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Reciprocity, Normality of K'-K' Mass Matrix, and CP Violation in Weak Interactions

SHARASHCHAÃl3RA H. PATlL, YUKIO TOMOZANA, AND YORK-PEAG YAO

Institgte for Advortced Stldy, Prirtcetol, ilrew Jersey

(Received 8 October 1965)

We propose that the reciprocity principle may be relevant in weak interactions as a replacement for
time-reversal invariance. Various forms of this principle are examined and their consequences are noted.
When applied to the E -E system, they all imply that the two observed kaon states are orthogonal, and a
sum rule emerges, which relates the rates and the CE-violating parameters of di6'erent neutral-kaon decay
modes. Using the preliminary experimental data, we predict speci6cally the amount of CI' violation in
I"

&
~ 2w . Finally, we discuss the possible implications of reciprocity for various interactions.

I. INTRODUCTlON

'HE question of CP or T invariance has been
raised by the following pertinent experimental

observations:

(a) It has been found' that the long-lived component
E& of E' decays into m+~, thus suggesting that CP is
violated in the E' decay. If CPT invariance is assumed
then this implies that time-reversal invariance is also
violated. The experiment gives a decay rate' of

I
r(Eto —+ m++~-)/I'(E, ' —+ ~++a ) I' '

= (1.8+0.1)&&10 ', (1.1)

where E,' is the short-lived component of E'.
(b) Preliminary experiments' ' on E' —+ sr+e+v and

E' —& x+x—x' indicate that CP violation in these proc-
esses is quite large, though the statistics as yet are poor.

(c) Violation of time-reversal invariance, if any, is
small in the processes rt —+ per and A~sr p. Within
errors, the experiments are consistent with the assump-
tion of time-reversal invariance for these processes.

The above observations naturally lead to the ques-
tions: If time reversal had to be violated, why is the
violation so small in the m+x decay of E? %hy is it
so large in the leptonic and m+x 7t-' decays' Why is
time reversal nearly invariant in the processes rt —& per
and A~sr pP There have been various attempts
from various directions to answer some of these ques-
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tions. It is of great interest to find a unified approach
to answer all these questions.

In this work we postulate that while time-reversal
invariance is not valid, reciprocity relations may be
true. By reciprocity we mean the relation

(1 2)

where M is the transition matrix and A~ and B~ are
the time-reversed states of 2 and 8, respectively. The
two matrix elements in (1.2) would be equal, including
the phase, if time-reversal invariance were valid.

In most cases the reciprocity relation (1.2) deals
directly with measurements and hence is physically
rather appealing. In the following sections we will show
that while preserving many of the features of time-
reversal invariance, reciprocity does allow for its
violation in neutral E decays. It implies that the total
mass matrix for E'-E' mixing is normal and hence the
physical states E,' and E&' are orthogonal to each other.
It also provides a sum rule for the violations of time-
reversal invariance in various decays of E', which
seems to be satisfied by the preliminary data on
leptonic and 3m decays of the neutral E.It also provides
an explanation for the fact that the processes I~ pev
and A. ~ sr p are nearly time-reversal invariant.

In the following, we will first define reciprocity
precisely and consider its general implications. Then
we will apply the reciprocity relations to the problem
of E'-E' mixing and describe the various consequences.
Finally we will discuss the possible relevance of reci-
procity to the strong and the electromagnetic inter-
actions as well as to the weak interactions.

H. RECIPROCITY

It is perhaps an historical accident which leads us
to equate the reciprocity principle to time-reversal
in variance. In the consideration of time-reversed
processes, we start from the assumption of reciprocity
(1.2). If, furthermore, it is assumed that these relations
hold true for any arbitrary states A and 8, and tha, t13

"E.P. Wigner, Group Theory (Academic Press Inc. , New York,
1959).
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then there exists an antiunitary operator T such that

TiA)= IAr) T tIVT-=Mt

Define ((tr p),„t,l
as the outgoing state of w p, etc.

By reciprocity,

((tr—p).„,I
H tr I A) = ((w-p);„

I
H tr

I
A )"e's,

and consequently

(almlB)=(Brlml~r),

and
((wort), &I Htrl~)=(( on)' rl Htrl /l")*e'&'. (2.2)

(2.1) We write

which defines time-reversal invariance.
It is clear that reciprocity deals more directly with

measurement. We also note that, in the course of dis-
cussion, if the generality of the states A, 8, etc. is
limited, then time-reversal invariance need not follow. '
It is based on this observation that we shall formulate
different reciprocity principles, especially in view of
the present status of weak interactions. We will discuss
only the following more interesting cases":

(1) 8'eak reciprocity is the one in which A, B, etc.
are states with de6nite total isospin for the participating
hadrons. " Since the weak interaction discriminates
between different isospin states, a principle of this
nature is no more mysterious than, say, the AI=-,' rule
in nonleptonic weak decays. If this is the case, and if
only one isospin state dominates the final state of a
decay process, then the effect of CP or T violation is
small in this process. To see this, '4" we note that dif-
ferent angular-momentum amplitudes of an isospin
assignment have the same CP-violating phase. Since
CP-violating effects can be observed only through
interference between different isospin states, our con-
clusion follows. Thus, assuming the Al=-,' rule, we
can have little CP violation in A~E+tr decay.
Similarly, in any leptonic process, if the hadrons in the
6nal product conspire to give only one isospin state,
the CP violating effects are small. However, there are
two possible final isospin states (I=-,', I= ,') in 2+ —+-

E+7i decays, even under the assumption of the DI=
rule, and they may be comparable in magnitude. The
CP-violating effects here may therefore be large. In
passing, we remark that CP violation in the E'-E'
system due to mixing is allowed.

(2) Strong reciprocity is the case in which A, B, etc.
are the charged eigenstates of the strong-interaction
Hamiltonian. For example, in A. decays, they are ex',
~—,etc. If this is the situation, then there can be no
other observable CP-violating effects'~ than those due
to E-E' mixing. We shall use the A decays as an
example for a proof of this statement.

i4 T. D. Lee, Columbia University report I'unpub]ished),
i~ We shall assume the validity of the CPT theorem in our

discussion. Thus, we shall use CP and T equivalently. Also, T
invariance is assumed for strong interactions in Secs. II and III.

~'If A, 8, etc. are eigenstates of the strong S matrix, then
reciprocity gives different T-violating phases to various angular-
momentum matrix elements in decay processes, and therefore T
violation can be large. This is, however, contrary to the results of
experiment c mentioned in Sec. 1.

'~Also refer to case (2). Proofs will be given to first order in
Hrr in cases (1) and (2).

((wE)"'.„iIHrrIA)=si/r(e" a, (I)+e je" ' a„(I))ua

in the rest frame of A, where p is a unit vector along the
x momentum, the I's are the spinor bases, I is the
particular isospin channel, s and P stand for the s wave
and p wave, respectively, and the 8's are the strong
phase shifts in diferent channels of the final state.
Equation (2.2) leads to

(gl)~iotit/s)atg/s) (Qs)gist(s/s)at(8/&)

L(gt-)t, ist(t/s)atO/s)e (g&)etttt(o/&)at(s/s)@gt, t4'

and

(gs)eQt(tl&)ate/&)+ (/1)ei&t(o/&)at(o/&)

—f(+s)si/ttO/s)a o/s)*+(Qt)si&t(ols)a (s/s)+jets'

f,=s, p.

Writing at&1& =
I

at'r&
I
e's«lt, we have

(Qt )ei&to/&)
I
at(t/s)

I
sin(tt/t (t)—o~y)

= (v'-')e'"'""
I
at'""

I
»n(et(-') —s@)

and

(gss)s'stat/~&
I
ate/s&

I
stn(gt(~g) —~gy')

= —(v's) s'"""'
I
at""'

I
»n(et 8)—s&').

We shall assume that

5t(1/2) pit't(3/2) (modw),

then both sides of the above equations must vanish
and we have

y—=y'(mod2w) = 20t(I) .

Therefore, the a&(~'s are relatively real; this means
that there is no CP violation in A and, likewise, in Z
decays. This approach can be applied to include all
presently observed decay processes. (In E+—+ 3tr decay,

'

we assume s-wave totally-symmetric-state dominance. )
Thus, except for mixing phenomena, which we shall
discuss in the next section, strong reciprocity is equi-
valent to time-reversal invariance, at least to 6rst-order
perturbation of the weak interaction.

Finally, we add the strongest form of reciprocity:

(2') A, B, etc. are arbitrary linear combinations of
states, permissible by the superselection rules of strong
interactions. " If this is the situation, there will be no
CP-violating e8ects for any decay processes to all
orders in II~, except in E'-K' mixing. In addition, the
inclusion of electromagnetism will not alter the
situation.

"Thus, states with diferent charges are not to be superposed;
but we propose that states with diferent parities can be.
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Proof: I.et 3, or B~, Bo, etc. be the incoming or out-
going states which correspond to the eigenstates of the
strong 5 matrix. Consider the process A —+ 8(,), where

B(,) ——xgBi+xoBo+

III THE Eo Eo MIXING AND NORMAI,
MASS MATMX

In the following analysis we will assume the Weiss-
kopf-Wigner method" of solving the time-dependent
Schrodinger equation. The physical states E, and E&'

are coherent mixtures of E' and &' states and are de-
fined by

(r+iu) IE, io)=~, ,IE, p&, (3 1)

where (r+iM) is the total mass matrix, I' and 3Ibeing
two 2X 2 Hermitian matrices,

r=r~, u=u~ (3.2)

and X, and X~ are the two eigenvalues of the total mass
matrix. The matrix elements of I' and M are given by

r,, =2or g (a;IHs ls)&NIHs Ia,) (3.3)

&a;IHwll)&~IH~I a,)
M;, =2+

E2—E
(3 4)

where ai=E', a2=E' and m is an intermediate state.
By CPT invariance, we have"

(3.5)

We now apply the reciprocity relations to E'-E'
mixing. In Appendix A, it is shown that the require-
ment of reciprocity for the transition matrix implies
"reciprocity" for the mass matrix, so that

lr»+&~»l = Iron+&~»l . (3.6)

"V. F. Weisskopf and E. P. Wigner, Z. Physik 63, 54 (1930);
65, 18 (1930).

~ T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340
(19S7).

with xr, x2, arbitrary. Then, reciprocity applied to
3 —+ 8(,) gives

(B,lull&= &arlmlB, r)e'o,

(Bolted I~&=&&'I~IBo')e", «c.

Since there is only one arbitrary common phase for all
the amplitudes, the results are the same as those due to
time-reversal invariance.

At present, we have no prejudice for any of the above
forms of reciprocity, though philosophically the strong
reciprocity is the more attractive since it would approxi-
mate time-reversal invariance more closely. The ob-
servation of the presence or the absence of CP violation
in any nonmixing phenomena such as E+, A, or Z decays
would determine a choice.

Therefore by (3.2), (3.5), and (3.6) it follows that
matrices I' and M commute; i.e., the total mass matrix
(r+iM) is normaP' and can be diagonalized by a
unitary transformation. The E,', E~' states are then
the orthogonal eigenstates, simultaneously, of F and
3f. Therefore, they can be written in the form

E,o (1/V2) LEo~e'oKo (3.7)
where

e~o (r /r 4)l/2 (~ /~ 4)ll2 (3 8)

We shall relate 8 to the various decay widths of E'.
Ke first note that by CPT invariance

I &o IH~IE'& I

=
I
5'P2'(i) IH~IK'& I (3 9)

We choose the phase of E' and E' so that

&2~(I=o)„IH~IEo)=&2~(l=o)., IH IK'& (3.1o)

and real which one can always do, where the subscript
st represents a standing wave. Then from Eq. (3.8) we

get

tan8= —g; r,r; sing, /(ro+P, I',r; cosP,), (3.11)

where
ro=2~I &2~(l=o) IH~IE'& I'po- (3»)
r,= 2m

I g I
H w I

E')
I
'p (3.13)

p being the final state density, and @;and r; are defined

by
(i,fIHrrlK, ')=r,e'o g„IHs IE') (3 14)

The index i runs over all the states into which E' can
decay except the I=0 state of 2z", of these the only
significant ones are the 3~, leptonic, and 2s. (I=2)
states.

Experimentally we know that I'o is much larger than
I',r, so that

8= —(1/r, ) g, r,&., sin&;. (3.15)

~' A matrix A is normal if PA, A ~j=0, and a normal matrix can
always be diagonalized by a unitary transformation.

"The experimental value of the branching ratio 1(E+~
x+7'+~ )/F (E'+ ~ m.+m m. ) is consistent with the assumption that
the totally symmetric state with I= 1 or the 3x system dominates
E+~ 3x decay.

Thus we see that 8 is necessarily small, of the order of
the branching ratio of E' decay into the 37i- or leptonic
mode to that into the 2x mode. Of course, if time-
reversal invariance were valid, all p;=0 and CP would
be conserved. We will now discuss the sum rule (3.15)
term by term.

(1) 3or decay: In general there are several 3' final
isospin states allowed, for each of which, by CPT
invariance (3.9), r, = 1. For simplicity of analysis
however, we will assume that only one of the final
isospin states dominates, "or if there are more than one
important final states we will assume that P is the same
for each of these states. (The latter is the case if the
strong reciprocity is assumed. ) This assumption is not
essential but it greatly simplifies our analysis of the
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experimental data. Under this assumption, we have
re ——1 and we will evaluate &3, by using the experi-
mental data' for m+~ x' decay of E'. From the experi-
ment we have

~ ~ ~

+ ~) 1I2 1+eiPsn '

= 1.03&0.65, (3.16)
F ~ — pJ 1 eierfl'~

so that

where

f=2t Fir, 2, (r r)]/LFir
=1 if the AI=-,' component dominates in

E~ 2rr (I=2) decay,
= (9/4) if the 51=~5 component dominates.

Clearly by CP T invariance we have r2= 1.
Using this information, we get the estimate of the

mixing angle 0:
y,.= —88'a36'. (3.17) 8= (2.5&1.1)X10 '—(2.0&0.4) X10 'f sinit 2. (3.24)

The sign of &3 depends upon the sign of mK, —mK, and
the above value is for mK, —mK, being negative. "
Comparing the rate of Eq —+3m with E,~2', we get

The angles 0 and p2 are related to the ratios of the
amplitudes aK, , 2 of E&,, —+ 2m decays as"

n+ =(rid;--'=)/(rid. --'=) = e~e-
—r'(v2) ' exp)i(4 —be)](F2/Fe)'~' sin-,'P2 (3.25a)Fir 3 /I K 2 —F (1—cosP )/2F,

=(60~08)X10 4 (3 18) and

Therefore, '4

ri ——0.33+0.17 and it i ———80' '+"' (3.20)

These values are the average values of those quoted in
Refs. 3 and 4. We shall assume the same values for
p-leptonic decays, which is justi6able under the
assumptions of p, -e universality and conserved vector
current. However, it would be of interest to determine
these parameters experimentally for p-leptonic decays.
Then we have

Fxi~i Fi(1+YP—2ri cosfi)
=(1.0+0.2)X10 '. (3.21)

41'p~Kg~2x

Therefore,

Firi sin/i/F p= ( 1.3~0.7)X10 (3.22)

(3) Zir decays: The ratio I'2 ~r-e&/Fo=F2/Fo can be
estimated by

F,/F, =-,'f(F ~ ..)/(F. ..)
= f(2.0+0.4) X 10 ', (3.23)

~ The relative sign of y and m~, —m~& in Ref. 5 isin correct.
Ke thank Professor F. Crawford for this communication t Phys.
Rev. Letters 15, 645 (1965)j.

~ If the AI=~ rule is assumed in K ~ 3~ decay, we may use
tlIe second alternative experimental value of Ref, 23. This gives
a value of —(1.0~0.6) )& 10 ~ for Zq. (3.19).

Fe singes, /Fo= —(1.2&0.8)X10 '. (3.19)

(2) 1eptonic decays: In leptonic decays of neutral E,
if the AS= AQ rule holds, then rr is either zero or infinite,
depending on the charge of the lepton. In either case
the leptonic decay mode does not contribute to the sum
rule (3.15), nor does it exhibit any effects of CP vio-
lation. However, recent analyses'4 do indicate that r;
is not zero and hence AS= —2 Q decay may be allowed.
Thus for x e+v decay,

gpg+2g+ = 2eie— (3.26)

The magnitude of g+ has been measured by experi-
ment' and is given in Kq. (1.1). The phase of i1+, and
thus p2 through Kqs. (3.24) and (3.25b), can be ob-
tained by the interference experiment on the Ep —+ m+x-

decay, as has been done' ' in the experiments on
Ep —+ 3m- or Ep leptonic decays.

If we require the strong reciprocity, we obtain

2=0,

since the CP-violating angles of E' —+ 2'(I=O) and
E'~ 2rr(I=2) are equal, according to an argument
similar to that in the preceding section, and we have
chosen the convention (3.10). Then the sum rules
(3.24) and (3.25) lead to

2g+ =2gpp —— ie= —r'(2—.5&1.1)X10 '. (3.27)

The prediction is about one standard deviation off the
experimental value (1.1).

If we assume weak reciprocity, $2 is not zero, in
general. On the assumption that f in Kq. (3.23) is of
the order of unity, the angle &2 can at most be
according to Kqs. (1.1), (3.24), and (3.25a). Together
with (3.26), we obtain the inequalities

(0.2&1.7)X10 '& )goo~ & (7.4&1.7) X &0 '. (3.28)

If, however, the condition ~sin(82 —be) ~&&1 is assumed,
which seems reasonable, we have the prediction that
~happ~ has the value of either of the boundary values of
(3.28). The present experiment on ~gw~, which gives
an upper bound" ~happ~

& 2X10 ', is consistent with
both predictions {3.27) and (3.28). It would be pertinent,

"T.T. Wu and C. N. Yang, Phys. Rev. Letters 13, 380 (1964)

goo= (rex- )/(i'm - o.o) = —2~&

+i@2 expLi(B, —B,)](F /Fe)'" sin-,'it „(3.25b)

where 62 and Sp are the s-wave phase shifts of I= 2 and
I=0 states of 2m- system. From these, we get a sum rule
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to have a more precise measurement of I pool as well as
of the phases of g+ and F00.

4 =aEo+bEo. (4.1b)

In fact, when the total mass matrix is normal, the
decay rate of E&' is a minimum and the mass difference

I
mar, —mir, I

is a maximum; thus normality leads to the
most stable solution.

It is perhaps worth noting that even if reciprocity
itself is not valid, the mass matrix may yet be normal,
in which case the sum rule (3.15) would still be valid.
We feel, however, that reciprocity provides an attractive
alternative to time-reversal invariance and deserves
attention.

(2) Under the assumption of strong reciprocity, we
predict the following: (S1) No CI' or T violation can
be observed except in the Eo-E decay. (S2) For E,, P
decay, we have g+ =zoo= i8/2 —This . would imply
that the AI=-', rule is valid for E& ~ 2x decay.

The prediction (S1) is consistent with experiments
(a)—(c) of Sec. I and the prediction (S2) deviates by
about one standard deviation from the experiment. If
consistency is shown by more accurate experiments,
we may say that we understand the smallness of the
experimental value of Iq+ I.

On the other hand, if we assume the weak form of
reciprocity, we have: (W1) CI' or T violation is small
in the decay processes other than E'-Z', if the final
state is dominated by one isospin state of hadrons.
Therefore most of the leptonic decays and also the
nonleptonic decays which obey the AI=-,' rule will not
show large CI' or T violation. An exception is the Z+
decay for which we mav observe a significant T vio-
lation. (W2) The sum rule (3.15) as well as the relations
(3.25) must be further examined by experiments.

(3) In view of the significant role of the AI= 2 rule
in the nonleptonic weak decays, we may postulate
another type of reciprocity.

Decompose the decay transition matrix M into a
sum of components M('& which have definite isospin
transformation properties:

(4.2)

Then we require reciprocity by

»I = l(~'l~"'I-4') I, (43)

IV. SUMMARY AND DISCUSSIONS

(1) We have seen that the requirement of reciprocity
leads to the normality of the total mass matrix in the
E'-E' mixing problem and thus implies the orthogo-
nality of E&' and E, states. We note that the require-
ment is equivalent, in this specific problem, to the
variational principle for the total mass matrix

b((% I
I'+iM IV)/(VI%')) =0 (4.1a)

with

where the states A, 8 are arbitrary linear combinations
of the states permissible by the superselection rules of
the strong interaction" but are restricted by the isospin
property of M"&. If this is the case, we obtain pre-
dictions the same as those of the weak reciprocity,
except for the Z+ —+Km decay, for which T violation
will be small if the AI =-', rule is valid.

(4) At present, the experiment on Z~1Vz decay
does not satisfy the AJ=-,' rule very well as compared
with the case of the other baryonic decays, " if we
assume T invariance. This might be considered as an
indication favoring weak reciprocity. (See, however,
Franzini et el.,'~ who suggest that the validity of the
M=-, rule with T invariance in Z decay is not excluded
in the sense of a X.' test. It is important to clarify this
point in Z decay. )

(5) Experiments seem to show that the strong inter-
actions as well as the electromagnetic interactions of
leptons are invariant under C, I', and T separately. "
If, however, reciprocity is a more fundamental principle
than time-reversal invariance, as was postulated in this
article, and we require the strong form of reciprocity,
(2') of Sec. II, for the strong interactions, then it follows
that T and CI' are invariant except in neutral E decays.
Note that CI'T invariance, which we assume here,
follows from such general principles as I orentz invari-
ance and local commutativity, etc. Then, restricting
ourselves to the strong interactions, we may ask why
they are C- and P-invariant separately.

If the basic Hamiltonian is constructed with the
observed baryons and mesons, it is hard to find the
principles which provide C and I' invariance from CI'
invariance. " We note, however, that if the basic
Hamiltonian is made up of the unitary (SUo) triplet
quark baryons and a unitary-singlet meson (with spin 0
and/or spin 1), then we can find the principles men-
tioned above: the assumptions of nonderivative
Yukawa-type interactions, isospin invariance, and
conservation of currents generated by the spin-1
meson, together with CI' invariance, are su%cient to
guarantee C and I' invariance. '9

Minimal electromagnetic interactions which are
derived by the principle of gauge invariance are C-
and E-invariant accordingly.

Thus, in such a model, we have a unified picture for
C, P, and T invariance of the strong, electromagnetic,
and weak interactions.

2 For the status of the AI =$ rule in Z decays, see R. Dalitz, in
Proceedings of the International Conference on Fundamental
Aspects of Weak Interactions, Brookhaven National Laboratory
Report No. BNL 837 (C-39), 1963, p. 378 (unpublished).

~ P. Franzini and D. Zanello, Phys. Letters 5, 254 (1963).' T. D. Lee, talk given at the Physical Society meeting in
New York, 1965 (unpublished).

~ G. Feinberg, Phys. Rev. 108, 878 (1957); S. N. Gupta, Can,
J. Phys. BS, 1309 (1957). V. G. Solov'ev, Zh. Eksperim. i Teor.
Fiz. BB, 537 (1957); BB, 796 (1957} I English transls. : Soviet
Phys. —JETP 6, 419 (1958); 6, 613 (1958)j. G. Feinberg and F.
Gursey, Phys. Rev. 114, 1153 (1959); J. J. Sakurai, i'. 113,
1679 (1959).A. Pais, Phys. Rev. Letters 1B, 432 (1964}.
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APPENDIX A: RELATIONS OF THE TRANSITION
MATRIX AND THE MASS MATRIX

In this Appendix, we shall derive general expressions
for the transition matrix and the mass matrix. We shall
see that they are given essentially by the same equation.
We shall follow the work of Arnous and Zienau. '0

The transition matrix 5(t, ti) in the Schrodinger
picture satisfies the equation

i(8/Bt)5(t, ti) = (a+Ha)5(t, t,), (Ai)

where B includes the free, strong, and electromagnetic
interactions, while II~ describes the weak interactions.
The initial condition is
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The off-diagonal elements of this equation give

M.(E)= {a~+Ha (E —H+io) 'M(E)} a. , (AS)

where n.d. (nondiagonal) means

&i [M(E) li&=(A'IM(E) I&'&=(&'IM(E)1&'&

(ICo[M(E) [Eo& (Eo[M(E) [Eo& 0

j is any eigenstate of II,
We now take matrix elements of (A7) between (i[

and [i)(W [E'&, [Eo&). It is easily seen that

A(E) = (i/2~){E—H+ ,'iI'(E-)) '

with

P(E) =»{am+am(E H+~'o) '—M(E))a , (A9).
~here d. (diagonal) denotes that only (i[I'(E) [i)&0,
when [i&A [Eo& [go&

In the E'-E' subspace, we have the equation

Oit(E)A(E) =i/2~,
5(ti, ti) = 1.

The solution of (A1) and (A2) is

S(t,ti) = expL —i (a+are) (t —ti)j.
Its Fourier decomposition is

(A2) in which

OR(E) =E H PHrr+H—a (E—H+io) 'M(E—)j.
(A3) Let us denote the eigenvalues of OR(E) by X;, the

corresponding right eigenvectors by [b;), i.e.

Oft(E)[b,)=~, [b,&, i=s, t,

s(t, t,) = i' exp{ iE(t ti))5(E) (A4) and the corresponding left eigenvectors by (b, [, i.e.,

To obtain the solution (A3) for t) ti, we have
(b;[ Oil (E)= ~,(b, [

.

ol
5 (E)= (i/2m)(E Il. Hie+i o)— —

(L~ H IIa +i o)S—(E)—=i/2m . (A5)

[b,) are the conventionally defined" [E,) and [Iti&.
The (b, [

are in general not the complex conjugates"
of the [b,) It can be s. hown that with proper normali-
zation, we have

In order to describe a perturbation problem, with
H~ as the perturbation, it is better to write 5(E) in a
different form. Let us write 5(E) as

5(E)= {1+(E H+io) 'M(E))A—(E) (A6)

and also make the following assumptions:

(1) A(E) is a diagonal matrix, except in the EoEo-
subspace. There it is a nonsingular 2)& 2 matrix.

(2) M(E) is a matrix, the diagonal elements and the
E -X submatrix of which vanish.
These assumptions are made in anticipation of the final
results we want, which are physically well understood.

Substituting (A6) into (A5) and after some re-
arrangement, we have

{E H+M (E) PIre+Hrr(E—a+io) 'M—(E)])—
XA(E) =i/2~. (A7)

~ E. Arnous and S. Zienau, Helv. Phys. Acta 24, 279 {1951);
H. Umezawa, Quantum Field Theory (North-Holland Publishing
Company, Amsterdam, 1956), p. 301.

(5, [b,)= b...
Z' Ib;)(b;I =1.

Some simple algebra then leads to

A(E) = (i/2 ) 2'!b'&(1/&')(5; I

= (i/2~) P, [b,&LE—m+-', ir;(E)j-'(5,[,
where

a[b,&=m[b,&,
and

I';(E)= 2i(b, [H +II (E—H+i ) 'M(E) [b,) (A10).
The development from this point on follows strictly

that of Arnous and Zienau. It can be shown that" for

8(t, ti) =exp{ia(t—t )}5(t,ti),

which describes transitions due to II~, it has matrix

"R.Jacob and R, G. Sachs, Phys. Rev. 121, 350 (1961);R. G.
Sachs, Ann. Phys. (N. Y.) 22, 239 (1963).

32 F is equal to (I'+i3f) of the previous notation.
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elements

&fl~(&, —~) li&= —&f1~(E~) li)/
I Er—E;+-.„'il",(E;)7, (A11)

where

li»lf& and I'&, If»alIt'&+flrt'&, I''=&ill'li&,

and E;, E~ are energies of the initial and the Anal states,
respectively. Also,

—
&fl ~(Er) I f»)&5;Ii)

(fl~(~, --)li&=g ' ', (A»)
i Er m+—',iI",(E-r)

when
I f)WulE')+blE'), but Ii) is some linear com-

bination IE') and IX'&.
From (A11) and (A12), it can be seenss that cV(E)

is the matrix which describes transitions between
eigenstates of H, and I'(E) is the matrix which gives
the self-energy corrections, the mixing of E and E,
and the decay widths due to H~. Looking at (AS),
(A9), and (A10), we see that M(E) and I'(E) are
essentially given by the same matrix operator.

It is clear that this approach can be generalized to
mixing problems when there are more than two de-

generate levels.
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Vertex Poles and Bound States in the Lee Model"
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We study the Z=O limit of a version of the Lee model, recently introduced and solved by Bronzan, from
the point of view of recent work by Gerstein and Deshpande. It is shown how vertex function and inverse
propagator poles develop and behave for small vertex renormalization constant, and their connection with
the bound-state limit is studied. It is found that the condition of finite mass renormalization in the Zq =0
limit can be satisfied in this model and leads to bootstrap-type results.

I. INTRODUCTION
' 'N a recent article' we considered the problem of how
- - to define a bootstrap in the context of Lagrangian
6eld theory. We showed that if in the limit Z&=0,
where 3 is the bootstrapped particle and Zg its wave-
function renormalization constant, we also had finite
self-mass, or even only

lim Zg8p, g =0,
&s ~0

where 8p~ is its mass renormalization, then the solution
is identical to that of the usual bootstrap theory based
on crossing symmetry, partial-wave dispersion relations
and the Ã/D method. '

Explicitly, we wrote the partial-wave scattering
aplitude as

T(s) = I'(s)h(s)I'(s)+ U(s),

where I'(s) is the vertex function and A(s) the propa-
gator of the A particle. The erst term, the single-
particle reducible part (RP), contains all diagrams in
which A appears as an intermediate state and we found
that in the limit (1) this term vanished and U(s) con-

*Research supported by the National Science I'oundation.
'I. S. Gerstein and N. G. Deshpande, Phys. Rev. 14Q, 81643

(1965).
F. Zachariasen, in Strong Interaction and High Energy Physics,

edited by R. G. Moorhouse (Oliver and Boyd, London, 1964).

T(s) = U(s) . (3)

It is clear that this is the only way we can get a boot-
strap since the residue of the elementary-particle pole,
g', is nonzero in the Z~ ——0 limit and hence this pole
must be cancelled if we are to obtain (3) in the limit.

In the present paper we shall study the above mech-
anism in a soluble model, the version of the Lee model4

recently introduced and solved by Bronzan. ' Although
this model has no crossing symmetry so that, strictly
speaking, we cannot have a bootstrap solution, it is
clear from the above that the critical point is obtaining
Eq. (3) from Eq. (2). The cancellation of poles and
resultant vanishing of the RP are the physical basis of
the bootstrap and this can be studied even without
crossing; indeed in Ref. (1) we demonstrated that an

s Y. S. Jin and S. W. MacDowell, Phys. Rev. 137, 3688 (1965l.
4 Y. D. Lee, Phys. Rev. 95, 1329 (1954).' J. B. Bronzan, Phys. Rev, 139, 3751 (1965),

twined the 3-particle pole with the correct residue. The
mechanism by which this occurs is that as Z& ap-
proaches zero the vertex function and the inverse

propagator develop poles which move down to p~ in
the limit. These poles give rise to a pole in the RP,
which however is cancelled by an identical term which

appears in U(s).' However, in the limit of Zg=0 it
also cancels the elementary-particle pole in the RP at
pg, and this entire term vanishes leaving us with


