
VERTEX POLES AN D BOUN D STATES IN LEE MODEL

Zp/Zrj ——0.lim
Z1 -+ O' Z~ ~ 0

This condition has a natural interpretation in terms of
the unrenormalized UUO coupling constant which is
given by'

Here we see that this assumption might be suspicious.
The VO bound-state pole at co~ has residue proportional
to ZP/ZU in the limit of Eq. (36), so we add the
requirement

(36c)

and Zachariasen' and they arrived at Eq. (39). Of
course Eq. (36c) is satisfied a fortiori so our entire
discussion still holds. The point here is that it does not
seem to be necessary to require the U8 bound state to
move down to the U-particle mass, the bootstrap really
depends on the point ~0 doing this. Since ~0 always lies
between ~U and co~ we can force

(41)

Since we have assumed" Zy&0 and& from Eq.
have finite X', Eq. (37) yields

Xo'=0.

We expect something like Eq. (38) to hold when we
discuss bootstraps and bound states, and here we see
explicitly how it arises and what it means.

Finally, from Eqs. (32) and (24) we see that if the
strong condition

ZU ——0, bmU finite

for the theory of Ref. 1 while

Zp ——0, bmU ——0

(39) for the theory of Ref. 8.lim Zi/Zp ——0
Zg ~0; Zp ~0

by requiring (40) to hold, but in fact we can also obtain
Eq. (41) with less stringent requirements.

It is interesting that if Eq. (39) holds then we have
vanishing self-mass in the limit, while finite self-mass

(38) implies Eq. (36c). Therefore we can phrase the boot-
strap conditions in the simple form,

is satisfied then we have, in this limit
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A set of three-dimensional coupled linear integral equations is presented for relativistic scattering and
production processes. The new equations seem more amenable to numerical analysis than the standard
Bethe-Salpeter equations. In addition one may discuss multiparticle scattering and hence inelastic processes.
As a numerical example we discuss low-energy pion-pion scattering in the simplest approximation. We fInd
that there are no self-consistent values for the mass and width of the p meson if one takes into account on]y
the elastic and 7r-cv channels.

I. INTRODUCTION

'OST of the difFiculties in performing dynamical
& ~ calculations with on-the-mass-shell amplitudes

using the Mandelstam representation are now evident.
The nonlinearity of the equations makes it very
dificult to make rigorous statements about the solu-

tions. One particularly important unanswered question
concerns the stability of the solution as higher mass

*Work supported in part by the Air Force 0%ce of Research,
Air Research and Development Command and by the U. S.
Atomic Energy Commission.

states are added. It is dificult in any case to include
inelastic states correctly because of their extremely
complicated analytic structure.

We will explore in this paper a set of linear, off-the-
energy-shell equations. ' ' The most popular linear

' A. A. Langunov and A. N. Tavkhelidze, Nuovo Cimento 29,
380 (1963);G. Tiktopoulos (unpublished); B.Lee and R. Sawyer
(unpublished). We wish to thank Professor Sawyer for conver-
sations on the subject of this paper and for pointing out an im-
portant error in an early version of this work.

'R. Blankenbecler and R. Sugar, in Proceedings of the 1Zth
Annual International Conference on High-Energy Physics at
Dubna, 1964 (Atomizdat, Moscow, 1965).



1052 R. BLAN KEN BECLER AN D R. SUGAR

equation is the classic Bethe-Salpeter approach. How-
ever, this is a very complicated equation to solve
because of its four-dimensional character and the
Lorentz metric. (See, however, the most recent work of
Zemach and Schwartz. ') Furthermore, the Bethe-
Salpteter equation is not an expansion in the number of
particles in intermediate states since even in the ladder
approximation inelastic states which contain an
arbitrary number of "exchange" particles are present.
The purely technical problems associated with solving
the Bethe-Salpeter equation in physically interesting
cases makes it quite dificult to apply in strong-interac-
tion problems.

One would like to be able to treat models of strong
interactions which go beyond the usual restriction to
two-particle intermediate states. Therefore, one wouM
like to have equations that look like potential scattering
since there are convenient mathematical tools for
discussing multiparticle potential scattering. However,
how does one then handle particle production? It does
not seem possible or convenient to generally assume
that this situation can be treated in analogy with
potential scattering; that is, to consider a multiparticle
scattering situation and then force the bound states
among these particles to be the lower particle channels.
The gymnastics required to apply this method to the
treatment of the coupled x—m and X—E systems are
obvious.

We will present an approach to this problem which
contains certain "good" features of potential scattering;
among these are the three-dimensional nature of the
equations and the separation into channels. This
approach will suer from many of the same faults which

plague all other strong-interaction schemes; crossing
symmetry is particularly badly handled.

For the two-particle sector the method will be
motivated by discussing the Bethe-Salpeter equation
and reducing it to a three-dimensional equation. The
techniques developed for two-particle channels can be
extended to multiparticle channels. The procedure is
illustrated by considering a concrete model which has
both a two- and a three-particle channel. Some general
properties of the simplest approximation to these
equations have already been presented at the Dubna
Conference. ' However, since the proceedings of this
conference are still on the unphysical sheet, we will

repeat some of our results here. We will also present
some numerical work on the physically interesting case
of pion-pion scattering.

We have recently received a report by Alessandrini
and Omnes in which our method for constructing
elastic Green s functions is applied to the three-particle
Faddeev equations. ' We will also present relativistic
three-body equations but in a form which we feel has

' Bull. Am. Phys. Soc. 10, 464 {1965),Paper DC1.
4 R. Su'gar and R. Blankenbecler, Phys. Rev. U6, B472 (1964).' V. A. Alessandrini and R. L. Omnes, Phys. Rev. 139, 8288

(&96Sj.
'

some advantages in cases which involve the coupling
between the two- and three-particle channels and which
involve a direct three-body force.

II. DYNAMICAL EQUATIONS

A. Two-Particle Channels

We will motivate our equations in the two-particle
sector by considering the Bethe-Salpeter (B-S) equation
in the ladder approximation and rewriting it to bring
out certain analytic properties. However, once the
equations are written down, we will give arguments that
their form is valid quite generally. We will write the
B-S equation for the scattering of particles a and b
each with mass 1 by exchange of particle c with mass
m in the form

hp(k) = 2s ds'(s' —s) 'bL1+(-', P'+k)'$

XL1+(-'P—k)'j (2)

where I'"=—s' and I" has only a fourth component.
The fact that E2 has the proper imaginary part for a
two-particle discontinuity can easily be checked. The
integration can be carried out in the center-of-mass
frame and the result is

h2(k) =k~&(ko)L(k'+1)'"(k' —q')j '

We now write
—zG Gb h2+R2

(3)

and note that E2 cannot produce two-particle singular-
ities. It should be noted that E~ cannot be unique since
one may add any function which is not singular along
the positive cut of s. However, the choice (2) seems to
be simplest and leads to a potential with simple analytic
properties.

The B-S equation can now be written as

where
lV= VL1—E2V) '.

This integral equation for 3f (p,q) only requires knowl-

3I(p,q) = V(p, q)
—i(2m. ) ' d'k V(p, k)

XG.(-', P+k)Gb(-', P—k)M(k, q), (1)
where

V(p, q) =g'l ~'+(p —q)'j '

G, , b(k) =L1+k'j '.
The center-of-mass momentum has been denoted by
P and we define s= P'. In Eq—. (1) we may put q on
the energy shell, that is qb

——0, q'=s/4 —1.
I et us now introduce a two-particle Green's function

E2 which can only produce two-particle cuts in the
physical region. This will be accomplished by writing
a function which is singular only when both legs of the
ladder are on the mass shell.
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edge of M for ps=qs ——0, because of the delta function
present in E2. Therefore, we only need the eBective
potential W(p, q) for ps= qs=0. This fact eliminates the
necessity of performing a Wick rotation.

The simplest approximation is to neglect all higher
corrections and set 2~=0. We then have

lV(p, q) =V(P,q)=g'I (P q)'—+m') ' (6)

In other words, 8' is exactly the Vukawa potential.
Equation (5) then becomes, '

V(p, k)M(k, q)
(7

(2 )' [k'+1]"'Lk'—']
The only difference between Eq. (7) and the usual
I ippmann-Schwinger equation in potential scattering
is the factor of (k'+1) t~s in the Green's function.
Equation (7) is, therefore, slightly more convergent
than the standard potential scattering equation, and it
satisfies a relativistic (elastic) unitarity condition.
However, the presence of this square-root factor severely
complicates the analytic structure and this amplitude
does not satisfy the Mandelstam representation. '

In fact, it is easy to see that the second Born approx-
imation is given incorrectly by Eq. (7). In order to
estimate the error introduced by this approximation
for 8', we have evaluated explicitly the second iteration
of (7) and the correct fourth-order graph in the forward
direction. The interation of (7) contains a left-hand cut
starting at s=4—4(1+m)' which is Not present in the
correct second Born term. However, the diGerence
between them is just the second-order term in R2,
which is less than 10% of the correct second-order
term at threshold (s=4) and goes to zero as s increases.

Therefore, one is led to expect that the partial-wave
amplitudes coming from such an equation will have
left-hand cuts representing multiparticle exchange
which are given accurately for s&4—4(1+m)' by the
approximation lV= V.

Of course, by adding the appropriate correction
terms to 8', one can get an exact left-hand cut for any
Gnite number of exchanged particles. We expect this
approach to be most useful in including multiparticle
states into dynamical calculations and, therefore,
consider this accuracy on the left as a bonus.

The left-hand cut due to the exchange of E particles
of mass ns extends up to s=4—E'm'. Thus, we see that
the approximation 5'=V should give a reasonable
approximation to the left-hand cut out to E'=4 for
m))1 and ¹=4/m' for m&(1.

6 M. K. Polivanor and S. S. Khoruzhi, Zh. Eksperim. i Teor.
Fiz. 46, 339 (1963) )English transl. : Soviet Phys. —JETP 19, 232
(1964)j.The effective potentials considered in this work have only
right-hand cuts. Qf course, the exact 5"for the ladder graphs also
has a left-hand cut and the ladder graphs do satisfy the Mandel-
stam representation. It is erroneously stated in this reference that
the factor of (k~+1)& in Eg gives rise to a square-root branch in 3f
at s=0. The difBculty is that the', bound on E2 used in this work
blows up at s=0 whereas E& is actually Gnite at this point.

The eGective potential 8" has no two-particle
singularities but it can have poles corresponding to
bound states. This is certainly the case in pi-nucleon
scattering, and it may be worthwhile to consider such a
situation in some detail. We take the two-body potential
[see Fig. 1(d)] in our equal-mass model to be

Vss= g's[(Pt+Ps)'+Ms'] '.
If V» is the only contribution to the potential, then we
are merely summing bubble diagrams, and it is clear
that it will be necessary to renormalize the mass and
coupling constant. In this case, the scattering amplitude
is given formally by

M»(P q) =go'(Mo' —~) '+go'(Mo' —r)-'

where

d'k Mrs(k, q)
X

(2rr)' (k'+1)t's[4(qs+1) —s]
=go'[Mo' —s—go'I(s)] '

d'k
( (ks+1)1/2[4(ks+. 1) s]}—1

(2z)s

=I(M') + (s M') 7(M—')+ (s M') 'I rr (s)—,

d'k

I(s)=

In(s) = ( (k'+1)"'[4(k'+ 1)—M']'
(2rr)'

&& [4(k'+1)—s])-'.

B. Three-Particle Channels

Now that we have extracted the two-particle states
by introducing the propagator E2, we can proceed in
the same fashion on the three-particle singularities.
In order to ensure that the scattering amplitude
satis6es unitarity in the three-particle sector, the three-
particle propagator must have a cut starting at the
three-particle threshold, and the discontinuity across
this cut must be given by

&a= (2z)ss g 8(q'+m, z),

where

P;q =I'.

In order that the scattering amplitude have a pole at
the physical mass 3f and that the residue be the square
of the physical coupling constant g we must have

gs'I(M') =Me' —M' g'= gs'[1+go'I'(M')] '.
Then,

Mrs= gs( (Ms —g) [1—(M g)g Irr (r)])—
If one now takes other forces into account, the position
and residue of the pole will be shifted by a finite amount,
and it will be necessary to perform a second, finite,
renormalization.
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a) Vzz
P2

I

d) V&&

Pp

c) Vz&
= qk

d) V~~
=

P(

Pp

P2'

I'IG. 1. Potential
graphs.

One can introduce propagators for more than three

particles in precisely the same manner. We note that the
X-particle Green's function is to be integrated over
X—1 four-dimensional coordinates, and there are

just enough delta functions to reduce these to E—1
three-dimensional coordinates. As a result, the equa-
tions will look like potential scattering except that the
Green's functions will be integrated over a relativistic
phase space.

In order to obtain "potentials" for the three-body
channel, one must go beyond the ladder approximation
to the 8-S equation which is inconsistent in the multi-

particle sector. We will illustrate our approach by
considering a simple model with coupled two- and
three-particle channels. The "potentials" are given by
the diagrams shown in Fig. 1. We have

The two-particle propagator was written as a dispersion

integral in the energy variable s= —I". The three-

particle propagator can be written in the same form;
however, one can also disperse in the energy of any
pair of particles or even in the mass of a single particle.
We will only consider the first two possibilities. To be
specific we introduce the Green's functions

I' =g'Dp p')'+~—'] '(2 )'~'(p +p p' p—'), —

V22' gG[(p——l q;)'+3—P] '( 22)'8'( pl+p2 ql q2
—q2—) )—

~ '=g'[(q' —
q ')'+~']-'(2 )'

+~ (ql+q2+qs ql q2
—

qa )— —
&&2 '(2-)'~'(a. -~.'), 0o)

where
E2'= (2~)2—

(my+ m2+ m3)

ds'(s' —s) '8(q;2+2lz')
~*= (q'+~*')'", ~»=Z &22', &22=+ I'22'.

where

X&[(-',(P' —q,)+q,2)'+2l2, ']
X&[(-;(P'—q,)—q,')'+~"], (~)

F'= (22l)'—
where

do. (o,' —o,) '5(q,2+222,2)

(m&+my) 2

X~[(2P»'+q, )2+llls2]8[(-', P,,' —q,„)2+222„2],

o'= (P q)'= P—22') —P,2'= (o—,' jo;)"2P 2

P'= (s'/s)"2P and q;&= ', (q; g2), iP-j Z—k

We also introduce

It is convenient in the three-particle case to keep the
over-all momentum-conservation delta function.

One-particle exchange forces have been used for
definiteness only. The equations that we shall obtain
are independent of the functional form of the potentials.
The only real requirement on them is that they do not
contain any two- or three-particle singularities. Direct
three-body forces have been omitted, but their inclusion
would not cause any additional difhculty.

In order to clarify the meaning of the potentials and
Green's functions, let us write down a few examples
from second-order perturbation theory. The diagrams
that we will consider are shown in Fig. 2.

(@) +22~ 2V22 ql)'+~'] '(2~)'~'(P —Q) g'L(pl' —ql)2+~2]-'(2~) 4&4(P' —Q)
(22.)'

where

X22l ds'(s' —s) '8[(2P'+q)2+2lll2]g[(lP&

pl+p2 &
P pl +p2 ) Q=-ql+q2 ) q= 2 (ql —q2) .

Performing the integration over the delta function in the center-of-mass system, we find'

2 (~2+~2)
V22E2V22= (22l)'ll'(P —P') g'[(p —

q) +ll22]—l g2[(pj q)2+~2]
(22l)' 24ol24o2[(lol+co2)' —s]

It should be noted that in the unequal-mass case the potential depends on the fourth component of the relative mom t hi h,
»~eve determined by its spati» components. »e can always choose the variable so that the relatjve momentum }as a,e
component PR, Stora (private communication) $.
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where

(b) Vss'F'Vss'=

~'=(v'+m")"', P=l(PI-P2), P'=l(P ' P-2')

d gyd g2d ga
g'[(ps —qs) sums] —lgs[(ps' —

qs) 2+ms]—1(2')32 (pls+mls) I/24I8(p —
It )

(22r) 12

X (22r) 454(P —Q) (2m') 32(pl'+mls) 1~283(pl' —ql) (22r) 4&4(E' —Q)

)& (22r)'b(ql'+ml') do'[o. '—o] 'tI[('2P28'+ass)'+ms']8[('2823' —ass)'+ms'],

pl+p2+p3 y
o 2 28 ) Q 1tl+1ts+$8 ) 2 28 (o /o) +23 &1 2 pl +p2 +ps )1 f28 2 (gs gs) p

2 28 2 pl ~

Going to the center of mass of the 2—3 system we have

Vss'F' Vss' ——
24o I (22r) '8'(p, —p, ') (2x) '8'(P —P)

dsqss 2(4os+Io3)
x g'[(&28—ass)'+m'] ' g'[(2'»' —ass)'+m'1 '

(21r)' 24o224os[(4o2+Ios)' —o]
Io2 928 +m2 ] ) ~8 223 +m3 ]

(c) U23'Es' V„'=
d4qgd4q2d4q3

g262[(p ~ )2+~2]—1[(P I
q )2+~2]—1(2~)4)4(P Q) (2 )4)(PI Q)

(22r)"

X (27I') 5(gl +1M I ) dS (S S) 5((~ (P gl)+$28) +1M 2 }~((2P gl) Itss) +Ms }~

p =pl+ps, & =pl +p2 Q+Itl+02+Its It28=2(A 93) .

In the center-of-mass system of the three particles, we have

Vss'Es' V32' ——(2II.)484 (P—P')

d I4IIdgss, 2 (lol+4o2+Io3)
g'G'L(p c)'+~'] '—L(c p')'+~'] —'

L( + + )'—]-'.
(22r)' 2M y2c022co 3

choice of Green's functions. In analogy with the two
body case one might write

We now return to the problem of formulating integral
equations whose structure will guarantee that the
scattering amplitude obeys unitarity in the two- and
three-particle sectors. I.et us start by neglecting the
coupling between the channels and considering the
pure three-body amplitude. The only diKculty is the

3

~83= Vss+Z Vss'Es'~ss

q
I
I

qp

P(
I
I

Pp
0) 3

&88=+ Mss',Pp
(12)

Equation (11) can be brought to Faddeev form by
P,

' writing

FIG. 2. Typical second-
order graphs. Pp.

q
I

qp

q)

Pp

P)

where 3f33' is that part of %33 in which the ith potential
has interacted last. We then have'

~38'= Vss'+ Vss'Es*~ss= 2"'+ T'Es'(~ss'+ ~88'),
j, k&i (13a)

where

T;=[1—Vss'Es']-' V„'= t'24o, 8'(q —q ') .

c)
Pp

i~ es ~',
q&

I
8 Equation (13) is essentially the same as Eq. (11.1) of Ref. 5.

These authors are also aware of the difhculties with Eq. (13);
V. Alessandrini (private communication).
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The difficulty with Eq. (13a) is that because of the
form of E~' the two-particle amplitude t' is a function
of the total energy of the three particles instead of the
energy of the jk pair. Although t' does satisfy the two-
particle unitarity condition, it is clearly not the ampli-
tude one would obtain using E2's and the cluster
property. As can be seen from example (c), these
difhculties can be overcome by replacing (13a) by

3fss'= Vss'+ Vss'P'3fss'+ Vss'&8'(3fss'+3f 88')
= T4+ 2'4+$4(3f334+~$33), (13b)

where T; is now given by

2"=P1—V331F4] 'V 3'= t424o;bs(q,—q,) .

two-body channel is given by

IV$$'= Vss+V$3F'L1 —Vss'P'] 'Vss= Vss+V83IV$$

Taking the discontinuity of I across the three-particle
cut gives

Pls V 1]—lgplL1 V lpl] —I

where

DP1= (24r)$Q(qls+m $)h(q 2+m2$)ll(qss+mss)

If there is a sharp resonance in the 2-3 system then

I 1—p» Vsss]—'~ (24r) 4y (p—p') (2$r) 32»y (p,—p,')

X0 (P„)x*(P„')Eo—o.—ilg( ) I'] '
where

Alternatively, one can replace all Es"s in Eq. (13a)
by F"s. In either case the resulting M» will auto-
matically satisfy three-particle unitarity because of
the form of the E3's and F's.

There are now two alternative forms for the coupled
equations. One can write x(P») =

d pss
«(P» P»')&(P»') g'(o)

(2$r)3

P»= 3 (Ps—Ps) o = (P P—l)'—
V38 24ol (2$r)'S'(pl —pl') «(p23 p23 ),

ix(,n) is
32ir2

3f$2+Vss+ V$$583f $8

+Q V»'(F'3E3$'+Eg'Mss'+Es'3' ss'),

3I$2 Vss (1++$3fss)+Vss P ass

po —(ms+ms) 8]'"Lo—(ms —ms)']'"
X

and 1P(P») is the wave function for the resonant state.
(14a) We then have

+Vss'~s'(3f 8$4+3f'3$"),

3f 884= Vss'+ Vss'E$3f ss+ V834&'3f 884

AI = (28r) 464(P—P)
d'qldsq»d'Q»

14)
(2$r)"

where
+V884&3'(3183'+3183'),

8 3

3fss ——g M$$4, 3II$$——p 3f$34, and i~ jWk.

Alternatively one can write

3f $$ —Vss+V2$E$3fss+Q Vssp 3I3$

3f 3$ Vss(1+E23f $2)+Q V83 P 31 y (14b)

3IIss= Vss+ V3$E$31»+Q Vss*&'3f83

In both cases unitarity is automatically satis6ed. There
is no obvious reason for choosing between Eqs. (14a)
and (14b); however, in the course of a practical calcula-
tion, where the V's are given explicitly, a particular
choice of variables may turn out to be more natural or
more convenient.

Let us briefly consider an example in which Eq. (14b)
is clearly the more convenient choice. Suppose that the
potential V33' is strong enough to produce a narrow
resonance between particles 2 and 3. Neglecting V33'
and V33' for the moment, the effective potential in the

X (2$r) ' '5(ql +ml )~t (3 (P ql)+q23) +ms ]
X~L(s(P ql) —q»)'+—ms'](2~)'&'(ql+Q» P)(&—

I
~

In the limit of an infinitely narrow resonance, ~g~s

XL(~—o,)8+ ~g~']-'~ ~b(o—a„), and We find

W = (2~)4&4(P P')—d qld Qss
( lp) (2$r) sib(qls+mls)

(2$r)'

X&(Qss'+o, ) (2~)'&'(ql+Qss —P)Q I,
which is exactly what one would expect if there were a
two-particle inelastic channel with particles of mass ml
and go „.This result suggests that even if one does not
wish to use the zero-width approximation it will be
convenient to introduce a Green's function

4'= (2$ri)-' ds'(s' —s) 'M(s')

so that the effective potential is given by

IV$$ V22+ V23c V32 ~

Now that the "most important" singularities have been
dealt with, other contributions to the three-body
potential can be added in. If V33' and V33' do not give
rise to any two-particle bound states or resonances,
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III. ~-e SCATTERING

As an example of the application of the foregoing
equations we will consider an extension of the p-meson
bootstrap model of Zachariasen and Zemach. ' Let us
start by considering only the m.—x channel. We assume
that the force is due to p exchange and we restrict our-
selves to two-particle intermediate states. Following

(Z—Z) we take the 1m.p vertex to be [see Fig. 3(a)]

2' p &ifk(q1+q2)y ) (15)

where i, j, k are isotopic spin indices.
The integral equation for the T= 1 scattering

amplitude then becomes

~(p, q) = V(p, q)

V(p, k)M (k,q)
(16)

(2s.)1 @2+1]1&1[P q1 j$—]—
where

V(p, q) =4 fL~+(p+q)'][(p q)'+ '] ',-f=v -'/-4,

g =ps—j. .

The mass of the p is m and we are using units in which

the pion mass is 1. It should be noted that the second
Born term of (16) contains an incorrect cut starting
at the point q'= —(1+m)'= —42, whereas the regular
left-hand cut from two p exchange starts at q'= —3P——30. Therefore, the left-hand cut is probably well

represented by (16).
Since 3f obeys the elastic unitarity condition, and

the left-hand cut is given quite accurately, all of the
"near-by" singularities should be well represented.
There is, of course, no solution to Eq. (16) because of
the vector nature of the p. In order to obtain a well-

dedned model it is necessary to introduce a cutoff.
If the p were a Regge pole there would be no covergence
dif6culties; however, in the absence of any knowledge
of the trajectory one can really do no better than to
introduce a cutoff. Naturally one of the tests of the
model will be whether the qualitative features of the
solution change as the cutoff is varied.

The next step is to project out the J=7=1 ampli-
tude. We 6nd

then one might write

W22 V22+V286 [1 (V3$ +V33 )C ] V32 ~

However, if there are overlapping resonances, it is
probably more convenient to work with the Ps and
use either Eq. (14a) or (14b) directly.

where

V11(q,p) =in' p'+q'+m')
[1(~+m')+P'+q']Q1

g 2pq )

Following Zachariasen and Zemach we will use a cutoff
mass A=140, about two nucleon masses. Equation
(17) has been solved numerically with the aid of the
Columbia University IBM 7094 computer. In order to
compare our results with those of Ref. 9, let us imagine
solving Eq. (17) by the Fredholm method. Keeping
terms to erst order in f, we have the determinantal
approximation:

1V= V11(q,q), D=1—tr[V11E]. (18)

This is just the model of Ref. 9. Physically, the main
difference between the two models is that Eq. (17)
takes into account multiple p exchange whereas Eq.
(18) does not. Since f is expected to be of order of
magnitude 1, there is no reason to expect the predictions
of the models to agree.

Phase shifts for the two models are shown in Fig. 4,
for typical values of te and f The pha. se shifts given by
Eq. (17) are consistently larger than those given by
(18) indicating that multiple p-exchange diagrams give
rise to more attraction.

We are primarily interested in searching for self-
consistent parameters for the p. For each value of m we
6x the input coupling constant f so that there is a
resonance at s„=m'. The output coupling constant is
related to the width of the resonance by'

I'= 8f[(m'/4 —1)'"/3@i']. (19)

~Q
b)

In Fig. 5 we have plotted f;, and f„t,versus m' for a
cutoff of A.= j.40. There are no self-consistent param-
eters. It will be recalled that the (Z-Z) model gives the
self-consistent parameters m=350 MeV, f=2 4 If one. .
increases the cutoff both the input and output coupling
constants decrease, and the curves move further apart.
By decreasing the cutoff to 5=70, one can produce a
self-consistent p of mass 2. The mass will increase as
the cutoff is decreased further, but such small cutoffs
do not make sense physically. What has happened here
is that for any ns the input coupling constant needed
to give a self-consistent mass is smaller in our model
than in one of (Z-Z) because of the attractive forces
arising from multiple p exchange. On the other hand, the

~11(ppq) Vll+ Vlf~11
1 " k'dkV11(p, k)M11(k,q)= V11+ (17)

8s' o [k'+1]'"[k' q' —is]—

FIG. 3. Vertex diagrams for pion-pion calculation.

~ P. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962);
to be called (Z-Z).
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widths of the resonances in our model have not de-
creased appreciably from the determinantal approx-
imation, so self-consistency is no longer possible. ""

It has been pointed out by several authors'" that
the 7t.co channel should be extremely important for the
formation of the p since its threshold is only slightly
above the physical p mass. One of the principal diK-
culties with all of the bootstrap calculations is tha, t the
coupling constants are always too large. The introduc-
tion of a closed channel will decrease the input coupling
constant since such a channel always gives rise to an
attractive force.4 The introduction of a closed channel
will also decrease the output coupling constant if the
resonance is near the threshold of the closed channel.
To see this we recall that any two-channel problem is
equivalent to a one-channel problem with the effective
potential

Vll+ V12g2V21 (20)

db (1)/dE db(0)//dE) 0. —(24)

where g2 is the full Green's function in the second
channel and V;, is the 2)(2 potential matrix. We now
introduce the effective potential

IV(X) = Vii+XV12g2V21 (21)

which interpolates between the one- and two-channel
problems as X varies from 0 to 1. Now

dfj(X)/dX= —(0(X) I V12g2V»lp(X)) (22)

where 8(X) is the phase shift for the potential IV(X)
and f(X) is the wave function. Differentiating Eq.
(22) with respect to energy we find near the threshold
of channel two, where we can neglect the energy
dependence of the 1P's,

1f'&(X)/«1'=�(1P(X)
I V12g2g2V» IW(X)) (»)

so that

Since the width of a resonance is inversely proportional
to db/dE, we see that the introduction of a closed
channel will decrease the width of a resonance which
lies close to its threshold if the other parameters are
held fixed.

Following (Z-Z) we take the 2rpco vertex to be Lsee
Fig. 3(b)j

'Yeprabij&peyegeP1 .

Restricting ourselves to two-particle intermediate
states, we have a two-channel problem with the
potential matrix given by the p-exchange diagrams
shown in Fig. 6. It is again necessary to introduce a
cutoff in order to have a well-defined model. The projec-
tion of the potential matrix onto the J=T=1 state is
cumbersome and we will not display the result here.
The resulting integral equations have been solved
numerically.

In searching for a self-consistent p we have taken the
~ mass from experiment. We then ask if the input and
output values of the p mass, f and g=y2 /42r can
be equal.

For cutoffs A=140 and A=280 it is impossible to
satisfy all three conditions simultaneously. The dif-
ficulty is that the p width is still too large. In order to
have f;„=f,„&, it is necessary for the p to be very close
to the 7I-—co threshold. However, in this region it, is
impossible to have g; =g„~.

If the force in the 7t-—7I- channel is really well approx-
imated by p exchange then it seems necessary to treat
the inelastic channels in a more sophisticated manner
than was done here in order to achieve self-consistency.
Another way to look at the problem is to fix the p mass
and coupling constant at their physical values (m= "/60

MeV, f;,=0.45) and adjust the 2rp~ coupling constant
to give a resonance at the p mass. For a cuto6 of A= 140
this requires g;„=7.5 whereas experimentally g&1.
Thus, the effect of the 7I-—ro channel must be greatly
exaggerated, or other inelastic channels must be taken
into account in order to produce a resonance at the p
mass. The cross section for this set of input parameters
is plotted as a function of energy in Fig. 7. The p width
is 147 MeV, which is much closer to the experimental

"A similar result has been obtained by J. L. Gervais, Paris
report (unpublished), who has modi6ed the model of Ref. 5 to
take into account contributions of the two-pion exchange diagrams
to the left-hand cut. Vile would like to thank Dr. T. N. Truong for
bringing this work to our attention.

'~ J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev.
137, 81242 (1965)."R.Blankenbecler, Phys. Rev. 125, 755 (1962).
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FIG. 7. Resonant pion-pion scattering cross section.

width than previous calculations. Of course, this
favorable result may be partly due to the fact that we
have adjusted the position of the resonance by over-
estimating the inelastic coupling constant instead of
overestimating the cutoff as was done in Ref. 11.Ke
have thus emphasized the low-energy part of the
inelastic channel which, as was explained above, is
precisely the part that is most effective in reducing
the width of the resonance. However, when the cutoff
is increased to A=280, the value of the mp~ coupling
constant needed to give the experimental p mass is
reduced to g;„=3.2. On the other hand, the p mass is
only increased to 157 MeV.

A physical picture of this model of the p is that the
large value of the mpco coupling constant gives rise to a
very strong attractive force between the ~ and the co

due to p exchange. This force leads to a bound (or
virtual) state in this inelastic channel. ff this bound
state could be coupled to the ver channel with a small

coupling constant then it would give rise to a very
narrow resonance. However, since the coupling between
the channels is via p exchange, the same large coupling
constant is involved and this broadens the resulting
resonance as well as shifting its position.

DISCUSSION

The type of equation presented here seems to have
several advantages which may prove useful in selected
applications. The major disadvantages are the lack of
crossing symmetry (a common disease) and the fact
that the equations do not form a practical way of
summing selected Feymann graphs exactly. The
advantages are that the equations are three-dimensional
and the solutions satisfy relativistic unitarity even in
the multiparticle sector.

They give a practical method for evaluating multi-
exchange contributions to the left-hand cut (in disper-
sion language) and also for evaluating the multiparticle
contribution to the right-hand cut, or to the optical
potential if one prefers to use this language. The
structure of the equations allows one to construct the
effective two-body potential 8» by including multi-
particle states in a nonperturbative manner. This is
certainly true if one uses the methods discussed in
Ref. 4. These equations can be used to discuss bound
states and resonant states in many-particle systems.

There are several obvious problems to which one
could apply these methods. One is an estimate of the
four-pion continuum contributions to the p meson. An-

other problem of theoretical interest is to examine the
properties of Regge poles and residues on the basis of
rather realistic relativistic models with inelasticity
present. Another possible application is to high-energy
diffraction scattering and the effect of unitarity on the
low partial waves. One could use the equations presented
here in a phenomenological-optical-model analysis of
both elastic and inelastic scattering.

Finally, we remark that these equations can be
extended to reactions involving fermions. The main
difference is that one must use the natural fermion
variable gs instead of s in the Green's functions and
include the fermion projection operators. "

"F. Gilman (private communication).


