Popov, '4 Komarov and

' C. Kacser, Phys. Letters 12, 269 (1964}.
7 R. E. Norton, Phys. Rev. 135, B1381 (1964). See also S. Cole-

man and R. E. Norton, Nuovo Cimento 38, 438 (1965).' G. Barton and C. Kacser, Nuovo Cimento 21, 593 (1961).
s C. Fronsdal and R. E. Norton, J. Math. Phys. 5, 100 (1964)."A. C-T Wu, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 33, 3 (1961)."I.J. R. Aitchison, Phys. Rev. 133, B1257 (1964)."Y.F. Chang and S. F. Tuan, Phys. Rev. 136, B741 (1964).
"We should warn the reader that, as shown in Ref. 4, there is

always a (1'3') "continuum" contribution to the process of
Fig. 1(iiia), as well as the resonance contribution of Fig. 2. How-
ever, this continuum background (dehned more fully in Ref. 4)
does not depend on the resonance in any way, and may safely be
ignored in most cases near the rescattering singularity."L. D. Blokhintsev, E. I. Dolinskii, and V. S. Popov, Zh.
Eksperim. i Teer. Fiz. 42, 1636 (1962) LEnglish transl. : Soviet
Phys. —JETP 15, 1136 (1962)g.

6+1-+8'—&1+2+3 (2.1)

and let the "particles" have masses m~, m~, m~, m2, and
m3. Also let lV denote the total invariant mass in the
over-all center-of-mass� (c.m.) system. Here and through-
out the kinematics, E will denote a total energy, and T
a kinetic energy; also N.R. approximations will have an
"arrow" rather than an "equal sign" (that is, the arrow
is to be read as "equals in the N.R. limit" ). Further, in
the relativistic equations we set c= 1, but show c
explicitly in the N.R. equations. Finally we use sub-
scripts on momenta and energies to denote the relevant
particle.

FIG. 2. The triangle graph with
internal resonance.

"V.V. Komarov and A. M. Popova, Zh. Eksperim. i Teor. Fiz.
45, 214 (1963) LEnglish transl. : Soviet Phys. —JETP 18, 151
(»64)r."I.S. Shapiro, in Selected Tops'cs ~rI nuclear Theory, lectures at
the Ieternatiomal Summer School held at Tatra, lP6Z, edited by
F. Janouch (International Atomic Energy Agency, Vienna, 1963),
and references cited therein.

17 For more details, see C. K.acser and I. J. R. Aitchison, Rev.
Mod. Phys. 37, 350 (1965).' R. Fox, Phys. Rev. 125, 311 (1962)."J.Lang, R. Muller, W. WolQi, R. Bosch, and P. Marmier,
Phys. Letters 15, 248 (1965).

Popova, " and by Shapiro. " However, most of the
Russian work has been based on a single method of
evaluation, which while elegant and powerful, does not
easily show its relationship to the more usual formula-
tions of perturbation-theory and dispersion-theoretic
methods. Further, this method cannot be easily general-
ized to the case when the particles have spin, or when

angular momenta other than 5 waves are relevant. We
treat this general case (albeit rather sketchily) in Sec.
SA and in Appendix C.

It may well be, however, that nuclear physics will

furnish the best experimental tests of this whole theory, "
because at present the accuracy attainable there is so
much greater (the eHect we are looking for is probably
only a 10%one). In this case our N.R. graph is perfectly
appropriate. In fact, the first suggestion of the possi-
bility of seeing such rescattering effects in nuclear
physics was made some time ago, using a quite different
method, by Fox,"who, however, considered only the
static limit m&))m3, m 2. Recently the experiment
d+C" —+ s+N"*~ (s+p)+C" has beeil performed)
in which the ~p rescattering appears to have been
observed "

2. KINEMATICS

A. Kinematics of the Boundary Curve

We consider
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three particles have collinear momenta in the (23) c.m.
system, or, equivalently, in the over-all c.m. system.
The equation of the boundary curve is""
s'~+s~' —sI(W'+m12+m2'+m ')

+s(W m22) (m12 m82) +I(W2 m12) (m22 m32)

+(W2m 2—m12m22) (W2—m12—m22 —m32) = 0. (2.8)

In the N. R. limit Eq. (2.8) becomes

FIG. 3. The nonrelativistic kinematic conditions for real re-
scattering. In Fig. 3(a), real rescattering occurs corresponding to
the point S, while in Fig. 3(b), no real rescattering can occur.

The usual relativistic variables used to describe the
three-body final state (but ignoring correlations between
the initial and final state other than energy-momentum
conservation) are given by

s= (E2+E3) (P2+P3)'
=m2'+m, '+2(E,E,—p, p, ) (2.2)

and similarly for t and I, so that

s+I+28= W'+ml'+m2'+m8' (2.3)

We turn now to the boundary of the allo@ed physical
region for fixed W', with necessarily W)mi+m2+m8.
We go to the (23) c.m. frame, in which the initial system
(l'1+t)=W has three-momentum p, as has particle 1,
while particles 2 and 3 have three-momenta q and —q,
respectively. From now on, p and q without suffices
denote the magnitudes of these momenta in the (23)
c.m. system. One finds"

2mgam23E23

m Jmgma

(2E13) '" $2(Q—E18)m123)

&m, i mlm2

(2.10)

B. Kinematics of the Rescattering Condition

Consider Fig. 2, and in particular the intermediate
process 8+2'~ 1+3'+2', in the over-all c.m. system.
In this system, if 2'3' rescattering is to occur (neglecting
any "finite size" of the "particles" ), the velocity v3' of 3'
must be parallel to v2', and also e3'&v2'. But if v3' is
parallel to v2', it follows that y~, y2', and also y3' are all
collinear. This implies that a necessary condition for the
rescattering is that y~, y2', and y3' correspond to a point
on the boundary of the phase space. Furthermore, since
R-+1+3' and R is a real intermediate particle, it
follows that

[m18m23(E28+E13) Qml23m8]
—4E13E23m13m23mim2 —+ 0. (2.9)

Equation (2.9) can be factorized and solved for E23 in
terms of E~3, or vice versa. One finds

P'= [(W+ml)' —s][(W—ml) '—s]/(4s) —+

2mlm123(Q —E2,)/m2„(2. 4)
mR —(El+E3 ) (pl+p3 ) (2.11)

q'= [s—(m2+m, )'][s—(m2 —m, )']/(4s) —+

(s—m»') @28/m28 -+ 28823E28. (2.5)

Here Q= (W ml m—
2 m—3)c' —Also.

t= W'+m2' 2ErrE2+2pq c—os8, (2.6)

where 0 is the angle between y and q. Notice that in the
N.R. limit P' and q' are linear in E28 (or s); this is the
main feature that enables us to evaluate the X.R. graph.
Also in this limit,

p' —+ (2mlm123Q/m23) —mlm128q'/(mlm8) . (2.7)

The boundary of the allowed region occurs when all

Here we have associated the variable t' with the con-
6guration of 1, 2' and 3', exactly as in the previous
section. If we also dehne

s =(E2+E3) (P2+P3) i

it then follows from the phase-space boundary condition,
that s' is given in terms of t'=mR' (which is fixed and
known), exactly by the equations of the previous
section, in particular (2.8).

In the N.R. limit we can express the conditions
in terms of E2 8 and E18 . If we define QR~13
= (mR —ml —m3)c', then E13 ~ QR 13, and then using
(2.10) we see that

E +E -q')

(p, E,)
l

FIG. 4. Detailed energies
and momenta used in the
evaluation of the triangle
graph Sf'.

2mlQR 13)"' (2(Q—QR 13)m123& '" '
E28 ~2»8

m3m18 2 4 ml3m2 )
(2.13)

Equation (2.13) can be derived more directly, and
each term has a physical significance: namely, the
square roots are precisely the velocities of particles 2

5$jj=8$j+mj m].23=PL1+fÃ2+m3 Pjj =SSj8$j/SS jj

2' T. W. B.Kibble, Phys. Rev. 117, 1159 {1960).
~ P. Nyborg, H. S. Song, W. Kerman, and R. H. Good, Jr.,

Phys. Rev. 140, 8914 (4965).
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and 3, respectively, before rescattering, in the rest frame
of the (13) resonance.

Equation (2.13) is a necessary condition, in that it is
needed to ensure that v3' and v2' are collinear. In
order that they also be parallel, as opposed to anti-
parallel, one readily 6nds that only the smaller of the
two values of E23. is suitable. However, the final
necessary condition is v3'&v2'. This requires the first
square root in (2.13) to be larger than the second. Thus
we And:

necessary and suf6cient condition in N.R. case for
2'3' rescattering:

in which case:

m3fpS» fS]3182

2miQ22-is 2miss(Q —Qis is)) (2.14) Fn. 5. The triangle graph Mq as it arises in third-order
nonrelativistic perturbation theory.

-
t 2m, Q. „~ (2m„,(Q—Q. „))

Ess ~-,'t 3 I

& msmis & mm, )
(2.15)

We show these N.R. results in Fig. 3, in which is
shown the boundary of the allowed E» versus E» plot,
with a vertical line at Eis ——Qis is. In Fig. 3(a), condition
(2.14) is satisfied, the E23——Qis i, line being to the right
of the point b. Then of the two values of 8~3 given by
the points X and 5, only the one at S permits rescattering.
In Fig. 3(b) condition (2.14) is not satisfied, and neither
E nor S permits rescattering.

In the relativistic case very similar results apply. '
The only domain permitting rescattering corresponds
to the arc bc of Fig. 3, substituting s and t for 8~3 and E~3.

The above are the necessary and sufhcient conditions
on the intermediate state 12'3' so that 2' and 3' will

rescatter. For a given 13 resonance mass mg, there is a
unique value of ss 3 or Es 3 before rescattering. Corre-
sponding to this, particle I has a unique speed in the
over-all c.m. system, but in an arbitrary direction.
In thc rescattering, energy and momentum are con-
served, i.e.,

E2+E3 E2'+Es' 1 P2+y3 y2'+P3'

Hence s is unchanged in the rescattering, and therefore
E23 E2 3 that is, the energy of relative motion of 2 and 3
(i.e., the excitation energy of the &3 system) is unchanged
in the final rescattering, and is given by (2.15).However,
in the rescattering, the ultimately observed particles 2
and 3 can travel in arbitrary directions compatible with
energy and momentum conservation. Thus t (or E»)
can take on all allowed values. This last point, while
straightforward, cannot be overemphasized.

In our subsequent work, we will need to refer to both
the s or E23 value at the S intercept on Fig. 3, and that
at the Ã intercept. Ke hence define generally

where si and ss are the two roots of (2.8) for a given t,
and correspondingly

t'2miQs is ' ' &2miss(Q —Qs is)) 't' '
+I )& mm„ 81»552

—
~2m, Q& „'t' p2m, ,(Q-

Esss ~ 2 tsss
I msmis & m„m,

(2.17)

In Appendix A we give the relativistic matrix element
Mz corresponding to Fig. 4. We analyzed its singularities
in Ref. 4, with the conclusion that except for the normal
threshold singularity of q(s) at s=mss', the only other
singularity which affects the physical amplitude is ss.
This occurs if and only if the above conditions are
satisfied, i.e., if and only if sz and t=mz' intersect on
the arc bc of the Dalitz plot boundary as in Fig. 3.
Thus the amplitude Mz has a physically observable singu
larity if and only if resca. ttering is possible.

To examine such effects one has to evaluate 3f~. As
we remark in Appendix A, this cannot be done in con-
venient form in the relativistic case. However, in the
N.R. limit, M& can be integrated exactly, and we now
discuss that limit. The corresponding graph is shown in
Fig. 5.

{q,E&) 2 {-q,E )

{~=q,E, +E )

3. EVAIUATION OF THE NONRELATIVISTIC
MATRIX ELEMENT

The nonrelativistic third-order perturbation-theory
matrix element for the process shown in Fig. 5, and

sir ——max(si(t =mn2), ss(t =miss)),

ss ——min(si(t =ms 2), ss(t =ms 2)),
(2.16)

Fze. 6. The resonance graph 3IIIt„.
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derived in Appendix A, is

(-i) (—27ri)
3/Ig ——— d'q' fgh

(2~)'Zm Zm22m c' Lq'/(Zt 2e) —q"/(Zt »)+ie7

X (3.1)
Py'/(Zmw)+Qw-m —q"/(Zm2) —(u —q')'/Zm~+ie7

QW~B2= (II™2mB)c Q QB~13 y gs„ia——(mii —mi —ma)c'. (3.2)

Also in the future we may let m~ —+ m», mq —+ m»3 in kinetic-energy terms. The effective coupling constants

f, g, and h are defined more precisely with normalization in Eqs. (A1) to (A3) in a general relativistic notation.
We will discuss f more fully in Sec. 4 and only remark here that f is dimensionless, and that g is defined in terms
of the resonance width in Appendix A; finally h is best understood by giving the matrix element for the graph
of Fig. 6 (cf. equation), which is by defiiiitioit

Zmgc'(p'/(Zm~) q'/—(Zm, )+g~ ~, (y —q)'/—(Zm~)+i. 7
(3.3)

Our aim is to evaluate Eq. (3.1).We have done this in three ways, all of which we believe to be instructive and
capable of further application. But since they all (fortunately) give the same answer, we relegate two of them to
Appendix 8, presenting here only the most straightforward one.

This method simply evaluates the d q integral in Eq. (3.1) directly. The angular integration over dQ, affects
only the second denominator. We take axes along p, so that y q'= pq' cos8, and then 8 is precisely the same as in
Sec. 2. Then

vvhere

+(—I)(—Z~i)f " d(q")Zt »P(P q')
3fQ— gg'

(Ze-)'Zm22m3c e q"—q' —ie
(3.4)

l p2 I2

P(p, q') = (4~)- d cos8(—hg) Zmgc' —— -+gs g2-
-l -2m 123 2m2

(Ii—q')'
+ie (3 5)

Comparing (3.5) with (3.3) we see that P(p, q ) is very closely related to the 5-wave projection of Mii, except
that in (3.5) q is of arbitrary magnitude (to be integrated over), while in (3.3) q is replaced by q, both p and q
being on the "energy shell" and given by Eqs. (2.4), (2.5), and (2.7). Thus P(p, q') is very similar to, but not

exactly the same thing as, the 5-wave projection of 3fg. Thus in fact this method of evaluation is somewhat related
to the dispersion relation method, which is, in fact, our third method of evaluation. "(The second uses a Feynman
parameter. ) See Appendix B.

For the moment, however, let us just evaluate P(p, q') and hence 3', by brute force. We readily find that

+tiger m2p Zgglmii2mgmis m2p Zg~mg2m2mie
P(p)q') = ln q'+ —-- —ie q'— 'bC ~

Pq c - mi23 mlg3 m123
(3.6)

We now substitute (3.6) into (3.4) and perform the q integration. Notice that p is a constant in (3.6), and further
that P(p, q') is invariant under q'+~ —q' (the ln is on its principal sheet). Furthermore q"(q'2 —q' —ie) ' is invariant
under q' ~~ —q'. Finally, the behavior of the full integrand at ~ is (q') '. Hence we can convert the q' integration
to one going from —~ to ~, and then close the contour in a suitable half-plane provided it avoids the branch
cuts of the ln. Now the argument of the ln contains an explicit ie, and the i~ has the same sign as an imaginary part
which would arise if we let m~ii~ miI'/2, for —then Qq ice —+ Qs ii2+iI'/2 Thus eve. n for positive Qs ii~ the
branch points of (3.6) are fully speci6ed. "We hence can factorize the ln in the q' plane into parts with singularities
either only in the upper half-plane, or the lower half-plane, and close the contour accordingly. Thus from (3.4)

~ We should warn the reader that when q' is off the energy shell, there are two inequivalent forms of I'(p, q'). The one given explicitly
in (3.5) uses the energy diRerence between 8' and (2'R); another form would contain the energy difference between 13' and R. When

q -+ q, then these two differences are equal. This must be the case, as is readily seen explicitly from Eq. (2.7). While there are two
inequivalent E(p,g'), yet they of course ultimately lead to the same expression for 3f&.

24 Of course, another guaranteed method of specifying the appropriate branch points would be to use analytic continuation in the
upper half-plane in g, or equivalently in Q~ ~2, from the region ~here the decay 8' —+ R2 is forbidden. This leads to the same conclu-
sion as the explicit ~e.
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to (3.6)34'

(—i) (—21ri) fghm. " — 1 1
Mg= dq' +

(21r)'2m33pc'4 q' q
—i—3 q'+q+i3

m123

pm3 2Qw s2m3m»)'" pm3 (2Qw s2m3m» '~'
X ln q'+ + —

~
+ie q' — +~ — +is

m]23 m123 m, 33

m123

pm3 2Qs S2m3m13) ' ' pm3 (2Qs S3m2m13 —ie . (3.7)
m123 m133 I m13 3

In (3.7) the first ln has a branch cut of fi33ite extent lying completely in the lower half-plane, so that for it we close
the contour in the upper half-plane, and only pick up the residue at q+ie. Similarly the second ln picks up the
residue only at —

q
—ie, but since the sense of the contour loop is reversed, there is an over-all minus sign with

respect to the erst term. Thus in fact both terms give the same contribution, and we finally obtain

i1r'f—gh pm3 2Qs s3m3m») '"
ln q+ + —

I
+i3

(21r) m»pC — m133 m133 m123

pm3 2Qw s3m3m13)' '
+

~
+'. . (3g)

rm] 23

The singularities of Mq arise where either the numerator or the denominator of the argument of the logarithm
vanishes. "This occurs when

m2m3

pm3) ' 2Qs S2m2m») m3 2m1m133Q m1m»3q'

m123 — m123 ~ — m123 — m23
(3.9)

where we have used (2.7). But this can be rearranged to give

fm13m33 (2Q3rmS3m3m3 2m1m3
+I — (Q—QW S3)=O

im»3~3 m33 m1 23m23
(3.10)

Now q'=2p33E33, Qw s3=Q—Qs», and Q —Qs s3 ——Qs», so that finally we see that Mz has singularities in

q at those momenta corresponding to the energies E»s, E»31 of Eq. (2.17) namely, at"

that is, at
qS +(2p33E23S)'", qjV (2+23E23N)

m13m23

2m, m, 'm, Qz „'m 2m, 3m mlt Qm m)'m

m13m23'
(3.11)

Correspondingly, we introduce the associated quantities p&, ps by" Lcf. Eq. (2.7)j
p~ 2m»3'm1m3Qs 13) ' ' (2m13,m1'm3Qs s3) ' '

Ps m»m23 i k m13m33
(3.12)

from which it follows that

(2Q3r s3m3m131 '~'
= —qS+

m123
PS= —qX—

P13 ~

m123 m] 23

(3.13)

a The ln of (3.6) is necessarily on its principal sheet since it is defined by (3.5), and we are working in that range of Q~ z2 and Q
such that the kinematic conditions are satisfied. Hence the possible distortions of the cos8 contour associated with the second type singu-
larity do not occur (see C. Kacser, Phys. Rev. 132, 2712 (1963), also the paper cited in Ref. 33). It is then easy to prove that the fac-
torization in (3.7) is valid, with each ln( ) being separately on its principal sheet; i.e., with separate cuts lying only in one half plane.

~' There is also the possibility of a second type singularity at p=0 on the lower edge of the physical cut—see Ref. 4.I The sign convention is artificial but convenient for later use; see also Appendix 82.
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Thus we can rewrite Eq. (3.8) in the two equivalent forms:

i2—r'fgh -(q—q&)+ (2182/228128) (p —
pII )

iVg = ln—
(22I) 21228pC —(q qS) (2122/212128)(p pS)-

22r fgI8 q+ (2882/122128) p qs+ (2882/288128) ps
ln

(22I ) 5$28pC —q (2282/212128) p qS+ (2822/218128) pS-

(3.14)

(3.15)

Equa, tions (3.14) and (3.15) can be extended through-
out the whole complex q plane. The physical region is
near the positive q axis, so that qz is near, but qz far
from the physical region. Correspondingly, I"»z is on
the second E sheet reached by going through the physi-
cal cut from above, and is hence near the physical
region; while E~3~ is on the second E sheet but reached
from below the physical cut (cf. Fig. 7). Thus only qs is
of physical signi6cance, and is precisely the momentum
in the rescattering condition of Eq. (2.17).

4. GENERALIZATIONS

As a general relativistic approximation, we propose
the use of Eq. (3.15), where p and q are to be determined
from relativistic kinematics, i.e., (2.4) and (2.5); and

qg is to be obtained from sg and put into the proper
quadrant as indicated in Fig. 7; similarly q~ is to be
obtained from s~. It might be argued that m~» should
be replaced by 8", but this is only a guess, and will not
affect numerical conclusions greatly. Note that by using
Eq. (3.15) we are ensuring that Mz has no singularity
at p=0 on the physical sheet. (The use of (3.14) with
approximate relativistic expressions could introduce a
spurious singularity. )

There are two further generalizations to be made to
this result. The first has to do with general angular
momentum factors, and the second with the 6nal re-
scattering amplitude f. We discuss each of these briefly,
treating the possible angular factor 6rst. A concrete
angular-momentum example is treated in Appendix C.

A. Angular-Momentum Factors

In Eqs. (A1) to (A3) we defined "coupling constants"
for the various vertices. In actual fact these will not be
constants but rather "form factors" with some energy
dependence. This can also be seen from the nonrela-
tivistic third-order perturbation theory formulation

(b)

Fxo. 7. (a) Location of q~ and g~ in the complex q plane, when
the kinematic conditions for real rescattering are satisied. (b) The
corresponding locations of EN and Eq in the complex E plane.
Both E& and Bz are singular only on the second sheet, and the
arrows indicate the shortest path to each of these singularities.

implicit in Eq. (A6) and the following discussion. The
most constant of the constants is g, provided we do not
go too far o8 the mass shell for R, 1, and 3. Since the
dominant contribution to 3', arises precisely when all
particles are on their mass shells, this is not a serious
worry. However, the form g is meaningful if and only
if R, 1, and 3 are all spinless particles.

In the general case of particles with spin, polarization
vectors must enter, suitably coupled with momenta
which give rise to both angular factors and angular-
momenta barrier factors. Hence g changes from being a
constant to a well-defined and fairly straightforward
function of the three-momenta of 1. and 3, and the
various polarization vectors. Naturally the simplest
form arises in the c.m. frame of R, but this can easily
be transformed into the frame speci6ed by the momenta
of Fig. 5, at least when q'= q in magnitude.

Turning next to h, this implies that R and 2 come o6
in an S wave in the over-all c.m. energy 8', but since 8'
has been kept constant throughout, this does not affect
us. What ought to be generalized even for spinless
particles is the angular momentum in the intermediate
R2 state (of course this is linked to the initial state).
Furthermore, the possibility of particles with spin should
be allowed for. Again, however, both these generaliza-
tions of h are straightforward and can be expressed in
terms of the momenta appearing in Fig. 5, together with
certain "polarization" vectors defining the initial ~bt)
state, and also the polarization states of R and 2.

Finally in precisely the same way we should generalize
f. As we will see in Sec.48, f is properly a function of q',
and this q' dependence can be taken into account
a posteriori. This q' dependence is not our concern here.
Rather, we want to allow for more than pure S-wave 23
scattering, and also allow for spin. This introduces a
simple generalization of f.

We do not write down the most general form of f, g,
and h, since the formalism would become too cumber-
some to be useful. Rather we treat a specific example in
detail in the Appendix. Hence here we continue simply
sketching the procedure.

With f, g, and h suitably generalized, the first step is
to sum over all polarization states of R, 2', and 3'.
Assume this has been done, and let f, g, and h stand now
for the correct expressions after this sum has been
performed. Then Eq. (3.1) remains valid. The next step
is the dQ, . integration. If the 23 scattering has an orbital
angular momentum I., then f will contain a Pz(q q'),
where Pl„ is the regular Legendre polynomial. Hence
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(3.5) becomes modified with fgh in the numerator, and
the effect of f is to extract the Lth partial-wave pro-
jection of Ms. Thus (3.6) will become modihed, and
contain the same ln as previously, but now multiplied
by an algebraic function of p and q'; and also other
purely algebraic terms.

Finally the dq' integral can then be done using
methods similar to those in Sec. 3. If R has spin 1 or
greater, an apparent diKculty is that the dq' integral
can diverge, depending on the initial angular momentum.
This is a well-known difficulty in partial-wave dispersion
relations in which particles are exchanged with spin & 1.
It arises also in the relativistic case, and in fact the non-
relativistic approximations we have used increase the
degree of divergence. The standard technique is then to
introduce a "suitably chosen cutoff, "and hope that the
answer is not too dependent on it. Alternatively, one
can use a form factor "determined from experiment. "'7
In the case we consider explicitly in the Appendix,
namely xS —+ m.xX going from an initial D-wave state,
divergence problems do not occur. We have not in-

vestigated the general case fully.

B. Inclusion of the Full (23) Rescattering

The complete amplitude, to the order we are con-
sidering, will be a sum of the terms represented by
Figs. 1(i), 1(iia—c), and Fig. 1(iiia) (and two similar
ones obtained by cyclic interchange). In this section we

include the full (23) interaction in Fig. 1(iiia) so as to
obtain Fig. 2.

The easiest way to do this is to examine the integral
equations which sum up the complete chain of rescat-
terings of the type of Fig. 8. This was done in Ref. 28 for
the simple case of identical spinless particles; Fig. 2 then
emerged as the first iteratiors of these equations.

Following the method of Ref. 28, the full amplitude
can be written as a sum of three terms

P(s, t,ss) =e(s)+@(t)+X(ss),

$cf. Eq. (2.6)7 and D;; is the Omnes function

D;t(s) = exp —— ds'5;, (s')
(4.2)

LNote p» is dimensionless, and p has units of (energy)'. 7
Also qss is given in Eq. (2.5), with mss and s and mi for
ms. We 6nd, using Eq. (4.2) subtracted at threshold,

Dis(t) = [ms'c' t 2syq—is/—(misc)7tsis/(misc'qs') .

3;; being the s-wave (ij) phase shift. The C; are three
parameters representing diferent production proba-
bilities for the three two-body channels.

The question then arises: Do the equations have a
unique solution or do arbitrary parameters have to be
introduced? This question has not been answered yet,
and we do not wish to discuss it in detail here. SufFice it
to say that it is usually the case, with such equations,
that the answer lies in the asymptotic behavior of the
inhomogeneous terms and kernels of (4.1).The problem,
therefore, has to do with subtractions.

For our present purpose, however, we can skirt these
difhculties altogether. For we are only going to take the
first iteration of Eq. (4.1), so that we shall in any case
neglect all higher iterations, and assume that they
produce some slowly varying —essentially constant—
background. Then we can absorb subtraction terms into
the same background, and work with Eq. (4.1) as it
stands, together with a fourth (over-all background)
constant G, which represents a renormalized Fig. 1(i).

Consider first Fig. 1(iib). In this paper we have con-
sidered the case in which the (13) final-state interaction
is dominated by a resonance. The D» function for this
case can be obtained most simply by choosing the N.R.
parametrization

m»c' mg'c' —t
pis cot5is= (qz' —qis')

'YP» 7
where

pis= 2qcs/st' '~t2qisc/mis.

where

Cg 1 1 gz3D23+dS'
C (s) = +

Dss(s) Dss(s) m. s' —s

1 1 g23D23xdS

Dss(s) sl s —s
(4.1)

Ms ——Cs'(e' "sin8is/pis),

e"» sin5»/p„, =y/(m ' s' —ct—iypis) .

(4 3)

(4.4)

The first term in the equation Dike Eq. (4.1)7 for +
may then be identified with Ms LFig. 1(iib)7 in a
unitarized form; namely

and two similar equations for 4' and X. Here

d coso 4(t(s, cose))

"D. Z. Freedman, C. Lovelace, and J. Namyslowski, CERN
Report 65/980/5-TH. 575, 1965 (unpublished).

» 1.J. R. Aitchison, Nuovo Ciinento 35, 434 (1965).
FIG. 8. A typical higher order iteration

of the rescattering correction.
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In a similar way, the constant Cz in Eq. (4.1) for 4 The first term in Eq. (4.1), written as in Eq. (4.3), is
rnustbe chosen to conform to Fig. 1(iic).Here, of course,
it depends what type of 2—3 interaction we take, and Cpu

we shall con6ne ourselves to two cases. 1—2iaq/(m23c)

Case A. Scattering-I-eath Paransetrisation
for (Z3) Interaction

We obtain the D»(s) for this case by using Eq. (4.2)
subtracted at threshold and, again N.R.

The first iteration of Eq. (4.1) is now got by inserting
for + the form given by Eq. (4.3). However, as far as
this is concerned, it is a good approximation to replace
qg3 by qg, 4 taking

2aq/(m23c)
e"» sinbg3 —— 0= 9'»

1—2t'Gq/(mgac)

1

2
d cosa

C2'y

mg'c4 —t

(Here a is dirnensionless. ) Then

D„(s)=1—2iaq/(m23c).

So + is just P(p, q)/4n, P being defined by Eq. (3.5),
with C2'7=gh, and to this order the second term in
Eq. (4.1) becomes

—16mu 1 —m'q' P(p', q')

[1—2iuq/(mg3c) j n. (2')'2m2gc (q"—q')

which is just —Mz of Eq. (B3) if we make the replacement

f o m23c gag=g23
16m 1—2iu 2g P23

Cg'a ipC2' q
—q, +(m2/m&»)(p+p, )

G+ 1+ ln
1—2zaq/(m23c) C~ m23p -q —q, —(ma/m+3)(p —p,)-

q/(m2sc)
where g23 e sin823 ~

The s~ of Figs. 1(i), 1(iic), Fig. 6, and Fig. 2 will then be

m g'c4 t iraq„/—(m—»c)
(4 5)

gn a similar way, the first, -order contribution to C from resonant interactions in the 1—2 channel could be included,
giving a second logarithm contribution.

We may compare Eq. (4.5) with Eq. (4.8) of Ref. 28. In that reference an attempt was made to find a simple
approximate form for 3E& (in the present work we have evaluated it exactly in the &.R. limit) 1™yeasily be
verified that the two expressions are consistent. In terms of our Fq. (4.5), the approximations of Ref 28
to taking the momentum p to be constant, and evaluating it at ps (which was there called p~). Also, the difference

(p p~) was neglected. —

Case B. A Resonance for g2,

This case is in fact little different, and will only be sketched here. The first term in Fq. (4.1) is now

mp'c4 s 2iPq/—(m—»c)

and the second term is again just —M~ if we now make the replacemen

g23

16m m02c4 s 2iPq/(—m»—c) p23

C'P q
—qs+(m2/m»3)(p+ p,) '

1+ — ln
C&m»p q6 (m2/mu8)(p —p.)- -m g'c' t 2iyq, s/(m, 3c)——(4 6)

This equation can again be modihed to include the p channel.

as before. For this case the sum of the graphs in Figs. 1(i), 1(iic), Fig. 6, and Fig. 2 will be
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Ke scc thRt thc csscntlal 1csult lIl clthc1 cRsc A or 8
is that the (23) final-state interaction form —constant/
D2q(s)—is modified by a factor representing the triangle
process, which has the nearby singularity at q= q8. In
a similar way, triangle processes in the other channels
will modify the single 6nal-state interaction terms
Dig '(t), Di2 '(I). We also note that, again in either
case, the (23) interaction is included by merely making
the replacement

(4 7)f/167r

g23/pate

5. DISCUSSION

Equation (4.7) is the final generalization to complete
our discussion of Mq. Of course, it is the forms given in

Eqs. (4.5) and (4.6) for the comp/cue matrix element (in
this lowest order of rescattering iteration) which give
the experimentally observed transition probability. Ke
see that to this order, the rescattering corrections lead
to a very definite modification of the individual two-

body 6nal-state interaction terms.
Of course, the rescattering process which ends with

particles 2 and 3 rescattering after previous (13) reso-
nant interaction has the form of a (23) 6nal-state inter-
action matrix element. Thus our detailed consideration
of the process of Fig. 1(iiia) has in fact led to a term of
the form of the process 1(iic). However, in the latter
process the initial "production" vertex was assumed
to be a constant. The correction corresponding to
Fig. 1(iiia) effectively leads to a specific "form factor"
correction to this production vertex. This form factor
has a very characteristic behavior near sa (or E23s)

which is very diferent from a typical "smoothly vary-
ing" form factor. Hence it is essential to consider the
rescattering corrections explicitly as we have done.

This remains true even if we were to include all higher
order corrections —for example, by using the integral
equations, Eq. (4.1). These equations contain all re-
scattering corrections, provided we ignore the possibility
of higher partial waves occurring in the dispersion inte-
grands. This is a reasonable approximation below thc
four-particle production threshold, in which case we can
lump the virtual contributions from higher mass inter-
mediate states into an over-all subtraction constant. "
Complete solutions of these equations have recently been
obtained by one of us, '0 and by Duck and Khanna, "by
numerical iteration. The higher order corrections seem
to have the over-all CBect of modifying the D function.
In the resonance case, the resonance is broadened and
shifted; in the "one scattering length+two resonances"
case, rescattering corrections in the scattering-length
channel can be large, and depend very much on the
particular process considered. The important point for
our purposes is that it is ority the 6rst iteration —our
Mg—that produces anything other than a stgooth varia-
tion in s. An ansatz which allows for the higher order
iterations to some extent is thus simply to replace the
C s in "direct" terms [i.e., those like Eq. (4.3))by new
complex constants (cf. also Ref. 32). Thus the effect of
the higher iterations is such as to leave undetermined
the relative phases of the "direct" competing two-body
interactions. Hence 6nally we write for only the s de-
pendence of the full matrix element:

Scattcr1ng-length case:
Ca iy -(q q.)+—(m2/mimg)(p+p, )-

E+ ln—
1—2zaq/(m23c) mme p (q—q.)—(m2/mi23) (p—p, )

(5.1)

Resonance case:
cp ~V (q

—q.)+(m~/m»s)(p+ p.)E+ ln
mo'c4 —s—«2pq/(mmac) m2gp (q—q.)—(mm/mi23)(p —p, )

(5.2)

where C and K are constants.
%C should perhaps emphasize that our discussion is

meaningful only for that range of incident beam energies
which correspond to physically allowed rescattering.
That is, the kinematic conditions of Sec. 28 must be
satis6ed. Of course our nonrelativistic evaluation of the
graph of I ig. 2 is exact, and hence always valid. How-
ever, even when the (13) interaction is completely
dominated by a narrow resonance, the graph of Fig. 2
does not give the major contribution to the process of
Fig. 1(iiia), once s8 has moved away from the lower

edge of the physical cut on the second sheet. Hence the
kinematic conditions are essential. On the other hand,
for any endothermic production process, there is always
a range of beam energies for which these conditions are
satis6cd.

APPENDIX A. REDUCTION OF THE
RELATIVISTIC GRAPH TO

N.R. FORM

We write down the I"eynman graph of Fig. 4 in the
(23) c.m. frame, and the appropriate four-momenta are
Rs indicated 1n Flg. 4. Thc notRt1OQ ls cxRctly Rs 1n
Scc. 2A.

~9 N. N. Khuri and S.B.Treiman, Phys. Rev. 119 iii5 (199)).
lf this approximation is not made, one must include tyro-dimen-
sional Mandelstam-type dispersion integrals in Fq. (4.1), and then
complex singularities necessarily arise, c.f., G. 3arton and C.
Kacser, Nuovo Cimento 21, 988 (j.961).

I. J. R. Aitchison (to be published).»I. Duck and F. C. Khanna, Rice University report (to be
published).

32 &. p. Anisovich and, L. G. Dakhno, Phys. Letters 10, 221
(1964}.
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and
&t I jo I ~2)s ~.~e= [I/(2«2Es2Eo)"']ti (A3)

We think of f, g, and ti, as comstaiits and ignore the
problems of the off-shell nature of the matrix elements.

We first discuss the simpler graph of Fig. 6, which
forms a part of Fig. 4, to show the meaning of h. The
invariant matrix element 3' for this graph is

mi +mo +2EiEo+2p rt ms —+io
(A4)

(c)

(e)

FzG. 9. The six di6erent nonrelativistic time-ordered graphs corre-
sponding to the one relativistic Feynman graph of Fig. 2.

We associate "coupling constants" with the various
vertices as follows:

(1I jo I
R)= [I/(2E, 2Es)'t']g (A1)

(2 I jo I
2'3')s - = [1/(2Eo2Eo 2E, )'I']f, (A2)

Here m&' is to be understood as including an imaginary
part —imgF, where F is the full width of the resonance
at half-height. This expression is not unitary. However,
we showed in Ref. 4 that this no real drawback as far as
using it to describe an aeterna/ resonance line in a dia-
gram such as Fig. 2. Only when we want it to describe
the single 6nal-state interaction in the (23) channel is it
necessary to make it unitary. The change is effected by
making the replacement

I'ms-2yq/(m&oc) .
Since I'= (g'/4ir)qz/2m+', where qz is given by Eq. (2.5)
with m~' for s and m~ for m~, it follows that h also has a
I'it' dependence, ensuring that (A4) is never singular
even in the limit I' —+ 0.

With these preliminaries out of the way, we can write
down the full invariant matrix element 3E~ for the
triangle graph of Fig. 4 as follows:

1
Ma= fgh d'q'dqo'— . (A5)

(2~) [(Ew qo ) —(P 0') m—s +—io] [(Eo+Eo qo')' —q' m—o +ie][qo'o q" m—o'+i—o]

For the reasons given in the Introduction, we now try
to simplify (A5) by approximating the propagators by
their N.R. limits.

With E=T+mc', we have quite generally

E' p'c' m'c'+ io— —

[2mT —p'+ i ]co' [2mT p'+i e]c'—
where T= —2mc' —T. Since the energy integration in

(A5) runs from —~ to + oo, each of T and T runs over
this range, and so we obtain two nonrelativistic propa-
gators c '[2mT —p'+i ]'ofor each relativistic propa-
gator. As is well known this simply means that nonrela-
tivistic graphs have an explicit time sense, so that each
diferent temporal sequence of interactions gives a
separate matrix element. On the other hand, these con-
tributions are summed up in one relativistic Feynman
graph. (This point is not treated fully in Refs. 14, 15,
and 16.)

Turning to our process of Fig. 2, we should properly
consider the six separate graphs shown in Fig. 9.
Recall that mac'= mac'+moc'+Qs ro, (ms —mo —ms)c'
=Q—Qz„». Independently of whether R ~ 1+3 and
lF—&2+8 are exothermic or endothermic, i.e., inde-
pendent of the signs of Qs io and Q—Qs», provided
these Q values are such that

I Q I
«mc', we can classify

these graphs by the number of "nearly energy con-
serving" vertices. Graph 9(a) always has three such
vertices, graphs (b) and (c) have only one such vertex,
while graphs (d), (e), and (f) have none. In terms of
nonrelativistic perturbation theory, this means that the
energy denominators arising from intermediate states
will both be of order Q for graph 9(a); for graphs (b)
and (c) one such denominator will be of order Q, but
one will be of order m; while for graphs (d), (e), and (f),
both denominators will be of order m. Hence in a non-
relativistic treatment to lowest order in Q/m, only
graph (a) need be considered.

Graph 9(a) can be obtained from Fig. 4 by the replace-
ments Es -o W+Ts, qo'bmoc'+To', Er~mic'+Tr
etc. , since the sense of the arrows in Fig. 4 is the same
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as that in Fig. 9(a). Care must be taken in collapsing the propagators, however. Thus, for a line with mass m,
total energy E, and momentum p as given in Fig. 4 and Eq. (AS), one writes c 2[2m(E—m) —p2] '; for example,

(Es —qp')' —(y—q)' —m12'~ (Es qp—')' (y—q)—'c m—13'c' +2-mac'(Es, qp—
' m—zc2) (p——q)'c'.

The T'(qp') integration can now be performed immediately by contour integration. The i 3 in each term shows

that the only T' pole in the lower half-plane is at T'=q'/(2m2) —ip. Since the integrand T' 'as —T' —1~ we

can close the contour in the lower half-plane and get immediately

i fgh (—22ri)

(22r) 4 2m122m22mpc' [Ts +c2(W m—2 m—s) q"—/(2m2) (p—q')—'/(2m')+i35

X . (A6)
[T2+T3—q "/(2m, )—q"/(2m2)+ ip]

We have now obtained exactly the same result as standard nonrelativistic third-order perturbation theory
(cf. Fig. 5) with a sum over two sets of intermediate states.

APPENDIX B. ALTERNATIVE EVALUATIONS OF Mg

1. The Feynman Parameter Method

This method makes use of the Feynman trick

de

ab p [na+(1—n)b]2

and is closely related to the method of Ref. 15. We have

p' q~2 p2 2p. »I qI2 ——1- q2 q~2

+Qw-s2 — —— + — +ip +Zp
2m2 2mg3 2mg3 2mg3 2@23 2@232m] 23

m]23

4p23m2mya

t'2m2m13) m2 m2' 2Qs s2m2m, 3

l(2~23) q"—2p. q' +p' —33 [q"-q'- 33)-'
k m123 ~ — m123 m123 2

with
m] Q3 ([» np' —(m2/m223)]' X—i3)—'

X= (2nm2m13/m123)Qw 122+ (1—n)q' —n(1 —n) p'(m22/m1232) .

Following standard methods we find

i( 22r—i)—
(22r) 42m132m22m3 my23c

(fgh)4p23m2m, 3

(i2r2) dn X—'12 .
0

Since X is a quadratic in 0., the integration is elementary,

and leads to Eq. (3.8) of the text.

2. The Dispersion-Relation Method

We now give our final derivation of this result. We
remarked below E». (3.5) that we were very close to a
dispersion relation for M~. However in a true dispersion

relation, the spectral function should be a function only

of q', and not of q. P(p, q') had p given as a function of

q, and further P(p, q') corresponded to an og-energy-

shell variant of the S-wave projection of Mg.

We re-examine (3.4) and (3.6). In order to simplify
the analysis we now imagine that Qs z2(0, and will

f423ally analytically continue Qs „z2 in the upper
half-plane to Qs s2)0 (cf. Footnote 24). We keep
Q=c'(mw m1 m2 —m3)—)0, —however. In that case
P(P, q') is real for all q' in 0(q'( ~ and is invariant
under q' ~~—q'. Further (3.4) shows that Mz is analytic
in q' except for a cut from 0&q'& ~. It follows that M~
has a dispersion representation in q', in which the
spectral function is just the imaginary part of 3f&. But
from (3.4)

ImM p(q2) = —2r2f[(22r) '2m23cf 'qP(p, q), (82)
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q

/

's

FIG. 10. (a) The motion of q8 in the complex q plane as 8'
is increased. (b) The associated motion of Eg and E~ in the
Eg3 plane,

where P(p, q) is obtained from (3.6) by replacing q' by q,

We see that P(p, q) is precisely the S-wave projection of

3f~, with both p and q related to s, so that Mg is on its
energy shell. (Hence Ref. 23 does not apply to it).
Hence

1 " dq"( m') fq'P—(P', q')
Ãg(q') =— . (H3)

[q'2 —q' —ie](2n-) '2m23c

(This N.R. dispersion relation agrees exactly with the
N. R.reduction of the standard relativistic expression. ' ')

Our Gnal task is to evaluate (83).Two remarks are in
order. (i) The q" integration goes to co, though the

"physical region" for the process is limited by Q&E23,
i.e., q'&2p~aQ, in order that, in the over-all c.m. frame,
Ti+T&23&&0, where Ti is the kinetic energy of 1, and

Ti»& is the kinetic energy of the (23) c.m. motion.
(ii) Related to (i), we see from Eq. (2.7) that p" becomes
negative for q"&2p23Q, so that p' becomes imaginary.
The integrand is even under q'+~ —q', and/or P' &~ —P',
so that we can convert the integral with respect to q'

from —~ to +~. Further, in the q' plane, we take the
cllts of p as

—~ & q'& —(2iig3Q)'~' and +(2p23Q)'~'(q'& ~

and work on the sheet with Rep')0. On this sheet
p'( —

q) =+p(+q'). Further p'=0 is not a singularity.
In order to locate the positions of the singularities of

I' with respect to the contour of integration, we recall
that we commence with Qs ii2&0 continued in the
upper half-plane, and Q) 0."Algebraically we proceed
as in Sec. 3, and find the singularities to be at +q~,
~q& Lcf. (3.11)].With Qq iig&0, both q~ and qs are
in the lower half-plane. Hence we can manipulate (B3)
into the form

11 "
/ 1 1 ( 7r'fgh)—

1IIIq =—— dq'i +
m 2 Eq' q ie —q'+—q+i» p'(2n. ) '2m23c'

Lq+(m2/m»3)P ]—L
—qs+(m2/mi23)Ps] Lq+(m2/mi~3) p ]—Lq~+(m~/mi23) pN]

X ln +ln
- t

q' —(m2/ml»)P'] —[—q~ —(m2/m123)PX] Lq' —(m2/mi28) p']—Lqs —(m2/m„3) p8]

LRecall p(q)=p( —q), so p( qs)=p~, etc—.] Here the
first ln has singularities only in the upper half-plane, and
the second In only in the lower half-plane. Further the
entire integrand is independent of p'+~ —p', and the

q poles do not lie on the p' cuts, so that we can ignore the
formal p' cuts. Then closing the contours appropriately
as we did after Eq. (3.7), we obtain Eq. (3.14) of Sec. 3
after some algebra.

The above has been analyzed for Qs „+2&0, Qii „ia)0.
The continuation in Q~„z2 is quite straightforward, and
leads to the prescription qs —ie. (This is when we neglect

any possible negative imaginary part associated with

mii. ) When mii~mii —iI'/2, we see that qs gets a
finite negative imaginary part, since Qs „ii2 —+ Q~„i„
+ii'/2, Qii i3~ Qii is—iI'/2, and both the prescrip-
tion Q~ ii~+ie and the mii —il'/2 prescription lead to
the same result. As Qgr ii2 increases past the limit given

by (2.14), the imaginary part of qs remains negative on
either prescription, while the real part goes negative.
The e8ect of this on 823~ is as shown in Fig. 10. It
remains on the second E sheet, but circles around the
normal threshold at 8~3——0, and hence becomes "far"
from the physical region. Thus once again we see the
importance of the conditions (2.14) and (2.15).A similar
analysis for q~ (for complex mii) shows that E»~ moves
as shown in Fig. 10(b) and that q~ and E»~ are never
of physical significance.

APPENDIX C. AN EXAMPLE WITH SPIN
AND ANGULAR MOMENTUM

For concreteness we treat m. +cV —+ ~+m+1V with R
corresponding to the N* spin-~3 mlV resonance. For
simplicity we ignore the charge states and hence isotopic
spin. We assume that in the process m+cV ~ vr+1V*,
the initial state is Dsf2, which implies 5-state production
of the E*.The Ã* —& xiV break. up of course is I' wave.
Finally we assume that the mm. rescattering is pure
8 wave. '4

Ke proceed in a fully nonrelativistic manner. Thus
we represent the initial and final E spin states by two
component spinors N(i) and u(f), and ignore the spinor
transformations induced in transforming from one frame
of reference to another. Further we use Galilean rather
than Lorentz transformations.

"Notice that even if mz has a 6nite negative imaginary part,
this prescription would agree with that on Q~ g2, see also J. B.
Sronzan and C. Kacser, Phys. Rev. 132, 2703 (1963). Hence
(Q~„z2)'/' is always to be taken in the upper half-plane, and
(Qg 13)'/' is always positive."This example is not without relevance to the real world. Most
low-energy pion-production data can be 6tted in terms of the
simple isobar model

C
see M. Olsson and G. B. Yodh, Phys. Rev.

Letters 10, 353 (1963), also to be publishedj. However the
7I- p —& m=m-+e channel shows an "anomalous" ~x eBective mass
spectrum, which Anisovich and Dakhno (Ref. 32) have suggested
may be due to a rescattering eBect. The angular momenta which
we assume are those most appropriate to test this hypothesis. A
detailed numerical test is under way.
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The various polarization states must be referred to
some quantization axis, which we take to be the incident
zr beam direction. Let b be the three-momentum of the
pion beam in the over-all c.m. system; then b is parallel
to the quantization axis. The initial D3f2 state is made

up of an 1.=2 orbital part associated with the angles of
b (a unit vector along b), coupled with the nucleon to
total spin j=—', and projection j,=m along b. Here m is
the sum of the s projections of I-j~jtjg] and of sj~jtjg and
hence for a given initial state it is fixed. The intermediate
mE* state couples the E* directly to the Daf2 initial
state, there being no orbital angular momentum. The
E* also has magnetic quantum number m.

Turning next to the E* decay, we go to the Ã* rest
frame and assume the polarization state is Nmchanged
in this transformation. Then this (z3,m) state decays into
zr+N, with a I' wave or-bital part depending on the
angle of y', where y' is the final nucleon momentum in
the S* c.m. frame. This over-all coupling can then be
written schematically as

(si~iziaiq Y2(b))z/2

(sfinalq�y�(P

))8/2 q

where suitable Clebsch-Gordan coefFicients are implied.
Hut this has the Nmiqle recoupling

(s;.z.i,sfi-i)i (I'.(b), I'i(P'))i.

Since futher (s;„;i;,i,sfi„,i)i zz*(f)ezz(i), Vi(p') p', and
I'z(b) 8;„—3b,b~, we see that the complete zrN —+

+.V*~ ++3~ amplitude has angular factors

[N*(f)~,u(z) j[b;~—3$g,jp, '.
Furthermore centrifugal barrier factors of b' and p'
must appear in the over-all matrix element. Hence the
full Mg matrix element for xE —& xE*—+ +AS takes
the form

b'(~ y')-3(b ~)(b y')
(C1)

2m'/c' [m/ic' (E—13+misc') —i~j

Here we have written Mg as a 2)&2 matrix in nucleon
spin space. Further, f is an effective coupling constant
having the role of the previous product gh, and is es-
sentially constant; m& is the complex mass of E*;and
finally E» is the total kinetic energy of relative motion
of particles 1 (the final nucleon) and 3 (the second
emitted pion) which make up the N*.

In this expression b is a constant vector, and Eiz is an
invariant. However, p' must be re-expressed in terms of
vectors dined in the mz center of mass. In this frame
the nucleon (particle 1) has momentum y, and the N*
pion (particle 3) has momentum —q (cf. Fig. 6). One
readily finds

mi(y —q) miq+mzy
P=1

m»

where we have ignored the difference between m» and
m~. This leads to

[b'o —3(b e)b] [miq+mzy](1/m„)My=-
2m/ic' [p'/(2mizz) —q'/(2mz)+Qiv az —(y—q)'/(2miz)+ifi]

(C2)

This can be compared with (3.3), and we see that only the numerator of Ma has been affected. (Recall
that miv ~ mizz, mii ~ miz is accurate to our approximation. )

From this we immediately obtain [cf., Eq. (3.1)j (recall that the pions are spinless, and f is S wave)

(—i)(—2zri)
Mg=

(2n-)'2miz2mz2mzc'

[b'e—3(b e)b] [miq'+mzy](1/miz)
d'q'f f'

[q'/2p, zz
—q"/2/zzz+ze j

X (C3)
P'/2mizz —q"/2mz+Qw-zz —(y q')'/2m/i+ie

We next perform the angular integration over d'0, . Consider that part of the numerator which depends on q',
and write it as v q, where v is some Axed vector. Then taking axes along y, and performing the azimuthal angular
integration, only the i/, 'q, ' part is preserved, so that v q' —+ (v y)(y q'). Hence Eqs. (3.4) and (3.5) become
modified to

with

and

(—z)(—2~z)f "zq'd(q")2/ »
Mz= E(p,q')A(p),

(2n.) '2mz2mzc 0 q"—q' —ie

d(cos8) (—f') [(m i/miz) (P q')+ (mz/miz)P j
I'(p, q') = 4n.2, 2m„c'[p'/2m&zz q"/2m +—Qs a (y q')'/—2mi—z+iz)

~(P)=b'(~ P)-3(b ~)(b P).

(C4)

(C5)

We notice that I'(p, q') depends only on the magnitudes of y and q', and hence the full angular dependence of M'&

is given by the factor A (p). This factor is immediately recognizable as corresponding to a final state in which the
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nucleon recoils from the (23) system in a relative P wave, the (23) system having J=O. The coupling (C6) is the
only possible coupling from the initial D3f2 state to a final state in which the two pions are in a relative S state.
(Notice that p is parallel to the momentum of the nucleon in the over-all c.m. system; in fact y, =mssls/m»8. )

One readily obtains

m1 m'f /ms m1ms 'j msm128
~(p,q')=(4-)(-|.),+ „,I + — ip'+- q"- .Q--

2msspc' p'q'c kmss 2mssms»i 2msm18

(q +m2p/m128) 2Qw R2m2m18/m123
Xln (C7)

(q' m—sp/m123) 2QW gj', msms1/3m 12318

Asymptotically the integrand in (C4) goes as P(p, q ). This in turn apparently goes to 1, from both the algebraic
and the logarithmic term, since the ln 1/q. But in fact a cancellation occurs, and since P(p, q') is even in q',
it actually goes as (q ) . Hence the integral in (C4) is convergent. This must be so, since while (C3) is apparently
divergent, it can actually be seen to be convergent by using Feynman symmetric integration methods. Dn the
relativistic case, the integrand in (C3) is clearly convergent, going as q„d q/q .) Because of this cancellation, how-

ever, the procedure analogous to that used in going from (3.4) to (3.7) must be done with care. By careful inspection,
one sees that the proper grouping of terms is given by

A (P) ( 3) (——2m i)f " dq' dq'

(2')'2mssc' „q'—q
—zs q'+q+i sl

m1 (2Qw R2msmls $7I m3 m1m2 mlm123
X (2 ){—1) +— + p' — qs —m1Qw Ss

2mssp - & m128 p m13 2m13m123 2msm18

pms 2Qw Ssmsm13 '"
(Xln q'+ + +zs

m123

pm2 /2Qw B2m2 13)
q' — +I

miss j, m128

ml93

t 2QW Ssmsmss

l
+ "same" except for opposite sign in front of each

i

By this grouping each [ ] term separate/y behaves as 1/q' as q' ~~.We can hence close the contours for the two

[ ] terms separately in opposite half planes. "' One finally obtains

im'ffmsLq —(2QW ssmsm13/m128)'"j
m, =~(j)

(2W)'mssmsspcs

ix'ff f ms msms & msmsss —ml W-B2
(2m)'mssp c —km13 2mssmsssl 2msm18

q+(pms/msss)+(2QW Ssmsmss/msss)'
Xln (C8)

q
—(pms/m128)+(2QW-zssmsmss/msss)'

One sees that ~s is regular at p=0, as it must be. We do not discuss the relativistic ansatz to be associated with
(Cg) in detail, since we have used the Galilean transformation and did not consider the spinor transformations.
If one writes the ln in the form given in Eq. (3.15), one should use the same ansatz in al/ terms, to preserve the
regular behavior at p=0. Hence we suggest

ml
~=A(P) q+ qS—

(2~)'msspcs m18

ms ) 1 ms msms ) msm128
PS I

— + IP'+
m128 / p — m13 2mlsmlss~ 2msmls m123 )—

q+(ms/m128) p qs+(ms/m128) ps
Xln (C9)

-q (ms/m123—)p qs+(m2/m123) ps


