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Nucleon as a Composite Particle State*
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A general scheme is presented for approximately determining the mass M and coupling with pions g'/4~
of the nucleon, and the position and width of the 7f& 33 resonance. No cutouts are required. Contributions
from distant left-hand singularities to the I=J=-,', $ p-wave amplitudes are approximated by Balazs-type
pole terms, and those from nearby left-hand singularities, by crossing symmetry. Balazs-pole residues are
determined by requiring crossing symmetry in a form relating the mS partial-wave amplitude on the nearby
left-hand cut to physical xE scattering. As a 6rst step in the investigation of our general scheme, we use
experimental data on mE scattering in the I=1=) p-wave state to determine the nucleon mass and pion-
nucleon coupling constant. We And 3E= 1.03 in units of the physical-nucleon mass and g'/4' =18.6. The
latter appears to be weakly dependent on the choice of galazs-pole positions. The calculated nucleon mass,
on the other hand, appears to be practically independent of the choice of pole positions.

I. INTRODUCTION
' ~N 1962, Chew' showed, , on the basis of the static
& - model, that the exchange of the 1V* (3-3 resonance)
can give an attractive force strong enough to produce
the nucleon as a pion-nucleon bound state. Combined
with previous indications' that the S* is essentially
produced by nucleon exchange, this result strongly sug-
gests the possibility of a theory in which both the
nucleon and, the E* arise as composite particle states.
Subsequent relativistic dispersion-theory calculations' 4

have given qualitative support to this possibility.
Essentially tv' d,ifferent approaches have been used

in these calculations. In some of them, ' left-hand,
singularities of partial-wave amplitudes are taken from
Born terms for X, E*and (in some cases) p exchange,
resonances being treated as single-particle states. The
E/D method' is used to construct unitary amplitudes
which are then examined, for appropriate bound states
and, resonances. In these calculations, the unknown
contributions from distant left-hand singularities (corre-
sponding to short-range forces) are neglected. Also a
cutoff is required to eliminate the well-known diver-
gence d,ue to the S*-exchange Born term.

The other approach, ' which (at least formally) cir-
cumvents the d,ifficulties associated with unknown
short-range forces and, the d, ivergence coming from S*
exchange, is based on a method introduced by Balazs. '
In this method, contributions from distant left-hand
singularities of partial-wave amplitudes are approxi-
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mated by pole terms whose pole positions can pre-
sumably be determined, by a d,efinite criterion and whose
residues are d.etermined, by requiring that a fixed, -energy
dispersion relation be satisfied, at a suitable number of
points. The dispersion relation yield, s an equality be-
tween a partial-wave amplitude (which in practice is
obtained from the Z/D method) at some (matching)
point in the low-energy region and, an integral covering
an infinite-energy range, the main contributions to
which are approximately expressed, in terms of masses
and wid, ths of appropriate resonances. Although this
method, uses a more realistic description of short-range
forces than the first, and does not require a cutoff, ' it
involves the neglect of possibly important high-energy
contributions to the fixed, -energy dispersion relation.
This neglect of high-energy effects probably accounts in
part for the sensitivity of results to the choice of match-
ing point. In both approaches, elastic unitarity is
assumed in solving X/D equations.

In this paper, we will discuss, using a variant of the
Balazs method, , the problem of "generating" the nucleon
given the N* and, vice versa, and, also the much more
de.cult problem of "generating" both the nucleon and
X*in a single self-consistent calculation. We will follow
Balazs in parametrizing effects of short-range forces
with pole terms but will not use fixed, -energy dispersion
relations to d,etermine residues at the poles. Instead, , the
resid, ues will be d,etermined, by requiring crossing sym-
metry in a form relating a pion-nucleon partial-wave
amplitude on the crossed pion-nucleon cut to physical
pion-nucleon scattering. Our approach here is largely
motivated by a previous calculation' of two of us (T. K.
and A. T.) for pion-pion scattering in which Balazs pole
residues were also determined by applying crossing
relations in a straightforward, manner. In fact, the
formulation of crossing symmetry, as used. in the present
work, is much easier to apply practically than was that
used, in the ~-x calculation.

V See, however, discussion by F. Zachariason in Strong Inter-
actions and High Energy Physics, 1963 Edinburgh Summer School
Proceedings, edited by R. G. Moorhouse (Plenum Press, New York,
1964). See also the discussion at the end of Sec. III of this paper.

8 T. Kanki and A. Tubis, Phys. Rev. 136, B723 (1964).
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In Sec. II of this paper, we present the general
formalism including specific forms of partial-wave
amplitudes and crossing relations. A brief outline of a
program for simultaneously ded, ucing the E and S*
from unitarity, crossing and analyticity is also given.
As a erst step in the investigation of such a program,
we report in Sec. III a calculation in which experimental
d.ata on the 33 resonance is used, to d,etermine the nu-
cleon mass and pion-nucleon coupling constant. Section
IV contains a "Summary and Conclusions".

FIG. 1.The pion-nucleon in-
teraction x+N —+ x+E.

II. GENERAL FORMALISM

A. Pion-Nucleon Amplitude and Crossing Relations

The pion-nucleon amplitude (see Fig. 1) can be ex-
pressed in terms of the four invariant amplitud, es, A+
and J3+ as'

with similar expressions for the 8, the crossing relations
(2.7) become

T p= —A p+-Y (8+qm)B~p,
2

A p=b.pA++ ,'[r,rpjA- (2.2)

B p 8.pB++ ,'——[r,rp]B-, (n, P=1, 2, 3), (2.3)
where

Ar(s;t, u)= P Crr Ar'(u; t,s),
I&=),$

B'(s; t,u) = —Q Car.B'(u; t,s),
I =$,$

(2 8)

(2 9)

t = —2qP (1—cos8,), (2.4)

where (q~,n) and (q2,P) are the momenta and isospin-
state labels of the incid, ent and outgoing pion, re-
spectively; 7 is the nucleon isospin operator; and, A+
and 8+ are functions of the three Mand, elstam variables
s= (pl q1)', t= (p~—p()' and u= (pi —qm)'. In terms of
the center-of-mass scattering-angle 8, in the s channel, t
and I are given by"

3
Crr =

2
3

i; 1, 1'=
3

(2 10)

The amplitudes A r' on the right sides of (2.8) and (2.9)
are the eigenamplitud, es in the I channel.

The partial-wave amplitud, e

sinb gp'(s)
l(s) p, 5(gt(~)

p(q)
1—cos8, (1—p,')' 1+cos8,

u= — [s—2(1+p')j,
2 $2

where g,' is the square of the center-of-mass momentum
in the s channel. q

1

h(~'(s) =
2p(s)

d cos8,[P)(cos8,)fy (sj cos8,)

+P~+((cos8,)f2r(s; cos8,)j & (2.11)

1
q'= —[s—(1+a)']Ls —(1—p)'j.

4$
(2.6)

where

(2.5) which corresponds to the state with total isospin &,
orbital angular momentum / and total angular mo-
mentum I&-,', is given by the well-known formula' "

The substitution rule, when applied to the amplitudes
(2.1)—(2.3), leads to the crossing relations

A+(s, t,u) = &A+(u, t,s),
B+(s,t,u) = WB+(u, t,s) .

(2 7)

'G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

"In the present work, we set the mass of the nucleon equal to
unity. Then p =mass of pion/mass of nucleon= 0.146 and s+t+u
=2 (1+p~).

In terms of isospin eigenamplitudes A defined in the s
channel by

A'"(s; t,u) =A+(s, t,u) —A-(s, t,u),
A'"(s t u)=A+(s, t,u)+2A (s, t,u),

E(s)+1
f~'= LA'+(V"-1)B'3,

Sx s

E(s) 1—
fm'= L

—A'+(v'+1)B'j.
8mgs

(2.12)

"S.C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).

p (s) is a kinematical factor which will be specified later,
P&(cos8.) is the Legendre polynomial of order l, and
E(s)—= (s+1—p,')/2+s is the nucleon energy in the
center-of-mass system.

Inserting (2.8) and (2.9) into (2.12), we obtain the
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p(s)
$2 (up cos8~) = P Lhi (Q)—h[y (N))Pi'(cos8„).

qm
(2.14b)

s e, =l

Fzo. 2. The Mandelstam plot for the pion-nucleon interaction.
The region of the u and s channels where the 33 (E+) resonance
dominates is indicated. The s- and I-channel nucleon poles are
associated with a mass m not initially set equal to the physical
nucleon mass (—=unity in this paper) in order to emphasize that
this mass should be deduced from a dynamical calculation.

crossing relations in terms of fir and f2r.

fi (s j cos8g)

&(~)+1 -gu —ps+2
E &rr fir'(u; cos8„)

2+s r E(e)+1

QN+gs —2
f2r'(m; cos8„) , (2.13a)

E(u) —1
fg'($ j cos8,)

&(~)—1 +I+ps+2-P C:rr fir'(u; cos8 )
2+s r g(u)+].

ge—ps+2
f2r'(I; cos8„) . (2.13b)

E(e)—1

8„, the center-of-mass scattering angle in the u channel,
may be obtained by interchanging s and I in (2.5).

We see from (2.4) and (2.5) that cos8, =+1 on the
line t =0 and cos8, = —1 on the curve su= (1—p')'. This
curve and line are also the boundary curves for

~
cos8„~

&1 since they are invariant under the interchange
s ~~e (see Fig. 2).Thus, when

~
cos8,

~

(1and s is in the
unphysical region LO&s& (1—p)'1 for the s channel, all
fr's on the right-hand sides of (2.13a) and (2.13b) are
to be evaluated in the physical region of the m channel.
We can thus use the following partial-wave expansions' "
for these fr's

p(s) ~
fir(u; cos8„)= P hi~i(u)Pi'(cos8„)

q
Z 0

—P hi r(N)Pi i'(cos8„), (2.14a)
l=2

Equations (2.11), (2.13), and (2.14) thus express by
crossing symmetry the h&~r(s) in the unphysical region

t 0(s& (1—p')'j in terms of their physical values.
Since we only use the Legendre expansions (2.14) for

physical amplitudes, they converge rapid, ly in the low-

energy region of the I channel and, our crossing relation
for hi+i(s) will be accurately satisfied for s close to the
threshold of the left-hand cut (s=- (1—p)'j even if only
the first few terms in the Legendre expansion are re-
tained, . This fortunate situation is lacking in the case of
pion-pion scattering' where we had, to use I egendre
expansions for unphysical amplitud, es in order to
practically use crossing relations analogous to the one
discussed, here.

B. Choice of Partial-Wave Amplitudes and
Effective-Range Expansions

In Fig. 3 we show the dynamical singularities of
hi~ (s).'2 The right-hand cut starts from s= (1+p)' and
the left-hand cut from s= (1—p)'. The nucleon pole is at
s =m' and the nucleon short cut is between s = (1—p,')'/m'
and s = 2 (1+p') —m'. Note that we have used m for the
mass of the interval elcteoe, which corresponds to a pole
of the /= I, I=J=—', amplitud, e. We do not assume in-
itially that m is equal to the external elcteoe mass be-
cause we assume that the mass of the interval egcleoe
should be calculated, d,ynamically as the total energy of
the bound, system of the exterrlal mlcleon and, a pion. In
Fig. 3, we have neglected. the circular cut which comes
from the pion-pion interaction in the t channel. In
Appendix A, we d, iscuss the eRect of this circular cut and,

show that it gives only a small correction to the analysis
of the I=J=-', p-wave amplitude in Sec. III.

We now discuss the choice of kinematic factor p(s) in
(2.11).If p(s) = q„ then

hi~r(s) = (e "i+'/g, ) sinb i~i(s) .

This amplitud, e has the following behaviors" near the

WMMWWMWWwWWWWWWWWWWaWMWWWWWWWWAWWMA gpsss=o () F.)' ()+p)

FIG. 3. Singularities of hz+ (s). The short crossed nucleon cut
extends from s=(1—p~)~jm2 to s=2(1+p~) —m~. The circular
t-channel cut is not shown here but its effect on our calculations is
discussed in Appendix A.

"Because we work in the complex s plane, it is evident from
(2.12) that there is a kin, emetic branch cut starting at s= 0. This is
of no consequence in the present calculations since the Balazs
effective range expansion to be employed (see Sec. IIB) in principle
accounts for the e8ect of singularities in the region of this cut,"G. Pry and R. L. Vfarnock, Phys. Rev. 130, 478 (1963),
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thresholds of the right- and left-hand cuts, respectively:

/2~'(s)-C"-[s —(1+p)'j' s~ (1+p)'; (2 15)

[s—(1—Ia)2j ~2+constbie, s ~ (1—ls) . (2.16)

When we apply the N/D method to this amplitude, the
discontinuity of the left-hand, cut of the N function
should therefore satisfy certain moment-conditions.
Now we will shortly introduce a Balazs effective-range
expansion' for the d,istant singularities of the N function.
From a practical point of view, it is desirable to free this
expansion from these moment-restrictions and to build
in the threshold behaviors (2.15) and (2.16). Thus, for
p-wave amplitudes, we choose p(s) so that

s q
'i2 s
!/2»»(s) =

I

ks —(1—p)23 s—(1+@)2

l.0

05—

K(x,s, s, )

e'"12J sin5212g
(2.17) 0

-Q5
0 OR 04

'0.5 09
where the conventional notation (2I2J) for partial-
wave amplitudes is introduced and will be used from
now on. The branch of the square root on the right side
of (2.17) is chosen so that it has a cut from s=0 to
s= (1—ls)2. The function hsies is finite at both the right-
and left-hand cut thresholds. Near s=0, the behavior of
h»» is controlled by the high-energy amplitude for
backward ~-N scattering. In Appendix B, it is shown
that h2I2J does not vanish at s=0 provided that the
backward-scattering amplitudes A (I; cos8 = —1) and
B(N; cos8„=—1) behave as const)&N~ (n)-2'). Un-
fortunately, we have no available data for backward
7t--N scattering. In this paper, we will for simplicity
assume that k2~2q does rot vanish at s=0.

If we invoke two-particle unitarity over the whole
right-hand, cut and introduce Balazs effective-range
poles for contributions from the distant left-hand, cut,
the usual N/D formalism" leads to

Fze. 4. Plots of

E(x,s,sg) =—$1+x(sg—(1—p)2 —1)]/t 1+x(s—(1—p)2 —1)],
where sg=0.629, for several values of s. Some relevant values of
s'=—1+(1—p)' —1/x are indicated along the x axis.

to s = (1—ls)2. We will specify L later. The contribution
from unknown "distant" left-hand singularities (s(L)
is accounted, for by the Balazs pole terms.

The positions of the poles have been chosen in ac-
cordance with 8alazs' criterion. If we set s' = [1+(1—

12)
'

—1/xj, the contribution to N2I2J from "distant" left-
hand singularities may be written as

dx E(x; s; s~)

x{1+x[s,—(1—p)2 —1j}
XImhsi2I[s'(x)]D2I2J[$'(x)], (2.21)

I22I2I($)=N2I2 I($)/D2I2 J(s) )

1 t+" i Imj22I2s(s )
N2I2Z(S) =- ds D2I2 J(S )

(I—p} (m s —s

(2.18)
where

1/xz ——1+(1—p)2 —L,

1+x[s~—(1—li)2 —11
E(x,s,s~) =

1+x[s—(1—Ia)2—1)
1 t' »' Imhsrsj(s')

D2I2J (S )
7l s —s

D2I2I(s) =1—$—Sp

s s+50

p (s')N 2I2I (s')
ds' . (2.20)

tr+»' (s'—se) (s' —s)

The first term on the right side of (2.19) is the contribu-
tion from the crossed. -nucleon cut. The second term is
the contribution of left-hand cut singularities from s= L

sg =0.629.

The behavior of E as a function of x for several s values
is shown in Fig. 4. The straight-line approximation
shown there corresponds to the pole terms of (2.19).We
see that reasonable accuracy is obtained, for 0.5 ~s(2.5
(the region of interest in this work) and —0.1(x&0.8
(corresponding to —~ (s'&0.45 and 12&s'(+ ~).
The validity of the approximation for E(x;s; sz) in the
region corresponding to 12(s'&~ means that some
effects of inelastic unitarity and the breakdown of our
representation for N2I2I ($'), appearing in the integrand
of D2I2s(s) for s') 12, are taken into account. '
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C. General Scheme of Self-Consistent Calculation

We shall brieQy discuss here a general program for
self-consistently determining the mass and coupling
with pions of the nucleon, and the mas and width of the
33 resonance (1V*). We have previously shown in the
case of pion-pion scattering' that the existence and
approximate mass and width of the I= J=1(p-) reso-
nance follow as simple consequences of analyticity,
unitarity and crossing symmetry. In this paper, we
essentially adapt the approach used, in pion-pion scat-
tering to the problem of determining pion-nucleon p-
wave amplitudes for I=3= 2 and I=3=-,'.

Approximate unitarity and analyticity requirements
are built into the EjD expressions (2.18)—(2.20). We
now impose crossing symmetry by requiring that each
partial-wave amplitude h212J given by (2.18)—(2.20)
satisfy the crossing relation following from (2.11)—
(2.14), on the nearby left-hand cut fL&s( (1—p)'j.
This crossing relation gives both the real and imaginary
part of the h»&z on this cut in terms of their physical
values. The relation for the imaginary part may be used
to calculate the integral over the nearby left-hand, cut of
the 1V function )the second integral of (2.19)). The
relation for the real part may then be used to determine
the pole residues n and P of (2.19) in a way similar to the
procedure used in the pion-pion calculation. ' Actually,
it will be more convenient in this work to use these
"real-part" crossing relations in a somewhat different
manner which mill be discussed, further on.

In the second integral of (2.19), the maximum value
of u in the Legendre expansions (2.14) appearing in the
integrand is (1—p')'/L. For L=0.4, which is roughly
the value we use in this work, the corresponding labo-
ratory pion kinetic energy is about 560 MeV. Therefore,
a reasonable approximation for the I.egendre expansions
(2.14) is to retain only the h» term on the right-hand
sides. We will discuss this approximation in detail in
Secs. 3 and 4.

The compositeness assumption for the nucleon im-

plies that in X/D partial-wave calculations, the nucleon
should appear dynamically as a zero of D» as well as a
short (crossed-nucleon) cut in all the h~r2q. Thus, as-
suming that the 33 contribution to the crossing relation
just discussed dominates the other contributions, we

may, in terms of the coupled h» and k» problem, set up
an approximate self-consistent procedure for simul-
taneously deducing the mass and width of the 33
resonance and the mass and coupling with pions of the
nucleon '4

For example, we might make an initial guess for these
parameters, use them to determine the first two inte-
grals on the right side of (2.19), find values for nu, P~~,

n3g, and $33 so that the calculated hn and h3~ have poles

~ To the extent that we work with the coupled equations for h]1
and he~, the program to be described here is similar in spirit to the
"reciprocal bootstrap" calculations (Refs. 1, 3, 4) previously

mentione d but quite diBerent in methodology.

and residues at these poles corresponding to the input
parameters, investigate the self-consistency of the input
parameters by seeing how well the "real-part" crossing
relations are satisfied on the nearby left-hand cut, and
finally repeat this procedure for various sets of input
parameters until the "real-part" crossing relations are
satisfied to an accuracy compatible with the approxi-
mate nature of the calculation. In the next section, we

will discuss a calculation based on a more limited pro-
gram in which the E*parameters are assumed and only
the nucleon parameters are determined. Calculations
based on the full program are now in progress and will be
reported at a later time.

D. Internal- and External-Nucleon Masses

A few words should. be said here concerning the re-
lationship between the external- and internal-nucleon
masses. The mass of the internal nucleon, according to
the composite-nucleon picture, is associated w'ith the
position of a (calculated) zero of Dqq. This might not, in

general, be equal to the mass of the external nldeon. In
other words, we have assumed, that the internal nlcleon
is a dynamical bound state of a pion and the external
nucleon so that we cannot a priori set these masses
equal. Instead, this equality of internal and external
masses should be derived from dynamical principles.
Actually, this equality can be understood as a conse-
quence of Chew's bootstrap principle, " namely, that
every one particle state be a compound, of particles
which axe able to couple with this one particle state.

To show this, we first note that if these masses are not
equal, there exist two diferent nucleon states, X and Ã',
similar with respect to all quantum numbers and
differing only in mass with the basic vertex now being
mc71P. We must now consider the ~+X-+vr+X as

I'IG. 5. Plot illustrating the equality of interval and external
nucleon masses according to Chew's hypothesis. The actual nu-
cleon mass corresponds to the intersection of the two curves. The
curve p, '(p' ') gives the E-pion mass-ratio in terms of the
2V'-pion mass ratio and similarly for the curve p,

' '(y '). The two
curves diRer only by the interchange p ~~p'.

"G. F. C,'hew, Rev. Mod. Phys. 34, 394 (1962).
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well as the s+1P~ rr+1P amplitude. N' should appear
as a pole of the amplitude for rr+ X~ s+X scattering
and E as a pole of the amplitude for m+1P —+ 7r+1P
scattering. Now our theory has only one parameter for
each scattering, namely the mass ratios))i= (pion mass)/
(E mass) and u'= (pion mass)/(E' mass), respectively.
First consider m-E scattering, According to Chew's
hypothesis, the mass of the lP which is essentially given
by p'-' is dynamically calculable. Thus p,

'—' is a function
of p. The functional d,ependence may be represented by
a curve in they '—p' 'plane (see Fig. 5). Now consider
m-S' scattering. Since E and S' are identical except for
mass, the dynamical equations for m-S' scattering
should be the same as those for x-F scattering except for
the fact that p, and p' are interchanged. Thus we obtain
another functional relation between p-' and. p'-' which
is obtained, from that of m-E scattering by the inter-
change p, ~ p, '. Chew's principle shows that the solution
of our problem should, correspond, to the intersection of
these two curves, thus leading to the equality of both
masses.

In the calculation of h~~ in Sec. III of this paper, we 6x
the external-nucleon mass at its physical value and, only
determine the internal-nucleon mass. This is because
we are using experimental data on one side of the crossing
relations discussed in Sec. IIA, thus making it awkward
to vary the external mass. Variation of both internal and
external masses is now being carried, out in connection
with the full self-consistency program outlined in
Sec. JIC.

III. DETERMINATION OF NUCLEON MASS
AND COUPLING WITH PIONS FROM

THE N* PARAMETERS

We now discuss the d,etails of a calculation of the
nucleon parameters from the assumed (experimental)
scattering in the 33 state. The general procedure has
already been briefly d,escribed, in Sec. IIC.

The 11 amplitude is given by (2.18)—(2.20) with
I=J=-,'. For the crossed-nucleon-cut contribution [first
term on right side of (2.19)j, we use' "

g' 1 )'im s
Imhii*(s+ie) =-

47l' s—(1—p)~r s—(1+p)2 gq, 2

s+m2 —2—2')
r

&& LE(s)+1j(v's—1) 1— !+LE(s)—1j(ps+1), (3.1)
2(8

) i/2 s u —(s) S E(s)+1
h2r2i~(s+ie) = i—

! dg 8 i(cos8,)
!s—(1—rr)'! ) s—(1+rr)' „ i,& (s—L1—y'j)' —4ps 2+s

t'gu —ps+2 Qu+gs —2
XZ Cri! fi (u ie; cos8~) —— f,i (a4;coze ))

',—P,+,(cos8,)—
E(u)+1 E(u) —1

E(s)—1 (gu+gs+2 gu —ps+2
X Q Crr! fi (u —z6) cos8~)— f2r'(u is, cos8„) !—, (3.2)

2+s r' E E(u)+1 E(u) —1 )

which is written in terms of the conventional coupling-constant g /4m- (=15 experimentally). For the nearby left-
hand-cut contribution Lsecond term on the right side of (2.19)j, we use the crossing relation obtained by substi-
tuting (2.13) and (2.17) into (2.11)"

L&s& (1—u)'; e -+ 0~,

u (s) = (1—p')'/s,

u+(s) = —(s—2—2p'),

u+(s)+u (s)—2u
COS88 =

)
u (s)—u~(s)

2((1—u')' —su]
cos8„=—1+

Lu —(1+~')7—4u'

The fi,2'(u, cos8„) are given by (2.14).

We have included the ig explicitly to emphasize the fact that
if s approaches the real axis from above, and cos9, is physical, then
e approaches the real axis from below.

As was previously mentioned, , we will only retain the
33 contribution to the right-hand side of (3.2). The
quantitative reliability of this procedure is illustrated, in

(3.3s,) Table I where contributions to the crossing relations
from various states are given. "The real and, imaginary
parts of hii along the nearby left-hand cut are plotted in
Fig. 6.

L in (2.19) was chosen as 0.49. This value corresponds
to a maximum pion lab kinetic energy of 340 MeV in the
u integration of (3.2), an energy low enough so that the
assumption of (33) dominance of crossing relations is
valid. Also, the imaginary part of hii(s) as given by
crossing relations vanishes at this value. By starting the

~ L. D. Roper, R. M. Wright, and B.T. Feld, Phys. Rev. 138,
8190 {1965).
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Rehii 8 Imhll

IO.O—

DII in the integrals of (2.19) by

(3.5)

vrhich correspond, s to the linear approximation for
DII(s) normalized to unity at s =sp= (1+p)2 and leading
to a bound state at s = 222'. DII, given by (2.20), may now
be calculated and will be a linear function of nII and PII.

The conditions for a bound-state pole at m' and
residue at the pole correspond, ing to the conventional
piOn-nuCleOn COupling-COnStant g2/42r are

FIG. 6. &11 along the nearby left-hand cut calculated from the
crossing relation (3.2) with experimental 33 data (Ref. 17).

DII (2I2') =0,

DII'(III')

g2 ( 2222 ) 1/2

4 (222'—(1—i2)'/

(3.6)

integral of the nearby left-hand, cut contribution to Xyi
at this value of I, we thus avoid a spurious end-point
singularity, which vrould be hard, to compensate for
with Balazs poles.

The determination of m' and, g' from crossing, uni-
tarity, and analyticity assumptions is most conveniently
accomplished by an iterative procedure based on &he

general program of Sec. IIC.
We make an initial choice of g' and ~' »«se experi-

mental (33) information to evaluate the crossing rela-
tion for Imhtt(g), 1(s((1—iI)2. We then approximate

2I22 E(2222) —1 (3.7)
x (m+1),

2222—(1+@)2 2m

DII =dDII/I& i

Kqs. (3.6) and (3.7) are two ltnear inhomogeneous
equations for trII and PII which may be readily solved.
We may then iterate this procedure using instead, of
(3.&) the actual DII calculated, the first time with rrII and
pII determined from (3.6) and, (3.7). The iterations are
conttnucd uIltll tllc cllallgcs III rrtt aIld pII fol successive

l
Rehii

IO.O-

I
Given by cessing symmetry

/ a«experimental data

, Re hll

75.0—

Nucleon pole

at S=L30

—=20g

0
04

', Rehll

IO.O—

Nucleon pole at s=0.85

Nucleon pole

0
04 0.6

s
0.7 ( i+p}'

5.0 —. Fzo. 7. Reh11 on the nearby left-hand cut calculated from the
E/D method for various choices of m' and g'j47r (solid lines) and
the crossing relation (3.2) edith experimental 33 data I'Ref. 17).

OA
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iterations are negligible. It was found, in practice that
only three iterations were usually need, ed, .

This whole procedure is now repeated for various
values of g'/4ir and ns'. The final choice of values is that
leading to an amplitude h»(s) which most accurately
satisfies the crossing relation for Rehii(s), 1.(s& (1—ti)',
as determined from experiment. In Fig. 7, we show how
accurately this crossing relation is satisfied for various
choices of g'/4ir and m'. A general feature of the results
is that for fixed m', the calculated Rehii(s) tends to
move ~erotically without much change in shape for
changes in g', and for fixed g', the slope of the calculated
Reh»(s) near the left-hand cut threshold is a very
sensitive function of m'. This feature allows one to make
a fairly unique choice for m' and g'/4ir, our final values
being

m'= 1.05,
q'/4ir = 18.6. (3.8)

TAsI,E I. Non-negligible contributions to h» along the nearby
left-hand cut calculated from the crossing relation (3.2) and ex-
perimental data (Ref. 17).

S

0.70
0.62
0.54
0.46

S
0.70
0.62
0.54
0.46

&33
0.12
2.47
9.18
4 99

P33
4.66
8.61
4.35—1.05

Reh&,

S31
—0.02—0.09—0.12—0.12

Imh1g

S31
0.19
0.20
0.1,8
0.12

S11
0.01
0.02
0.03
0.03

S11
—0.05—0.05—0.04—0.03

Total
0.11
2.40
9.09
4.90

Total
4.80
8.76
4 49—0.96

The experimental values are rit'= 1, g'/4ir =15.
It is interesting to compare the present calculation

with that of Narayanaswamy and Pande4 who also
introduced Balazs poles. Instead of determining the pole
residues as done here, they matched the value and
derivative of the 11 amplitude at a point between the
left-hand and crossed-nucleon cuts with that given by
fixed-energy dispersion-relations. The low-energy parts
of the fixed-energy dispersion integrals were approxi-
mated by the Ã* and p contributions while the high-
energy parts were evaluated according to the strip
approximation of Singh and Udgaonkar. 4 It was found
that results were very sensitive to the choice of matching
point. As was mentioned in the Introduction, this
probably indicates an inadequate description of high-
energy effects in the Axed energy dispersion relations.
Such "matching-point" sensitivity of results is absent
in the present calculation since crossing relations are
required to be satisfied over a fimi. te region where we are
fairly certain that all important contributions to the
relations are taken into account,

Although we do not have "matching-point" sensi-
tivity in our calculation, the results are slightly de-
pendent on the choice of Balazs-pole positions. In Fig. 8,

Re hn

I QO — sa =- IOO

-50

0
OA 0.5 0.6

FIG. 8. Reh» on the nearby left-hand cut calculated from the
N/D method for m'=1.05, g'=18 and Balazs pole positions
s1= —50, s2 ———50, —200, —1000. The curve for s2= —50 is in
fairly good agreement with Reh» calculated according to the
crossing relation (3.2) with experimental 33 data (Ref. 17).

we give the real part of h» on the nearby left-hand cut
for Balazs-pole positions s~ ——0 and s~ ———50, —200, and
—1000."The curves are all calculated under the as-
sumption that the nucleon pole is at s=1.05 and the
pion-nucleon coupling is 18. These nucleon parameters
correspond roughly to the best fit to the real part
crossing relations for s~ ——0, s~= —50. We see from the
figure that the nucleon mass determined from our
analysis is essentially independent of the assumed
Balazs-pole position but that the "calculated" pion-
nucleon coupling constant seems to decrease slowly as
the distant Balazs pole moves toward —~. For
s~ ———1000, the coupling constant g'/4ir as determined

by our analysis is about 14 compared to 18.6 for
sg= —50.

In Fig. 9, we give the P~~ phase shift associated with
the parameter choice (3.8). This behavior for 5ii is very
similar to that obtained by Balazs' and Narayanaswamy
and Pande' and is in rather strong disagreement with
the phase shift implied by Roper et al. '~ However, there
is some conQict among several current phase-shift
analyses" and it is consequently dificult to draw any
strong conclusions from the disagreement in phase
shifts.

IV. SUMMARY AND CONCLUSIONS

Reasonable values for the nucleon mass and pion-
nucleon coupling constant have been obtained by using
a variation of the "standard" Balazs technique. 4' A
Balazs parametrization is made for the contribution
from distant left-hand singularities to the p wave
I=J=-', pion-nucleon amplitude. The Balazs-pole resi-
dues are determined not by means of a 6xed-energy
dispersion relation4 ' but by requiring crossing sym-
metry in the form relating a partial-wave amplitude on
the nearby left-hand cut to physical vrlV scattering (as-
sumed to be essentially given by experimental ~X-

'8These choices of pole positions are all compatible with the
accuracy stated in Sec. IIC."See, e.g., R. J.Cence and M. Y. Cha, Bull. Am. Phys. Soc. 10,
528 (1965).
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In conclusion, the results of this paper are consistent
with the picture of the nucleon as a composite particle
state whose approximate mass and coupling with pions
are deducible from standard assumptions concerning
charge independence, crossing symmetry, analyticity,
and unitarity.

ACKNOWI EDGMENTS

FIG. 9. En phase shift predicted by E/D solution with parameter
choice (3.8).

scattering data for the P wave I=I= ss state). By using
crossing relations in this manner, one does not meet
with difhculties such as those associated with unknown
high-energy contributions to the fixed-energy dispersion
rej.ations." The matching-point sensitivity of the
"standard" Balazs calculation is, of course, not present
in our approach although there is a weak dependence of
the calculated coupling constant (but not of the nucleon
mass) on the Bala,zs pole positions.

One of us (T. K.) wishes to thank the members of the
Purdue Physics Department for hospitality during his
stay (September 1963—June 1965). We also would like
to acknowledge the cooperation of the Computer Science
Center at Purdue in carrying out the calculations of this
work.

APPENDIX A: y-MESON CONTRIBUTIONS
TO Ngg AND %33

In the main part of this paper, we have neglected
terms in hi~ and h33 coming from the I=7= 1 pion-pion
(p)-resonance contribution to the SS~ s s amplitude
of the t channel. If the extremely narrow resonance
approximation is made, these terms are" ""

ww(s)- —
2

—3 s ) i(s S

h„-(s) —1 + s—(1—w) ) Ls—(1+&)sj'k —(1—&)sj

o( &+,)
&&L(v's+1)' —~'jzi(s)QiL1+(4/2q')3+(LV'& —lj'—~')Ls(&) (A1)4)

Qs 1+-, I

2q,sl.

The discontinuity across the cut LO&s ((1—p)'j is due
to our choice of kinematic factor in the definition of
h»2J. Note, however, that this discontinuity is only
part of the total discontinuity of h2~2~ given exactly
by (3.2).

Thus, the eRect, on our analysis of the ~-m interaction
in the t channel, is to give an extra term to the Ã
function.

4r, (s) = —c,~. s+—1—y')
2

—(ps+1) (Ct+2Cs)ii', (A3)

4
s, (z) c(~+. =&, ~'

l

——(v ~ &)(ci+&c—)~ (+2)',
2

' ~i(y)
Qi(s) =—

2

[Ci= —4.14, Cs= —1.12, err =30iis.

(A4) AS srsj (s)

p cut

discLDsrs~(s')hsrs~-(s') j(Es', (A5)
s —s

The singularities of hip~(s) and hsp~(s) are indicated
in I ig. 10. It is well known that the discontinuities
across the cut along the real axis (—~ &s (0) and all
but a small segment of the circular cut (labeled p in the
figure) cannot be calculated from (A1). This is due to
the failure of the Legendre expansion of the t-channel
amplitude to converge in the region of the singularities.
These cuts associated with noncalculable discontinuities
are labeled C in the figure and it is assumed that
Balazs-pole terms in (2.18) will account for their effect.

where disc stands for discontinuity. It is easily seen
from (A1) that, for the D functions of this paper,
D~12gII212g satisfies a no-subtraction dispersion rela-

~ W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603, 1609
I,'1960)."The values for C1, and Cg are derived from a 6t to the nucleon
electromagnetic form factors tR. Hofstadter and R. Herman,
Phys. Rev. Letters 6, 298 (1961)j using forms (79) and (80) of
J. Hamilton et al. , Phys. Rev. 12S, j.881 (1962). A full vridth at
half-maximum of II2 MeV vras assumed for the p resonance.
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In Table II, we compare Imh» (s) on the nearby
left-hand cut with Imhtt(s) as given by the crossing
relation (3.2). We see that it is a rather good approxima-
tion to drop the p-meson contribution.

FIG. 10. Singularities of h2gg J(s) due to p-resonance contribution to
the t-channel amplitude.

tion. Thus,

AÃsrsz (s)
1

Dsrsz(s)hsrss (s)

APPENDIX B: BEHAVIOR OF hq~r(s) IN
THE NEIGHBORHOOD OF s=0

s ) '~' s
h~+'(s) =

s—(1—p)') s—(1+p)s 16sr+s

&&((~(s)+1)LA~'(s)+(V's —1)B~+t'(s)]

+(~(s)—1)l —A '(s)

+(V'+1)B."()]), (»)
A r(s,g)

d cos9,Eg(cos8,) . (82)
B'(s,l)

r (s) 11—
B)'(s) 2

The behavior of h~+r(s) in the neighborhood of s=0
may be investigated by means of the defining relations
(2.11), (2.12), and (2.17).

dlscLDsrs j(s')hsrss "(s')]
X ds' (1—p, ')s —s (s+2N —2—2p, ')

L(1—u')'+s(s —2—2~')]
s —s (83)cos8g =

1 &'-"& Dsrss($ ) Imhsrss (s')
we have

0 s —s

If we change the integration variable to N according to

The integral over C in (A6) may, as previously dis-

cussed, be thought of as already contained in the
Balazs pole contribution to E»2J and consequently
dropped.

Tanzz II. Imh»~~(s) and Imh»(s) as given by the crossing relation
(3.2) and experimental data (Ref. 17).

Ar(s) =
(1—~')'+s(s —2—2~')

20+em) —~

dts Eg(cosa, t S,N])Ar(s, ss) (84)
(I-e') '/s

Imhgp~(s) Imh»(s)
and a similar expression for B~(s).

Now if we assume that
0.11
2.40
9.09
4.90

0.70
0.62
0.54
0.46

0.01
0.04
0.07
0.09

iA(s, ss) i-P(s)N

P(0) WO,

and similarly for B&(s), we 6nd

(s), B (s) (1/s)

s —&0,
(86)

h, r(s) . s'
/ s=0 )

(87)&& srsz '($)
Ds jsJ(s') Imhsrs/~~(s')

ds' (A7) so that hyper(s) will not vanish at s=0 provided st) sr, as
stated in Sec. IIB.s —s1

Ke now take, as a measure of the importance of A

AEQ$2 J to our analysis, its value along the cut
$0&s&(1—p)']. In this region, Dsrs/ is real and
Reh2~2J =0. Since AE2q2J must be real here, we have and consequently
the "effective" relation


