PHYSICAL REVIEW

VOLUME 142,

NUMBER 4 FEBRUARY 1966

Conformal Group in Space-Time*

H. A. Kastrupt
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
(Received 4 October 1965)

Representations of the conformal group and their physical interpretations are discussed in order to provide
a basis for interesting applications of this group in particle physics. The conformal group seems to be of
particular interest in connection with the ultraviolet singularities in field theory, for it is associated with
test functions which vanish on the light cone and may therefore provide an appropriate regularization of
Green’s functions in coordinate space. In momentum space this property corresponds to an indefinite metric
in Hilbert space with the transformation by reciprocal radii as the metric operator. Two examples of repre-
sentations are investigated in detail; the first one belongs to the case of spin zero and mass zero, and the
second one describes a system with spin zero but nonvanishing mass. Possible physical applications of these
representations are illustrated by a simple measuring process which determines the value of the electron

mass.

I. INTRODUCTION

N a recent paper! a new quantization procedure for
relativistic field theories at very high energies was
proposed, based on a new type of representation of the
15-parameter conformal group. It is the purpose of this
paper to discuss in more detail some of the underlying
physical and mathematical concepts.

The main idea is that we assume the conformal group
to become physically important at very high energies.
Since this group contains the dilatations, it implies con-
tinuous mass values. Thus it cannot be a good sym-
metry group in the usual sense for particle physics at
low energies, for the atomic mass spectrum is dis-
continuous. But at very high energies, when the rest
masses are negligible, conformal invariance may become
important.

The hypothesis that the 15-parameter conformal
group is the physically interesting generalization of the
Poincaré group at very high energies is to a certain ex-
tent the counterpart to the well-known nonrelativistic
limit of the Poincaré group, where the Lorentz group is
replaced by the Galilei group.? Both limits can be char-
acterized by an approximation of the basic relation?

E*=p*+m?,

between energy E, momentum p, and mass m of a free
particle. In the nonrelativistic limit we have

E=m(1+p2/m?) P=m~+p*/2m,
and in the extreme relativistic limit we get
E=|p|(1+m?*/p?)1*=|p|.

Since m is a constant we have to consider the second
term in the nonrelativistic expansion in order to obtain
a nontrivial function E(p).

* Work supported in part by the U. S. Air Force.

1 On leave of absence from the University of Munich, Munich,
Germany.
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142

The 15-parameter conformal group contains in addi-
tion to the Poincaré group the 1-parameter group of the
dilatations

¥k — x¥ =pxt  p>0, u=0,1,2,3, 1)
and the 4-parameter special conformal group
xF— x#' = RT(c)Rx*= (x*—c*x?)/(1—2c-x+c%x?), (2)

where
and T'(c)x*=xr+cH.

In a previous paper* we discussed as possible conse-
quences of the dilatations the asymptotic behavior of
scattering quantities at very high energies. This ap-
proach is mainly phenomenological, but has nevertheless
interesting experimental implications. We hope to give
a detailed comparison of those consequences with ex-
perimental data in the near future.

Another important question is, how the conformal
group affects the structure of current quantum field
theory, based on the Poincaré group. This question is
rather involved and we are far from having a satis-
factory answer, but we can mention some interesting
features and we shall analyze a few of them in this
paper.

The mathematical structure of current quantum field
theory can be considered determined basically by the
concept of operator-valued distributions combined with
unitary representations of the Poincaré group.5® The
spectral representations involved are usually closely
related to the spectrum of the generators P, of the
translation group. Since these operators are unbounded,
their eigenfunctions generally do not belong to the Hil-
bert space, but one can consider these eigenfunctions
and their derivatives as linear functionals on the space
S of test functions in the theory of distributions.?-8

41H. A. Kastrup, Nucl. Phys. 58, 561 (1964).

5 R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962).

6 A. S. Wightman, in Theoretical Physics (International Atomic

Energy Agency, Vienna, 1963).
7. M. Gelfand and G. E. Shilov, Generalized Functions

(Academic Press Inc., New York, 1964), Vol. I.
8]. M. Gelfand and N. VYa. Vilenkin, Generalized Functions
(Academic Press Inc., New York, 1964), Vol. IV, Chap. I.
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The only known version of this concept of quantum
field theory which leads to numerical results, is the
canonical Lagrange formalism, combined with perturba-
tion theory. But this formalism has the well-known
fundamental ultraviolet divergencies.? These divergen-
cies are immediately connected with the singularities
on the light cone of the propagator Ar of, for instance, a
scalar field with mass m. Near the light cone this propa-
gator has the form?

im? m|x2|M2 m?
—0(x?).
167

1 1
Ap(x)=—16(x%)+ { n
4r O 4n%ia? 8r 2

In order to get finite results in perturbation theory
one has to subtract the leading singularities out, for
example by the method of Pauli and Villars.*

Since the leading singularities of the propagator are
on the light cone and mass independent, they belong to
the realm of our high-energy approximation E= | p|,and
we have therefore the interesting question, in which
way these singularities are affected by the structure of
the conformal group and whether the generalization of
the Poincaré group to the conformal group will even
bring a solution of the ultraviolet difficulties. We shall
not solve the ultraviolet problem in this paper, but we
shall give indications that the structure of the con-
formal group strongly affects the canonical quantiza-
tion of fields, and that this group might be the key to a
solution of those difficulties.

The subgroup (2) of the 15-parameter conformal
group is Abelian and isomorphic to the group of transla-
tions.!! Its eigenfunctions which correspond to the plane
waves, the eigenfunctions of the translations in co-
ordinate space, are the functions

—ih.z)z2
et z/z s

where the four-vectors s= (%o,h) are the eigenvalues of
the generators of the special conformal group (2). The
derivatives of these eigenfunctions with respect to %
have singularities on the light cone which become higher
with every higher order of the derivatives. These func-
tionals are therefore in general not defined on the class
S of test functions. The class.S was introduced? in order
to have a class of test functions, for which all deriva-
tives of the plane waves e??* are defined. The corre-
sponding class Sg of test functions ¥(x) for the func-
tionals e¢~i*2/=* can be obtained by a mapping of the
testfunctions ¢(x) of S. We define the ¢(x)E Sk by

t//(x) = <x2)_4¢(Rx) ’ SN ’ (3)

where R is the transformation by reciprocal radii

9 See, for instance, N. N. Bogoliubov and D. V. Shirkov,
Introduction to the Theory of Quantized Fields (Interscience Pub-
lishers, Inc., New York, 1959).

10 W, Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949); see
also Ref. 9.

1 H. A. Kastrup, Ann. Physik 9, 388 (1962). This paper con-
tains references to earlier work on the conformal group.
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given in Eq. (2). The factor (x2)~*is convenient because
the volume element d is transformed into (x2)~*d%x
under the transformation R.

Since the functions ¢(x) vanish at infinity faster than
any power of 1/x# the testfunctions y(x) vanish faster
than any power of 2 on the light cone. Thus all deriva-
tives of e~i*-=/2* with respect to /% are defined on Sg and
this class of test functions plays the same role for the
functionals ¢~i*-2/=* as the class S for the plane waves.

From this example we see that the conformal group
essentially affects the behavior of field quantities on the
light cone. For instance, a delta function 8(x%) on the
light cone is equivalent to zero with respect to the class
Sz, for the test functions y(x) vanish on its support. We
shall give a detailed discussion of the functions e~/
and their relation to field theory elsewhere and shall
deal in this paper mainly with the structure of repre-
sentations of the conformal group in momentum
space.

Inrenormalization theory the Pauli-Villars regulariza-
tion, for instance, is tantamount to an indefinite metric
in Hilbert space. In the case of the conformal group such
an indefinite metric appears in the following way!:11:

If P, is the usual self-adjoint generator of the transla-
tions in the x! direction and ei*?, p=e the operator
which represents the dilatations (1) in the same linear
space, then we have the commutation relation!!

eiaDPle—iaD= —aPl . (4)

It follows from Eq. (4) that ¢~**? transforms an eigen-
vector |p1) of Py into an eigenvector |e~*p1). This is
the physical meaning of a dilatation. If we start from a
single eigenvalue p; @50 and its eigenvector |p; @),
we can construct the whole set of eigenvectors |p1),
where p; has the same sign as $,‘?, by applying all pos-
sible transformations e~ie? to | p,®).

Since the dilatations form a noncompact group, the
operator D is unbounded, and its eigenfunctions in
general do not belong to the Hilbert space and the spec-
trum is continuous when we are dealing with a unitary
representation of the conformal group. This question is
analyzed in detail in Sec. IV. At first glance the situa-
tion seems to be completely analogous to the case of the
translations, namely, that D has a continuous real
eigenvalue spectrum. But the crucial difference can be
seen from the following: If |s) is an (improper!) eigen-
vector of e*? with the property

eiaDls>=eiaa|S>’ leiaa‘=1,

then it follows from the commutation relation (3) that
eiaDPl l S>= e (ir—l)Pll S> .

This means that P;|s) is also an eigenvector of e?*?, but
the absolute value of the eigenvalue is no longer one.
The conventional framework of unitary representa-
tions obviously does not cope with this new situation,
and it was pointed out in Ref. 1 that this peculiar
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feature can be understood immediately, if we consider
the indefinite metric {¢1 | ¢2) = (¢1,R¢s) instead of (¢1,¢2),
where R is the operator which represents the transfor-
mation by reciprocal radii.

We want to emphasize that we do not maintain that
the unitary representations of the conformal group are
inconsistent, but rather that the properties of the
eigenvalues of D can be better understood within this
new framework, if the corresponding eigenfunctions are
generated by the elements of the Lie algebra itself.

We shall see in Sec. IV that the application of the
operators P, to the improper eigenfunctions |s) leads
to mathematically reasonable results. The point is that
this procedure goes beyond the usual notion of a Hilbert
space.

The appearance of the transformation R as metric
operator in Hilbert space apparently corresponds to the
mapping (3) of the test function class S. We do not
elaborate on the details of this correspondence in this
paper.

Several years ago,'? Heisenberg supposed that some
kind of oscillations of the field operators on the light
cone might lead to a regularizing indefinite metric in
Hilbert space. Now the functions e~#%/#* have such
oscillations on the light cone and it was shown in Ref. 1
how this behavior implies an indefinite metric in Hilbert
space. This result confirms Heisenberg’s conjecture.

In Ref. 1 it was also shown how the metric R can
lead to a less singular quantization, at least in the limit
E=|p|.

The main problem of this new formalism is, of course,
its physical interpretation. One can distinguish two
crucial questions in this context which are closely re-
lated. The first one is the question of how the conformal
group can be of significance in the description of physi-
cal systems and for the structure of their dynamical
laws. This question is tantamount to the problem of de-
termining where continuous eigenvalues of physical
quantities occur, since the dilatations become significant
in the case of such continuous eigenvalues.* We examine
this question in detail in Sec. II, with the measurement
of the electron mass as an example. A careful analysis of
the measuring process seems to be crucial for the physi-
cal interpretation of the conformal group.

The second problem is the probability interpretation
of the indefinite metric and its physically consistent in-
corporation into field theory. We do not deal with this
question here since we think it has to be considered in
the context of a special physical example. In order to
prepare the ground for such an example we investigate
some interesting properties of the conformal group in
Secs. III-V. In Sec. III we consider some general
features of the representations of the conformal group
and their possible physical application, in Sec. IV we in-
vestigate the special example of a system with both mass

12 W. Heisenberg, in Proceedings of the International Conference
on High-Energy Physics (CERN, Geneva, 1958), p. 119.
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and spin equal to zero, and in Sec. V we consider a sys-
tem with spin zero but nonvanishing mass.

II. DILATATION INVARIANCE IN THE CONTEXT
OF AN ACTUAL MEASUREMENT

Several aspects of the physical significance of the
dilatations have been discussed in Refs. 4 and 10,
and independently by Maris in a different context.!?
Numerous divergent remarks on the physical in-
terpretation of the conformal group are contained in
the earlier literature, an extensive list of which is
given in Ref. 11. Instead of invoking or repeating
general arguments let us consider a special example:
What does it mean if we say the electron has a rest
mass of about 9.1X1072 g, or equivalent, a Compton
wavelength of about 2.4X 1071 cm?

First we observe that it is not possible to give
the value of the electron mass without mentioning the
standard unit to which we refer. In the first case the
standard unit was the gram, in the second case, the
centimeter. Both kinds of units are physically equival-
ent since we know by actual measurements how they
are related. If we change the standard unit e by a
numerical factor f, e— ¢’ = fe, for instance, 1 cm — 1m
=100 cm, then the numerical value of the electron mass
with respect to the new unit ¢ is obtained by multi-
plying the old numerical by a factor f”, where # is a real
number called the dimension of the mass with respect
to the considered kind of units.

It is generally assumed that there are no principally
privileged standard units as far as macroscopic objects
are concerned. One can measure in m, cm, in., mile, and
so forth. This means there is a continuous manifold of
physically realizable lengths; in other words, the factor
f can be an arbitrary positive number as far as macro-
scopic physics is concerned.

Mathematically, the set of all multiplications by a
factor fforms a 1-parameter Abelian group, the dilata-
tions. If a certain quantity is multiplied by f» then this
is a representation of the dilatations. The representa-
tion is characterized by the dimension 7.

A further question is whether it is significant which
kind of quantities we use as reference system in order to
express mass values. In other words, can we use g as
well as cm™ or m~1? There is a definite answer to this
question.!* If we identify the generators P, of the
translations with the energy momentum operators of a
physical system, then energy, momentum, and mass
must have the dimension of length »=—1. This fol-
lows from the commutation relations between the
translations and the dilatations, a special example of
which is given in Eq. (4). This is tantamount to using
velocity and action as the two other independent kinds
of units. In order not to complicate our following con-
siderations we chose as their units the velocity of light
and Planck’s constant divided by 2.

13 Th. A. J. Maris, Nuovo Cimento 30, 378 (1963).
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Now let us consider how the value of the electron mass
is determined. Since the measurement of an atomic
quantity always implies some sort of interaction with
other objects and since the electron can interact via
weak, electromagnetic, and gravitational forces, one
has to take all these interactions into account if one
wants to have a complete discussion. Since the weak and
gravitational forces are comparatively small, we con-
fine ourselves to the electromagnetic interactions. Here
we can conceive of two possibilities of measuring the
electron mass.

The first one is the measurement of the electron mass
by means of its interaction with other afomic particles
only. This problem is closely related to the question of
measuring field quantities in the framework of quantum
field theory. In their fundamental papers on this sub-
ject Bohr and Rosenfeld!* concluded that one has to
employ macroscopic test bodies in order to measure
microscopic field quantities. Although their results de-
pend on the canonical field quantization, they seem to
be quite plausible independent of this special formalism,
for in one way or another an atomic particle has to in-
teract with our macroscopic world, in order to make
itself visible. At the moment we do not know to what
extent the answer to this question depends on the use of
a particular quantization procedure.

Finally we arrive at the most common way of meas-
uring the mass of charged atomic particles by their in-
teraction with macroscopic electric and magnetic fields.
In order to analyze such a measuring process for the
electron, we consider a simple apparatus, which demon-
strates the essential features.

An electron beam of constant velocity 8,=/ moves in
the x direction through a condenser of length / (Fig. 1).
In the condenser we have a constant homogeneous field
F in the z direction. The deflection ¢ of the beam at the
right end of the condenser is determined by the Lorentz
force

(d/dt)(mB.)=qF,

where m is the mass of the electron, ¢ is its charge and 8,
is its velocity in the z direction imparted by the elec-
tric field F. Since B.=1g¢, igp=a/l, we get in the non-
relativistic case

m=(ql*F/8*)a™". )

We assume that the charge ¢ was determined inde-
pendently, for instance by Millikan’s experiment (which
is a nice example of measuring atomic quantities by
means of gravitational interactions). The velocity B
can be measured by applying a homogeneous magnetic
field B in the y direction of such a magnitude that the
beam deflection ¢ in the combined electric and magnetic
fields vanishes. The Lorentz force implies that this is
the case if

B=—E.

4 N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 12, No. 8 (1933); Phys. Rev. 78, 794 (1950).
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F16. 1. Measuring of the electron mass by macroscopic
electromagnetic fields.
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So far we have not fixed the units of the electric and
magnetic fields. For this purpose we assume the length /
of the condenser to be our unit of length. To make this
clear we write for all concerned quantities 4

A=N(4)i»,

where » characterizes the dimension of length of the
quantity 4 and N(4) its numerical value expressed in
terms of /. We therefore have

I=1xl, N@)=1,
and because of our system of units
F=N(F)I-2, B=N(B)I:.

We therefore have to calibrate the electric instruments
in units /2 In this system ¢ and 8 are represented by

some numbers
N(g), N @),
so that we finally get the equation
m=N(m)['=[N(q)N(F)/N(B*)IN(a)l-*.

For given N(q), N(8?), and N(F) the numerical value
N(m) of the mass m is given by the numerical value
N(a) of the deflection a.

If we now consider a beam of all possible atomic par-
ticles with charge ¢—not only electrons—which all have
the same velocity but different masses, then we can dis-
tinguish the different masses by their different deflec-
tions NV (a;). What we are particularly interested in here
is the result that the set of all N(a;) is discontinuous.
This is exactly what is meant if one says that the atomic
mass spectrum is discontinuous.

The relation of this situation to the dilatations is the
following: let us replace our measuring device by a
similar one in such a way that the new condenser has
the length

U=pl=N@),

where p is an arbitrary number >0. The other macro-
scopic quantities are changed according to their di-
mension of length:

F'=p~2F=N(F)I-?, B'=p—2B=N(B)l2.

We still keep / as our standard length. The construction
of such a similar apparatus implies that our macro-
scopic world is in principle invariant under dilatations.
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Since the macroscopic bodies consist of atomic particles
with discontinuous masses, this assumption is only
approximately true. But because of the smallness of the
atomic masses in comparison to the macroscopic ones,
this approximation is extremely good.

Although we can construct an apparatus which is
similar to the original one, we do not have an electron
with mass m’, the value N(m’) of which differs from the
original one by the relation

N(m')=p=N(m).

In this sense atomic systems are not invariant under
dilatations. Nevertheless, we can measure the original
electron mass by our new apparatus, now calibrated in
units of /. We then get

m=N"(m)()1=N(m)l.

In this sense the numerical values of the electron mass
can be subject to a scale transformation, but one has to
keep in mind that this is a consequence of the macro-
scopic invariance of the measuring apparatus under
dilatations.

These last considerations show that the numerical
value of the electron mass is completely arbitrary as
long as we have not fixed a system of reference numeri-
cally. This means that in such a situation the elec-
tron has to be described in a dilatation invariant way if
we want to describe it adequately. A description of that
kind has to allow for all possible numerical mass values,
a specific one of which is picked out if we perform a
measurement, which introduces a certain unit of length.
In mathematical terms this dilatational invariant de-
scription means that the linear space of the states which
describe such a system contains states with all positive
mass values. If such a space is associated with unitary
representations of the Poincaré group, then these repre-
sentations are reducible, for the irreducible representa-
tions of this group are characterized by one single
mass value.’® The measuring process reduces this
manifold of representations and picks out one irreducible
representation.

This situation bears some similarity to the reduction
of a wave packet in the interpretation of quantum
mechanics, !¢ for in that case the measuring process also
selects a certain state out of a linear manifold of possible
states. The essential difference is that in the latter case
different states describe different microscopic physical
situations, whereas in our example the scale of the
macroscopic apparatus is the varying quantity. We give
a mathematical example of such a set of representations
in Sec. V.

We have already mentioned in the introduction that
even atomic systems seem to become invariant under

18 E. P. Wigner, Ann. Math. 40, 149 (1939).

18 See, for instance, W. Pauli, in Handbuck der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, Gottingen, Heidelberg, 1958),
Vol. 5/1, p. 69.
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dilatations if we go to extremely high energies,* for the
discontinuous masses are negligible in that case. We
would like to illustrate this a bit more by means of
Eq. (5). In the relativistic case we have to replace it by

pY/E=qFl*a™,
and for £>>m we have
|p|=qFla.

This last equation is quite different from Eq. (5) as
far as the dilatations are concerned; for we can physi-
cally realize, at least in principle, every high momentum
of the electron and the deflections NV (¢) now form a con-
tinuous set. In this approximation not only the macro-
scopic but also the atomic world is dilatation invariant.

III. REPRESENTATIONS OF THE CONFORMAL
GROUP AND THEIR PHYSICAL
APPLICATIONS

The unitary representations of the conformal group
are already described in the literature.!”*? In order to
get more physical insight into their structure we shall
start from the unitary representations of the Poincaré
group. The irreducible unitary representations of this
group are characterized by the values of the spin S and
the squared mass P? of the system considered.!®
Essential for the representations of the conformal group
is the commutation relation of P? with the dilatations:

gtaD P2g—iaD — g—2a P2 (6)

This relation has the following consequences:

If P?=0, then we can extend the irreducible repre-
sentations of the Poincaré group to irreducible represen-
tations of the conformal group.!® This is usually meant
if one says, for instance, that Maxwell’s equations or the
neutrino equations are conformal invariant. We shall
discuss some mathematical details of the example
P2=0, S=0 in the next section, particularly the fea-
tures, which are connected with the indefinite metric
of Ref. 1.

These representations with P?=0 are of physical
interest in several aspects: First, they describe physical
particles with zero rest mass. This has been the main
subject explored in the literature concerning the con-
formal group.

Second, one can consider these representations as
approximate descriptions for systems of particles with
such extremely high energies that their rest masses are
negligible. From this one can derive some new results
from the asymptotic behavior of physical quantities
such as cross sections at very high energies,* and one can
also analyze the consequences for the high-energy be-
havior of the Green’s functions in field theory. In the
case of the dilatations some interesting applications are

Y. Murai, Progr. Theoret. Phys. (Kyoto) 9, 147 (1953).
18 A. Esteve and P. G. Sona, Nuovo Cimento 32, 473 (1964).
B 1. Gross, J. Math. Phys. 5, 687 (1964).
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already discussed in the literature.?*~22 But, as already
pointed out in the Introduction, in field theory the
essential new properties seem to be connected with the
special conformal transformations (2).

Third, if we assume the mass of the atomic particles
to be a consequence of their interactions, described, for
instance, through coupled fields which do not contain a
kinematical mass term, contrary to the conventional
Lagrange formalism, then we can couple fields which
belong to the above massless representations and which
are quantized in the canonical way, etc., or by the
method of Ref. 1. An example is the nonlinear equation

04 (x)+gA3(x)=0.

Without further assumptions the mass spectrum of
such a theory would be continuous since the interaction
term is dilatational invariant, too. One, therefore, has
to introduce some symmetry-breaking mechanism as, for
instance, an unsymmetric ground state, an external
field or some other kind of perturbation. Such field
theoretical models have been discussed by Maris,!®
Maris and Haag,® Johnson et al.,?* and Diirr et al.?
Since the generator of the dilatations is given in spin
space by!! v;, even such dynamical approaches as the
work26 of Nambu and Jona-Lasinio seem to make im-
plicit use of the dilatations.

Conformal symmetry can perhaps provide also a
deeper understanding of those theories, which intro-
duce some features of theories for low-temperature
physics such as superconductivity?® and ferromag-
netism?’ into elementary particle physics. The reason
is that the asymptotic invariance under the conformal
group at very high energies corresponds to the same in-
variance for nonrelativistic energies in the limiting case
of vanishing kinetic energies. Indeed, the equation

Ap(x)+k¢(x)=0

becomes conformal invariant?® for k—0. In a very
rough sense this vanishing energy is tantamount to the
vanishing of the absolute temperature. Since this is
often accompanied by some new phenomena such as
superconductivity, superfluidity, etc., it may be that
the limiting conformal invariance can shed some new
light on these properties.

If P2>0, then Eq. (6) implies that all possible eigen-

®D. Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento
26, 896 (1962).
2 H, Mitter, Nuovo Cimento 32, 1789 (1964).
2 M. K. Banerjee, M. Kugler, C. A. Levinson, and J. E.
Muzinich, Phys. Rev. 137, B1280 (1965).
% R. Haag and Th. A. J. Maris, Phys. Rev. 132, 2325 (1963).
( % K) Johnson, M. Baker, and R. Willey, Phys. Rev. 136, B1111
1964).
2% H, P. Diirr, W. Heisenberg, H. Yamamoto, and K. Yamazaki,
Nuovo Cimento 38, 1220 (1965).
26 Y, Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);
Phys. Rev. 124, 965 (1962).
27 H. P. Diirr and W. Heisenberg, Z. Naturforsch. 16a, 726
(1961).
2 A, Sommerfeld, Partial Differential Equations in Physics
(Academic Press Inc., New York, 1949), p. 140.
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values $>>0 occur in the corresponding irreducible
representation of the conformal group. The Hilbert
space, for instance, of an irreducible representation of
the conformal group for a particle with nonvanishing
mass and spin zero is, therefore, a direct sum of all
irreducible representations of the Poincaré group with
spin zero and m*>0.

Since the generators K, of the special conformal group
are given by!

K,=RP,R,

where R represents the transformation by reciprocal
radii, defined in Eq. (2), the spectrum of these operators
is identical with that of the generators P,; they require
nothing new. The mathematical details of this example
are given in Sec. V.

IV. THE CASE m=0, S=0

This example was already discussed in Ref. 1. We
would like to give some more details here.

We start from the assumption that the representation
of each 1-parameter subgroup of that part of the con-
formal group which is continuously connected with the
unity can be written in the form

iBA
¢4

where (8 is the group parameter. If one considers unitary
representations, then according to Stone’s theorem?
the generators 4 are self-adjoint. If M ,,, P,, K,, and D
are the generators of the orthochronous Lorentz group,
the translations, the special conformal group (2), and
the dilatations (1), respectively, they form the Lie
algebral!

[M,‘)\,M,,y] = ":(gMMW"' gxuMM'l‘ngM)\n—gMMw) , (72)

[PyMw]=i(grPr—gnPu) (7b)
[EM w]=i(gnK—gnKL) (7c)
[K,,P,]=2i(gwD— M), (7d)
[(M,.,,D]=0, (7e)
[D,P,]=iP,, (76)
[D,K,]=—iK,, (7g)
[P,,P,]=0, (7h)
[K,K,]=0. (71)

Under the transformation by reciprocal radii R the
generators are transformed this way?':

RM ,R=M,,, (8a)

RDR=—-D, (8b)
RP,R=K,, (8¢0)
RK,R=P,, (84)

¥ F. Riesz and B. Sz.-Nagy, Vorlesungen iber Funktional-
analysis, (VEB Deutscher Verlag der Wissenschafter, Berlin,
1956), p. 363.
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Because of relations (7d) and (8c) one can generate the
complete Lie algebra, if the operators P, and R are
given.

In the momentum space of the Klein-Gordon equa-
tion without rest mass the above generators have the
form:

Mjk=7:(Pjak_Pkaj)) af=M) j,k=1, 2,31 (93,)
i

M0j=ipoaj, j= 1, 2, 3, (9b)

Pu=pu, po=(")"2, (9¢)

K0=-—p0A, A= ajaj, ](j='—2(9j—‘2pk6kaj—ij,
7=1,2,3, (9d)
D=i(p'a;+1), (%)

In the case of the operators which belong to the
Poincaré group this is well known.? For the rest it can
be seen from the transformation properties of the
solution

d3

f(x)=1/(2m)*2 / f%,)ew, po= (22,

under the generators D and K, in coordinate space,
where they have the form!!

D=(1/i)(a*dy+1), Ky=(1/8)(2x,F 2x,070,—2%0,) .

R is an integral operator in momentum space and in Ref.
1 we obtained as its matrix elements

R(p,h) = (ep,Ren) = (1/2m)Jo[ (2p-1)'1*],

where e, e, are eigenfunctions of the momentum
operators.

From Eq. (8c) it follows that Rey is an eigenfunction
of the operators K, with eigenvalues %, That means
that the quantities R(p,%) are the eigenfunctions of the
operators K, in momentum representation. This can be
verified in our special example by applying the operators
(9d) to the function (10). This general feature provides
an important practical method of determining the
matrix elements of R in any representation of the con-
formal group in momentum space.

The above operators are selfadjoint with respect to
the scalar product

daip
(p1,02) = / —¢1*(p)da(p) .
Zpo

(10)

(11)

Next we want to determine the eigenvalues and
eigenfunctions of the dilatations. For the special con-
formal group we know them already. In order to de-
termine the eigenfunctions of the operator (9¢) we first
assume that we have a unitary representation of the
conformal group with the scalar product (11). Since

3 H. Joos, Fortschr. Physik 10, 65 (1962).
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the dilatations form a noncompact group the operator D
is always an unbounded operator in Hilbert space and
its spectrum is continuous. This means that its eigen-
functions do not belong to the Hilbert space. In this
way the situation is analogous to that of the transla-
tion group.

By introducing spherical coordinates in momentum
space we find as eigenfunctions #(p) of

D=i(p9;41)=1i(po(3/dpo)+1),
with real eigenvalues s, the homogeneous functions
Usim(D)=po~ VY 1m(p/po) .

An expansion

400
f(p)=lZ / ds gin(s) pa= =tV 1,,(p/ po)

(12)

of a function f(p) in terms of these eigenfunctions is
essentially the Mellin transformation.?! With the scalar
product (11) the eigenfunctions #(p) have the improper
norm

(vr,02) = 78(51—52) 811150 m1, s +

In our deliberations above we have assumed that the
eigenvalues of the operator D are real, in analogy to the
situation in the case of translations and according to the
theory of Gel’fand,® which proves such reality properties
even for continuous eigenvalues of self-adjoint operators.

But, as we have already pointed out in the Introduc-
tion, the new problem in this context is given by the
commutation relations (7g) and (7f): If |s) is an eigen-
vector of D with the real eigenvalue s, then it follows
from these relations that

DP,|s)=(s+9)Pu|s), DK,|s)=(s—i)K,|s).

The operators P, and K, therefore generate new eigen-
functions of D, the corresponding eigenvalues of which
are no longer real.

This can be seen explicitly in our example: If we
multiply the eigenfunctions #(p) in Eq. (12) by s,
n=1,2,---, then we get eigenfunctions of D with
eigenvalues s-+in. If we start from s=0, then we have
the new set

Vnin(D)=p0" Y 1n(D/ p0) (13)

of eigenfunctions with pure imaginary and discontinu-
ous eigenvalues. An expansion of a function F(p) in
terms of these eigenfunctions is the usual Taylor series.
The same arguments apply to the relation (7g) with the
only difference being that the operators K, lower the
eigenvalues by 1.

A well-known expansion in terms of the eigenfunc-
tions (13) is that of the plane wave

ePx= IZ QUA1)i(w/2pr) V2T 1y j2(por) Po(cosy),  (14)
—0

31 R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1953), Vol. I, p. 103.
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where the Bessel function Jy1/2 is given by .a power
series in por.

The above considerations indicate a surprising situa-
tion: We have a self-adjoint operator whose commuta-
tion relations with other self-adjoint operators lead to a
pure imaginary point spectrum.

This is not a contradiction. Self-adjointness is usually
defined with respect to a positive definite Hilbert space,
whereas our above mathematical procedure goes be-
yond this framework.

It was pointed out in Ref. 1 that the puzzle can be
solved if one introduces the indefinite metric

(b1,02)= (¢1,R2) , (15)

for the operator D is skew Hermitian with respect to
the scalar product (15) if it is Hermitian with respect to
the scalar product (11). This is a consequence of rela-
tion (8b). Since skew Hermitian operators generally
have imaginary eigenvalues, the above set of imaginary
eigenvalues is no longer paradoxical.

Finally, we wish to discuss explicitly the transforma-
tion properties of the eigenfunctions (13), »=0, *1,
+2,---, under the transformation of reciprocal radii.

In Ref. 1, we obtained for R(p,k) the following ex-
pansion in terms of spherical harmonics

R(p-h)=(1/27)(poho) 112
X i(ﬂ‘f‘ 1)]21+1[2(p0h0)112jpl(z) . (16)

The basic formula for our purpose here is??
I'(+14+3u)
(1)

It holds for — (2/4-1)<Re p<3. But since the gamma
function is a meromorphic function in the whole com-
plex plane with simple poles on the negative real axes,
we can define the left-hand side of Eq. (17) by analytic
continuation of the right-hand side. The right-hand side
is a meromorphic function of u with simple poles at the
points

/ xtJ grp1(xy)do=20y—+1 V)
0

p=—20-+1+%), k=0,1,2,---.
1t follows from Eqgs. (16) and (17) that

d3
1/T(+14») / iR(ﬁ,/Z)Po”“IYzm(D/ o)
0

= l/r(l"‘1—V)h0—v—lylm(h/h0) ’ (18)

where » is a complex number. Equation (18) shows ex-
plicitly how the operator R transforms an eigenfunction
of D with the eigenvalue i» into an eigenfunction with

%2 Higher Transcendental Functions, edited by A. Erdelyi
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2,
p- 49.
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the eigenvalue —4v. Since Eq. (17) is symmetric in », it
is convenient to define the eigenfunctions of D as

Vim(P)=1/T(I+142)p Yim(p/p0) . (19)

This definition comprises the functions (12) as well as
(13). They are given by the special values y=—is and
v=mn, respectively. Because of the poles of the gamma
function the functions (19) are zero if v is a negative
integer < —I/—1.

If we want to avoid these zeros, we can, for instance,
start with the function

v3/2tm=1/T(I+143)p'*Y 1u(p/ po)

and then apply the operators Py, K, to this function in
order to obtain a set of eigenfunctions. Such a set is con-
tained in the above expansion of the plane waves, for
the Bessel function is given by

Traya(x) = (B2 éﬂ(— 1HRIT (3 T (B) .

The scalar product
<1)1 | vg)= (vvllxmnRvmlzmz)

of two eigenfunctions of the form (19) has the value
<7)1 I 1)2> = 511125m1m2

X[T+14v)T(+1— Vg)]_I/ dpopyr L,
0

where the integral diverges. This has to be expected
since the dilatations form a noncompact group. But in
analogy to the eigenfunctions of the translations we can
consider the functions

PO)‘,
as linear functionals on the space S of test functions ¢ in
the theory of distributions. These functionals have been
studied in detail by Gel’fand and Shapiro.?® Their
main result is the following: The functional po*(¢),
¢E&S, is a meromorphic function in the whole X plane
with simple poles at the points A=—Fk, k=1,2,---.
The poles have the residuum

¢*=1(0)/T(k),

where ¢ *1(0) is the (A—1)th derivative of the test-
function ¢(p,) at the point po=_0. We, therefore have the
following properties of the functional

(D4 14v) T+ 1—vs) T lper2 (),

if »; and v, are real integers: It has simple poles for
n—ve=—k, k=0,1,2,--- if I4-14», and I4+1—yp, are
not equal to 0, —1, —2,---. If the last is the case for

X=V1—V2—1 y

# 1. M. Gel’fand and Z. Ya. Shapiro, Uspekhi Mat. Nauk 10,
3 (1955); 7Am. Math. Soc. Translations, Ser. 2, 8, 21 (1958); see
also Ref. 7.
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of the functional
[T @+14v)]

X[/T@+1—v:)]

Xporrrz1(g)
’ for integer »; and »..

FINITE

I+1+4»; or I4+1—p,, then the functional is finite since
the simple pole of the corresponding gamma function
in the denominator cancels the pole in the numerator.
If both gamma functions in the denominator have poles
for certain integers »; and »,, then the value of the
functional is zero. Figure 2 shows the different areas of
poles, zero, etc., in the (v1,v2) plane, where the pairs of
integer »; and », form a lattice.

The above results provide also an inversion of the
Taylor series in the following sense: In a Hilbert space
with a positive definite metric (¢1,¢2) the coefficients ¢,
of the expansion

¢=Zn Cnn

are given by (¢.,0) if the ¢, form an orthogonal nor-
malized set.
If ¢(po) is a test function with the expansion

¢(?0)= Z CnPO"y

n==0

then, according to the already quoted results of Gel’fand
and Shapiro, ¢, is given by

o=, Res  pX(#)=0)/T(n+1).

Since quantities like po” etc. occur in physics far more
frequently for real » than for imaginary ones, the above
results indicate the possible importance of indefinite
metrics in infinite dimensional linear spaces for physica
theories.

V. AN EXAMPLE FOR m>0, S=0

We have already mentioned in Sec. III that for m*>0
all values m2>0 occur in an irreducible representation
of the conformal group and that such a representation is,
therefore, a superposition of irreducible representations
of the Poincaré group. In the case of spin zero we get the
scalar product of the corresponding Hilbert space by
taking the direct integral of all scalar products:

&
(br,p2; m?) = / g“ﬁx*(l’)(ﬁz(l’), po=(p*+m?)1/%.
0
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Thus we have
(busbe)= / dmo(m®) (ugds; m)
0

where p(m?) is an appropriate weight function.
As a special example we chose the 4-dimensional

generalizations of the operators (9a)-(9):
Puy=pu, #=0,1,2,3; M,.,,=i(?,,3y—-pya“);
Ku=—28,—2¢8,0s+p,0; D=i(p*dut1).

These operators are Hermitian with respect to the scalar
product

d'p
/ —d1*(p)e2(p) ,
p250,m0>0 D7

where we have replaced the variable » by the varia-

ble po.
We shall first consider the operators K,. Since they
commute with each other, they have a common set of

eigenfunctions R(p,k4) with eigenvalues 7,:
KuR(p,h)=huR(p,h).
The ansatz R(p,h)=R(p- k) leads to the equation
(puh*—2hup-B)R"—2h,R'=h,R,
where
R'=dR(y)/dy, y=p-h.
Multiplying both sides by 4* and summing over u yields
yR"+2R'+R=0.
The solution of this equation which is regular for y=01is,
except for a constant factor,
R(pp)=1/m(p- k)~ 21[2(p-B)"*],

where J; is the Bessel function of order one. The quan-
tity R(p,k) therefore has a similar structure here to
that in the case m=0 of Sec. IV.

Since R(p,%) is the momentum representation of the
transformation by reciprocal radii, it is interesting to
determine its eigenfunctions e(p). In Ref. 1 it was
convenient to do this in the case of mass zero by ex-
panding R(p,k) in terms of spherical harmonics. In our
4-dimensional case we have to expand in terms of the
corresponding functions of the homogeneous Lorentz
group.3 We show in the Appendix that the following
relation holds:

R( p,h) = (1/47%)(u)\)~1/2(sinha sinhb)~1/2
XE @) / dg| T(iq-+14+1)|2| T(ig/2) |
0

X | T(ig) |~ 1) [2(uN) 2P ig—1/5~+*/*(cosha)
X Pig-1/27"1/2(coshd) Pi(3)

#YV. Bargmann, Ann. Math. 48, 568 (1947); see also Ref. 30.
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where P,#(x) means a Legendre function, J,(x) a Bessel
function, and where

»(q)=(3—4¢)"*;  z=cos(p,h);
po=p cosha, ho=MX coshd,
p1=p sinhe, =,

pa=u sinha sind cose;,
p3=u sinhe sind, sing;;

Because of the relation3?

/ da sinha P, 1/512(cosha) Pig—y/5~1/2(coshd)
0

= |I'(ig) |*| T(ig+1+1) |26(g—4"), (20)

and the addition theorem for the spherical harmonics,
the ansatz

e(p)= flu; v(1))Pip1 /574" 1*(cosha) Y im(p/ | p|)

leads to the integral equation

1
SCu; v(r))=——|Tir[?
PEmL

Xe / N,y (221G (), (21)

where e is the eigenvalue 1. This integral equation is
the same as in Ref. 1 if

|T)ir|2==>
Because of?®"
| T4ir|2=2x/r sinh(3nr)
this means that  has to be a solution of the equation
Lar sinh(Grr)=1. (22)

It is easy to see®® that there is only one real solution
70>0. It lies between 0 and 1. This feature, that there
is only one isolated value 7=r,, for which the function

Pir 157 Y2(cosha)

is a part of the eigenfunctions e(p), is essential, for it
means that e(p) is normalizable with a finite norm. This
would not be the case for a continuous set [see Eq.
(20)]. The eigenfunctions of Eq. (21) are given in Ref. 1.
They are

JGus W)= L )2y 01,

where the L, are Laguerre’s polynominals.

€= (— 1)n’

3 See Ref. 32, Vol. 1, p. 3. }
36 Hyperbolic Functions, Smithsonian Mathematical Tables
(Smithsonian Institution, Washington, D. C., 1909).

CONFORMAL GROUP IN SPACE-TIME

1069

The above considerations have the following inter-
esting application: The function

Fx)=1/%* f A ¢(h)e—ih-=1=* |
Vi

where V., means the cone $2>0, po>0, is a solution of
the Klein-Gordon equation

(Oztm?)F(x)=0,
if ¢(h) is a solution of

POwp(h)=m¢(h) .
This follows from

O z(l/x2e—ih-x/zﬁ)= —h2/(x2)3e"ih-x/x2
= —hZth(l/x%—ih-xlzz)

and a partial integration. Because of K?= — p2[1],? this
means that the operator P? has the same form in / space
as the operator K2 in p space. This has to be the case
since the two spaces and their operators are connected
by the unitary transformation R(p,k).

This simple example shows how one can utilize the
representations of the conformal group in the case of
nonvanishing rest masses.

An analysis of the operator D=i(p*d,+1) brings
nothing essentially new in comparison to the corre-
sponding one in Sec. IV. We merely have to replace
Ylm, by

P /2—1—” 2(cosha) YVim

and po by p.
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APPENDIX: THE EXPANSION OF R(p,h) IN
TERMS OF SPHERICAL HARMONICS

The following procedure is analogous to the expansion
(14) of the 3-dimensional plane waves in terms of
spherical harmonics and the result is similar to that
given by Joos for the 4-dimensional plane waves.?® We
recall that the Bessel functions J;41/2 in the expansion
(14) result from a separation of the spherical variables
in the equation

Ap(x)+k%¢(x)=0.
The corresponding operator in our case is

K2=P2D2-
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With the “spherical” coordinates of the Minkowsky has the solutions?®
space, . ‘
po=m cosha, py=m sinha sind cos¢, w,= (sinha)™!/2Piq1/57+""1*(cosha) V1u(9,9)
pr=msinhe, p;=m sinha sind sing, where ¢ is real and positive in our case.?

. The eigenvalue equation
we get for the Klein-Gordon operators? & 4

K2 f=p*00*f(p)=1*f(p)

a 5}
O =m_36_msa—_ m*Ar, has on the one hand the particular solution R(p- %) and
m.om yields, on the other hand, the differential equation
A= (sinha)~?*— sinh2e— mg® (m)+6m3g® (m)+ (2¢°+5)m?" (m)
oa o +(2g— Dymg(m)+ [(g =+ = mlTglm) =0,
9 d 9? :
+ (sinha)—‘"(l /sind— sind—-+-1/ sin2z?~—2) . if we make the ansatz
oo 00 % F(p)=g(m)wq(a,d,9).
The eigenvalue equation Four independent solutions of this equation are®® the
Arw,=—(g?+1)w, cylinder functions

mULL2mNE], e L2, w2,
m 2K, [2(mA)VY], where »=(3—4¢)'2, \=(h?)'>.
In analogy to the results of Ref. 1 we expand R(p,k) in terms of the first one of these four functions:

©

(p- ) 2T1[2(p- h)"*]= (uh)~'/*(sinha sinhd)~"/ 2g(ZlJr D[ dg 4dg)Ts[2(uN)!?]

0
X Pig1/57 " 2(cosha) Pyg_1/27 " %(coshd) Pi(z)

where
p+h=u\(cosha coshb—sinha sinhb z), z=-cos(p,h).

The quantity 4;(g) has to be determined. The following way of doing this is a special case of a general method

given by Vilenkin and Smorodinsky.38
First we integrate both sides of Eq. (A1) over A, and because of the relation?

/ dx ],.(xy) =y,
0

we get

0

(cosha coshb—sinha sinhd 2)~'=>_(2I41) | dq A:(q)(sinha sinhp)~1/2
1=0
’ X Pig_1512(cosha) Pyy1/o7 1% (coshd) Py(z) .
The orthogonality of the Legendre polynominals leads to

cosha coshbd °
1< )z (sinha sinhb)”"’/ dq A l(q)Piq_.l/g_l—l/Z(COSha)Piq_l/z_—l‘ll‘q(COShb) ,
0

1 1 Put)
Qz(y)=§/_1 dl:;

sinha sinhd

where

is the Legendre function of the second kind.

37 P, M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1,
p- 113.
193511;T(.)9Y(a. Vilsnkin and Ya. A. Smorodinsky, Zh. Eksperim. i Teor. Fiz. 46, 1793 (1964) [English transl.: Soviet Phys.—JETP
\ 1964)]. ’
¥ E. Kamke, Differentialgleichungen (Akademische Verlagsgesellschaft, Leipzig, 1953), 2nd ed., Vol. I, p. 534.
© Tables of Integral Transforms, edited by A. Erdelyi (McGraw-Hill Book Company, Inc., New York, 1954), Vol. II, p. 22.
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Applying the relation (20) yields
Ai(q) | T'(i9) | 2| T(ig+1+1) | ~2(sinha)/2P;4q/51/%(cosha)
© cosha coshd
= / d coshd Q(———————)P;q_l,g"‘l”(coshb)(sinhb)‘” 2,
1 sinha sinhd

In order to determine 4,;(g) from this equation it is convenient to consider small a. For in that case we can replace
Q:(y) under the integral by its asymptotic expansion for large

cosha coshd
Y=
sinhg sinhd
and compare the coefficients of the first terms in the power series of cosha/sinha on both sides of Eq. (A1). Since*!

Qu(y)=m'1227 ()T "y [1+0() ]

for y>>1 and because of the relation??

cosha
Piy152(cosha) =e9(2/w) 2T (ig+141)"(sinha)~V/ 2in‘1< )

sinha

cosha\ ~! cosha)~
=V2 2“’—1(sinha)‘”2I‘(l+%)< ) [1+O<{ } ] for cosh a>>sinh a,

sinha, sinha

we get
Ax(g)=@m)| T(ig+1+1) 2| D(ig) | T (+1) / w1 M Py 2 ()
1

The value of the integral is%
/ (w2 —1)FD Py 52 (x)dw= 271 (2r) 12T (14-1) 7 T (34g) | 2,
1

so that we finally have
Ax(q)=%|T(ig++1)[*| T (ig) |*| T (ig) | ~*.

It should be noted that our parameters in the above integral do not fulfill the conditions given in Ref. 43. But we
can define the left-hand side by a unique analytic continuation of the gamma functions on the right-hand side if
we avoid the poles of those functions on the negative real axis.

4 See Ref. 32, Vol. 1, p. 122.
4 See Ref. 32, Vol. 1, p. 141,
4 See Ref. 40, Vol. 2, p. 320.



