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distribution. The over-all effect of such collisions is
difficult to estimate. Previous calculations'® concerning
molecular beams interacting with the exterior cloud,
although not strictly applicable to the experiment, have
indicated the correction is probably of the order of only
a few percent. To emphasize the above considerations,
portions of the experimental curves where some doubt
exists concerning the magnitude of F(e) are indicated
by broken lines.

Finally, there remains the question of whether or not
the discharge electrons are in equilibrium with the elec-
tric field at the values of pressure and electrode spacing
used in this experiment. While there is probably not
time for elastic collisions alone to cause the distribution

16T, R. Estermann, O. C. Simpson, and O. Stern, Phys. Rev.
71, 238 (1947).
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function to reach equilibrium, inelastic collisions play
an important role. The product of electrode spacing
and reduced pressure, po x=2.2 Torr cm, is comparable
or greater than the po # for which Chanin and Rork!?
have obtained essentially constant a/p, in helium for
fixed higher values of E/N. In view of their results,
there is strong evidence that the experimental distribu-
tion represents an equilibrium situation, especially in
the important range E/N<3X 10715 V cm?
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The quantum theory of interaction of electromagnetic waves in a plasma is formulated from two different
points of view. The first is to consider scattering of light off light (in the form of laser beams) with the plasma
acting as a mediator of the interaction; the second is to consider scattering of one of the light beams off a
system consisting of the plasma and the other laser beam. Based on the first viewpoint, the light-light
scattering cross sections, both elastic and inelastic, are calculated in the lowest order. By summing over the
final states of one of the photons, we obtain, based on the above results, the lowest order cross section of
scattering of the other photon from the photon-plasma system. In the presence of a second stimulating
laser beam, this cross section is enhanced. When both laser beams are very intense, the lowest order per-
turbation treatment is inadequate. The second viewpoint is then conveniently adopted to include the
plasma-laser beam interaction to all orders. The results are discussed and compared with those in previous
treatments. Finally, a simple model is considered. In this model, the plasmon is treated as the quantum of
a harmonic oscillator which is linearly coupled to a system of phonons. All the previous results are explicitly
verified in this model, which is solved exactly.

I. INTRODUCTION

REATMENTS of the interaction of light with
light in a plasma, both quantum mechanically!-?

and classically,® have been given. However, the results
of Refs. 1 and 2 differ from those of Ref. 3. This differ-
ence was finally resolved in a brief communication.

1P, M. Platzman, S. J. Buchsbaum, and N. Tzoar, Phys. Rev.
Letters 12, 573 (1964); also P. M. Platzman and N. Tzoar, Phys.
Rev. 136, A1l (1964).

2 D. F. Dubois and V. Gilinsky, Phys. Rev. 135, A995 (1964).

3N. M. Kroll, A. Ron, and N. Rostoker, Phys. Rev. Letters
13, 83 (1964).

‘H. (Chenzg,r and Y. C. Lee, Phys. Rev. Letters 14, 426 (1965).

The present paper gives a systematic account of the
subject.?

II. GENERAL THEORY OF LIGHT-LIGHT
INTERACTION

We consider the interaction of a plasma with photons
1, 2, 3, and 4. The total Hamiltonian is

H=H0+H1+H2, (1)

5 After the publication of Ref. 4, a letter by D. F. Dubois
appeared [Phys. Rev. Letters 14, 818 (1965)7] the results of which
are essentially contained in Ref. 4 and are roughly equivalent to
those of Sec. III in the present paper.
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where H, is the Hamiltonian of the plasma and the free
radiation field;

H = Cos(ax, trp—stax,far,pr) )

k=ks—ks,
H;=C130x;'ax,p—v+Hermitian conjugate, (3)

k’ = kl‘-' k3 )

and
! > 5,1 (4)
pr=—" -+
N A p Op

C,;j= 27(;162('}’}’1/2 Vw,-wj)””zéi . éj . (5)

In above, ax, ax! and by, byt are the annihilation and
creation operators for photons and electrons, respec-
tively; V is the total volume of interaction; m is the
electron mass, &; is the unit polarization vector of photon
1. The Hamiltonian H; represents the interaction of
photons 2 and 4 with the plasma, and H, represents the
interaction of photons 1 and 3 with the plasma. Antici-
pating that both |w;—w;| and |we—ws| are close to the
plasma resonance frequency we have included only the
resonance interactions in Egs. (2) and (3). In H; and H,,
the A-j term is neglected.?!

The problem of light-light interaction in a plasma can
be solved in two complimentary ways. We may con-
sider either the scattering of photons 1 and 2 into pho-
tons 3 and 4, with the plasma acting as a mediator, or
alternatively, the scattering of photon 1 into photon 3
by a combined system consisting of the plasma and the
other photons. In the former case, H, is treated as the
unperturbed Hamiltonian and the scattering is caused
by Hi+H, together. In the latter viewpoint, since
the interaction of photons 1 and 3 is given by H,,
therefore Ho+H; is treated as the unperturbed Hamil-
tonian. If, in the former case, all processes contributing
to the scattering of photon 1 to photon 3 are summed, we

P=F 3 |Ssu|?
o of
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C132Ce4® [ © © *
—_ / dll/ dlz/ dlfs/ dt4e—iw(t1—-za)+iw’(t2—t4)
ht —c0 —o0 —o0 —o0
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may indeed obtain the result in the latter case. However,
it is both interesting and convenient to formulate our
problem based on these two viewpoints separately. In
fact, the formulas obtained in the second formulation
prove useful for taking into account the interaction H,
to all orders.

Let us take the first viewpoint. The S matrix is
given by

Syi= ( ¢f”1'%2/%3/n4' l

XT{epr:—% / w(Hl(t)+H2(t))dt]}

X | pimnansngy.  (6)

In (6), ¢s and ¢; are the initial and final states of the
plasma; ny, 1y, ny', n4’ and n,, ns, ns, n4 are the initial
and final occupation numbers of photon states 1, 2, 3,
and 4, respectively; 7" is the time-ordering operator, and

Hl(¢)=exp<%HO¢)Hl exp<—§lzfoz> , )

Hy(t)= exp(%Hgt)Hz exp(— %H@) . 8)

The lowest order term in (6) which gives rise to light-
light scattering is

’l: 2 po )
Sri= <;>/ dh/ dtz(g&);%fﬂz%g’ﬂ(l

XT (H 1(151)[-1 2(t2))| @i”ﬂ’lz”lsm) . (9)

The probability of transition of photons 1, 2 to photons
3, 4 is equal to the square of the absolute value of Sy;
in (9) after summing over the final states and averaging
over the initial states of the plasma,

X |(na'ne'ns'nd | astastaras| manansne) | X{ T (ox(t) p—x (D)} (o (t3)p— (14))),  (10)

where
W=ws—wa,

o' =w1—ws;

( ) denotes the ensemble average over the initial plasma

states and
pi() = eGIM Hotp =il M Hat

The term ax,'ax,0x in Hy does not contribute since 74=0
in the present case.

If we consider the scattering of photon 1 to photon
3, treating H, to the lowest order only but including H,
to all orders, then (6) is approximated as

Syi= (psma'ndng'ny |

—;l /_ : T{exp[—--:l; /_ Z Hl(t’)dt']Hz(t)]dt

X | piminangng).
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From the above expression the transition probability
of photon 1 to photon 3, after summing over the final
states of the plasma and the other photons and averaging
over the initial plasma states, is obtained as

P= <(MTM)nzn4,nzn4> ’

where Ogny,nqn, denotes (nan4| O|nons) and where

(11)

Cis =

M= " exp(—iw'ts)

crfon] - [ om0

In (11), the final states of the plasma and those of pho-
ton 2 and 4 have been summed and an ensemble aver-
age has been taken over the initial plasma states.
Equation (11) includes the interaction H; to all orders.

If we adopt the second viewpoint, i.e., taking Ho+H;
as the unperturbed Hamiltonian and H, as the inter-
action, the .S matrix is given by

i t
00— — ® to

X { T{exp[—;l /¢ t Hdt’]}wi(to)> , (13a)

where the possible explicit dependence of H,, H; and
H, on time is implied but not indicated for the sake of
clarity. The function ¥({) represents a state of the
plasma and the photons at . To understand (13a), we

note that o,
e ] o

is the state at time ¢ which propagates from |¢;(¢)) at
time ¢, with the full Hamiltonian H= Hy}+H;+Ho.
Since Hy+H; is now considered as the unperturbed
Hamiltonian, the state |¢¥,()) would become

T[exp[”% /t :(Ho-l-Hl)dt’]} [¥1(t0))

H. CHENG AND Y. C. LEE
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at time ¢ if the interaction is absent. The transition
amplitude induced by the interaction H, from state 7 to
state f is therefore given by (13a). Note that if H, is
zero, the right side of (13a) becomes dy;, as is expected.

Use will be made of the following operator relation:

T[exp(—%. /t ot(JCo—l-&C')dt’):l

=U(t,0)T[exp<—~:; /t tGCz’(t’)dt’)]U(O,to), (13b)

where
i [t
T[exp(—--—/ JCodIf):I,
,1: i2 -1
U(tl,t2)={T|:eXp(—;'/ 3Codt>:” , I >4
&

and

if 5>,

(13c)

5er (1) = U-1(1,0)3'U (1,0).

If we identify 3Co=H+H, and 3¢'=H,, and keep only
the linear term in H,, (13a) is reduced to

i
= i J— I
Spi= lim h(\[/f ()]

t—

X/ U= 0)H2U (@ 0)dl | (1)), (13d)

to

where U (#y,t2) is defined as in (13c) with H, replaced by
Hy+H,, and where

[¥(t0))=U(0,t0) [¥(to) )

is the wave function in the interaction representation
with Hy+H; considered as the unperturbed Hamil-
tonian. Also, U~1(£,0)H2U (4,0) is the operator H, in the
same interaction representation.

If we apply (13b) to (13d) again but this time identi-
fying 3¢y with H,, 3¢’ with H, we obtain

1: t i t’ —1
Sp= lm ——(eCmotny (1) ‘”'{TGXP[_Z/ H‘(tu)d‘"D} H(t)
to

o> —®
t—» h to

xr(exp[—-;; / Hla")dt"])lewmwm», (13¢)

where H1(¢’) and H,(¢") are defined as in Egs. (7) and (8).

If we substitute (3) into (13d), and choose

e@WmEt |y (1) )= | pamimamana),  eVIDEN|Y (1)) = | o mi'ns'ns'nd’),

which are eigenstates of Hy, then (13a) becomes

Sypi=—(t/ ) Crs{m'ns’ | agtar| nims)(oms'ne | N_wr—w | oinoms),

(14)
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where
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N_yr o= /_i gt [ T<exp|:—% /—; Hl(t’)dt’:D }_lp_k' ®) T(exp[—% /:; Hl(t’)dt’:Ddt

or
1

——— Z(”“"(‘Hi / [H1<t1>,p_kf(t>]dt1+(%)2 /_ al ALH L) p 0T+ )t (19

Just like the amplitude M in (12), Sy in (15) is linear in
H, but includes H; to all orders. Notice that® the ex-
pectation value of N_is_, is the Fourier transform of the
electron density of the plasma under the influence of
laser beams 2 and 4. The total probability of scattering
of photon 1 to photon 3 from the combined system con-
sisting of the plasma and the laser beams 2 and 4 is ob-
tained by summing |Sy;|2 over the final states of the
plasma and the laser beams 2 and 4. Upon averaging over
the initial plasma states, the total probability is derived
from (14) as

P= (Clsz/hz)«N——k'—-w’ TN—k’——w')nzM,nzM) . (16)

Equation (16) gives of course the same result as (11).
This fact can be concluded from the relation below:

Cis I
M=7T{6Xp|:—2/ IIl(tl)dtl]}N_k',_wl. (17)

The differential cross section of scattering of photon 1
to photon 3 is obtained from (16) by multiplying it with
the density of states

14
— | &%
(2m)?

and dividing it by the flux ¢/V and the total interaction
time 7.

d%
dwd}

V et (6:-85)? ws

T m?

21!'64 w1

X <(]V-k' ,—m’TN—k' ,—w’)n2n4,n2n4> . (18)

Equation (18) is the quantum analog of the classical

formula?
20

~ ([ Vool
Pt 1%

It is actually valid for the scattering of a photon from
any system (provided that the A-j term in the inter-
action is neglected?), if N_yr,—. is defined as in (15), i.e.,

0
N_k’,—w'=/ eI Hstp o= (M Hatg—ia"tgy! = (19)
—00

where H, is the Hamiltonian of this system. If

6 H. Cheng (to be published).
7 See, for example, M. N. Rosenbluth and N. Rostoker, Phys.
Fluids 5, 776 (1962).

H,=Hs,+H,' where H,, is the unperturbed Hamil-
tonian and H, is the interaction, then (19) can be re-
duced as before to (15) with He,=H,, H,/=H,.

Equation (16) can be generalized in the following way.
Let us consider the scattering of a system ¢ from a sys-
tem &, with the total Hamiltonian

H=H +Hy+H',

H'=3, AniB,,
where H,+Hy is the unperturbed Hamiltonian and H’
is the interaction between systems ¢ and 4, and where
Ant, B are operators of systems ¢ and b, respectively.
The probability in the lowest order of H’ of transition
of system @ from state |i,) to state | f,), after summing

over the final states and averaging over the initial
states of b, is given by

1
P=—2 Z <ia1Am!fﬂ><fa!A””i“>

h2 m, .4

o 0
X/ dt/ At e (Baj~Eai) (t—t')
e

X <ib[ BmT(t)Bn(t,) ] ib>aibfb )

where o is the density matrix for system & at time
t=—o0; E,r and E,; are the energies of states | f,) and
|14), respectively;

Bm(t) = UM H B, o—(ilh) Hpt ,

(20a)

and |4s) is the wave function of system & at time
= — oo in the interaction representation with H; con-
sidered as the unperturbed Hamiltonian.

If ¢ is diagonal with respect to the eigenstates |4s)
of Hy, then (20a) is reduced to

Transition Rate=;1; 2= (o] Am| fa){fa] Ant|ia)

X/ °° die= X Bn1(1)B4(0)), (20D)

where
(Bun!(t) Bn(0))=Tr(Bu!(t) B»(0)0),
and
hw = Ea S Eai .
However, if Hy=Hy+Hy', where Hy' is a perturbing
potential and the density matrix o of the system & at
time = — » is diagonal with respect to the eigenfunc-
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tions of Hyo, then (20a) can be reduced by a procedure
similar to that used in deriving (14) to the following
form:

1
P=% 2 (ia| Am| fa){fal Ant|4a)(Bmi(w) Bn(w)), (20¢)

where

B,(w)= /_ Z dieiot
X [T(exp[_:_; [ Hb/<y>dy])}‘13nz<t>
ca(esf =2 [ miio)).

BoI(t)=eGIM ot B, g~ GIN it

with

and
Hy/ () = e(iIMHvot F /=Gl Hyot |

III. LIGHT-LIGHT SCATTERING AND OPTICAL
MIXING IN THE LOWEST ORDER

In order to evaluate explicitly the transition proba-
bility of photons 1 and 2 into 3 and 4 from (10), we need

(27!') 468 (é1 . 63)2(@/2 . é4)2

mAV?

Transition Rate=
W1Wat3y

Accordingly, the differential cross section is given by

— (6100280
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[0k,12m8(w—w") | Sp(K',w) | 2+ 8k, —xr 20 (w+') | S (k') | 2].
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to evaluate expressions like

{p1(t1)p2(t2)ps(ts)pa(ls)) -

We shall make the following approximation:

{p1(t1)p2 (#2)03(ts)p4 (24))
= (p1(tr)p2(t2) Yps(ts)pa(ts))
+(o1(t1)ps(ts) Ypa(t2)pa(te))
Hp1(t1)pa(ta) Xpa(t2)ps(ts)) .  (21)

In doing so we have included only two-particle correla-
tion. In other words, only “bubble” diagrams are taken
into account.® This approximation is consistent with
the random-phase approximation.

With the approximation (21), we have

{Tox(t)p— (L)} T (or(ta)p—1 (24)))
={ T(ox(t1)p—i (1))} N(T (ox(ts)o-x(14)))
it (1) (£4) Yo 1 (t2)pi(22))
+ (ot (t1)p(ta) ot (t2)p—so (80)) . (22)
Substituting (22) into (10), performing the time integra-
tions and dividing (10) by the total interaction time r,

we obtain the transition rate for light-light scatter-
ing as

(23)

dﬂsdwg m*

¢t wwe

a2 1 ws (2m)%® [6(w1+wz—w3—|k1+k2—k3IC)
(14 ws—w3)
| d(—wrtwrto— ket ki—ki|o)
-

| Sr(ky—ks, w1—ws)|?

Skl—ka,wl—-ws 21, 24
P, 1( >1] (24)

Integrating over ws, the elastic! and inelastic differential cross sections are given by

doglas 1 1 (27)%8 w3?| Sr(ki—ks, wi—w3)|?
—— T —(t1 &) 00)? = (25)
dﬂ;; ctwws m wg(w1+wz)— (k1+k2) 'k362
with
wy=w1t+ws— | ki+ka—ks]c,
and
dometas 1 1 (2m)%° (81-83)*(82- 84)%ws?| S (ly— ks, w1—w3) | 2 26)
dQ;  ctwwe mt lw3(w2—'wl)"(k2'“k1)'k352l
with Solk.w)= N dteiot
ovmrnt koo wke)= [ de o ToDps0)),  (27)
The first and the second terms in (23) and (24) come 5
from the first and the second terms in (22). The third S(k,w)= / dtei o (£)p—x(0)). (28)
term in (22), corresponding to two independent in- o

coherent scatterings, is neglected.l:? In (23), = is the
total time of interaction, and

(1; 5M7) Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
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Fic. 1. Elastic con-
tribution to the light-
light scattering cross
section. The center line
(dash-dot line) separates
the upper half from the
lower half which cor-
respond to the factors
Syz:* and Sy; in the tran-
sition probability, re-
spectively. These dia-
grams should be dis- ! 2
tinguished from the
Feynman diagrams.

In deriving (23), we have made use of the relations
pt()=p_x(?), (29)

(pxc(tr) p—w (12)) = B, (pr(t1)p—x(t2)) . (30)

The correlation functions Sr(k,w) and S(k,w) can be ex-
pressed in terms of the longitudinal plasma dielectric
function e(k,w) in the well-known way:

—2% k2 1
Sk,w)= . Im(e(k’w)> (31)
and

pR—
k27 Bl 1
Sr(k,w)= -——I:-— coth— Im( )
47re? 2 G(k,(&’)

+i Re(ea{l,w)—l)] . (32

To help understand the nature of the approximation
made in (22), we express the left-hand side of (22) by
“diagrams.” Take the first term in the right-hand side
of (22) as an example. The factor px(fs) and p_y(ts)
correspond to the creation of electron-hole pairs at #3
and ¢, respectively, and are represented in Fig. 1 by the
two lower vertices. Upon taking the statistical average
of T(px(t3)p—w(ts)), only those diagrams in which the
two electron-hole pairs are connected remain. Thus
the lower half of Fig. 1 corresponds to the factor
(T(px(ts)p—s:(ts))). Similarly, the upper half of Fig. 1
corresponds to the factor ({T(ox(t1)p—x(#2)}1). From
(30) it is seen that this term represents the contribution
from elastic light-light scattering; this is reflected by the
fact that the center line (the dash-dot line) does not cut
through any electron-hole pairs, which means that the
final state of the plasma is the same as its initial state.
Similarly, Figs. 2 and 3 correspond to the second and the
third terms on the right side of (22). This means that
the approximation made in (22) takes into account the
diagrams in Figs. 1, 2, and 3.

At a zero of Ree(k,w), a resonance in the scattering
occurs. The first term in the right side of (23) corre-
sponds to elastic scattering with the plasma state un-
changed. The second term in the right-hand side of

and
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F16. 2. Inelastic contri-
bution to the light-light
scattering cross section. The
center line (dash-dot line)
separates the upper half
from the lower half which
correspond to the factors
Sy* and Sy; in the transi-

tion probability, respec-
tively. These diagrams
should be distinguished

from the Feynman dia-
grams.

(23) corresponds to inelastic scattering, each photon
receiving an energy transfer » and momentum transfer
k from the plasma. These two terms are of the same
order of magnitude at resonance.

If we consider the scattering of photon 1 to photon 3,
and sum over the final states of the photons 2 and 4,
then the transition probability is expressed by (11).
To obtain P to the order ¢®, we need to calculate M up to
the order ¢, Write

M=My+MytMs, (33)
then
P= <(M1TM1)n2n4,nz'n4>

(MMM oMM s+ MM 1) ngngngns) ,  (34)

where M1, M, and M3 are terms proportional to e2, ¢4,
and e%, respectively, in the expansion of (12). The
Feynman diagrams for My, M,, M; are illustrated in
Figs. 4, 5(a), 5(b), 6(a), and 6(b). Note that they are
Feynman diagrams written for M itself and not for
ensemble average value like those in Figs. 1, 2, and 3.
Since the expectation value (MM )ngnynens With re-
spect to the initial photon states 2 and 4 is taken, only
those products in MM which have the same number of
asi(ast) and as(ee) contribute. The term M, 'M; is
illustrated in Fig. 7 and is given by

<(M11M1) n2n4.ﬂzﬂ4>= (C132/h2)5(k1’w’)7' ’ (35)

where 7 is the total interaction time. The contributions
of ((M safM 2a)nzn4,ﬂ2"4> and <(M wtM 2b)nsn4.nzﬂ4> are

Fic. 3. Double incoherent
scattering. The center line
(dash-dot line) separates the
upper half from the lower half
which correspond to the factors
Sz* and Sy; in the transition 3
probability, respectively. These
diagrams should be distin-
guished from the Feynman
diagrams.




F16. 4. Lowest order Feynman diagram
depicting single incoherent scattering.

illustrated in Figs. 1 and 8, respectively, and are
given by

<(M2a.TM2a) n2n4,n2n4> = (C132C242/h4)

Xnanar | Sp(k',w") | %60 k2rd(0—w’), (36)
and
((M2bTM2b)7L2n4,n2n4> = (C132C242/h4)
X nom47S2(k,w)8ir 1 2w8(w—w’).  (37)

In obtaining (36) and (37), uses have been made of the

relations

ST(ka)‘:ST(-‘k7 —w); (38)

S*(k,w)=S(k,w). (39)
The contributions of

«MITM?Aa)nzm,nzm) )
<(M3&TM1)7L2M,"2M> )

<(M17M3b)n2n4.n2n4> )
<(M3bTM1)nzn4,nzn4>

are illustrated in Figs. 9, 10, 11, and 12, respectively.

P (27)%* (81-&5)2

/
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F16. 5(a) Feynman dia-
gram depicting elastic light-
light scattering in the lowest
(@) order. The plasma state
is unchanged. (b) Feynman
diagram depicting inelastic
light-light scattering in the
lowest order. Two plasmons
are created.

(b)

They are given by

<(M1TM3a) n2n4.n2n4>+ <<M1TM3b)”2"" '"2"“>
C15%Cas®nony
= TTS(k,CU)ST(k;w) O ,k27|'6(60— w’) ’ (40)
and
<(M3aTM1) nzn4'n2n4>+<(M3be1)"2"“'"2"4>

C132Cos’nany

=S (k) S ()i 2rio—w) . (41)

From (34), (35), (36), (37), (40), and (41), we obtain

’
- sW )T
T m?V  wws mrV?

WiWawzwy

Expressing S(k,w) and Sr(k,w) in terms of e(k,w) by use of (31) and (32), we get

P wed (6,-83)2 —2%

w2t (é1 . é3)2<é2 . é4)2
€

1
= k2 Im< > -
7 m?V wws 1—e ot e(kw)/ miV?

The differential cross section for scattering of photon 1 to 3 per unit volume of interaction is given as

A% e2(é1-83)2 Hk® s

dwsdQs  Ancim? 1—e B o, cimi

e(k,w)

Integrating (44) with respect to w; gives

da 62(é1 'és)z /w d h(k3-k1)2 w3
0

S w3
dQs  Ancim? 1— g Filws—wy) w1

1

cim*
where the condition

1 6471'2 (é]_ . ég)z(éz . é4)2 V227
m< 4

Wity

Im(———————)
6(1(3'—" kl, w;;——wl)

et (él' é3)2(é2 . é4)2

7;2%451{'1;271'5({.0—60,) I S(k,w)—{—ST(k,w) [ 2 . (42)
1—e(kw) |2
nanah? k4 1218 (w— ') |[—— (43)
W3y e(k:w)
1—e(k,w) |2
w6 (k' —k)2md (w—o') | ———| . (44)
& e(k,w)
Ny 1_€(k7w) 2
witws—we)——#kio3 (k' — k) |————| , (45)
Wiy V2 €(K,w

w1twr—wi=c|kit+h—ki|

has to be satisfied. Since the roles of beams 2 and 4 can be interchanged, there is also a term for do/d; exactly
the same as the right-hand side of (45) with w,k replaced by —w,—k.
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IV. OPTICAL MIXING OF STRONG BEAMS
IN THE PLASMA

In this section we shall be concerned with the scat-
tering from the combined system consisting of the
plasma and laser beams 2 and 4. Our treatment will be
based on the second viewpoint. This is especially moti-
vated by the considerations below.

If the numbers of photons in beams 2 and 4 are #s
and 74, respectively, the probability of light-light scat-
tering in the lowest order is equal to the product of 7sn4
and the right-hand side of (23). Comparing the expres-
sion so obtained with (42), we find that, at resonance
when Ree(k,w)=0, the elastic term in the former is
equal to the product of tanh?(Bw#/2) (which is less
than one) and the ¢® term in the latter, provided that
(32) is taken into account. Now, (42) is the transition
probability of photon 1 to photon 3 including contribu-
tions from all final states of the other photon. Since the
contribution from any final state should be positive, it
may appear surprising that the total probability of
transition to all channels is smaller than that to one of
the channels, i.e.,, the elastic light-light scattering
channel.

To answer this we first note that in (42), we have in-
cluded the channel of incoherent scattering up to the
order €%, in addition to the channels of light-light scat-
tering. If the first term (proportional to e%) in (42) is
much larger than its second term (proportional to e8),
so that the perturbation expansion is justified,
then the total probability given by (42) is in-
deed greater than the probability to the light-light
scattering channels alone. If, however, the beam in-
tensities 7y and 74 are so strong! that in (42) the e?
term dominates over the e¢* term, the probability of
transition to the incoherent scattering channel (Fig. 7
+Fig. 9+Fig. 10+Fig. 114Fig. 12) becomes negative,
if terms of orders higher than ¢® are not included. This
clearly points out that the higher order terms are im-
portant. Neglect of the higher order terms is then
unjustified.

o0 1 0 t
]\7_11',—40':/ P—k'(t)e_i“"tdiJr;lCu(%z%‘;)lm/ dte“i‘""/
—C0 —C0 ~—o0
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F16. 6(a) A higher
order diagram of in-
coherent scattering.
(b) Another higher
order diagram of in-
coherent scattering.

The fact that in the €8 order the total probability be-
comes smaller than the probability to a certain channel
does not mean that the same is true to all orders. This
only makes it imperative to take all higher order terms
into account in the interesting cases when the lowest
order light-light scattering probability is greater than
the lowest order incoherent scattering probability.

It appears difficult to apply (11) and (12) to calculate
P to all orders. We found that (16) and (15) are es-
pecially convenient for this purpose.

When the beams 2 and 4 are strong, we may treat
them as classical fields and disregard the commutation
relations governing the photon operators. Thus, in (25),
the photon fields can be taken out of the multiple com-
mutators which now involve just the electron-density
operators p:

i 2
diy[e*tp_y(t1)+e™py (1), p— (1) ]+ (;icu(nzm)”z)

0 t i1
X / die=i"t / dh / dis[ e p_y(t2) e (ts), [~ p_w(t)+ e px(ta), p () ] ]+ - . (46)

Notice that the expansion parameter is now Cas(ns14)1/2 To evaluate (N_y/,—otN_ir —or), One again only takes care
of two particle correlation as in (21). In other words, one breaks up the statistical average of a product of many
p’s into products of the statistical average of pairs of p’s in the following manner:

(PrsPrs” * * Phigy_1P13n) = {Pr1P1s)* * * {Pron_1Pkza)+all other possible permutations. 47)
Also,
. <pk1pk2 t Pk2n+1> =0, (48)
since
<Pk¢>=0 , fOI‘ k@¢0

and since all the ks involved in (46) are not equal to zero.
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Making use of (48), we obtain from (46)
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~o0 0 C24(n2n4)1/2 2 0 0
<N—k',—w'TN_k',—w')=/ dt/ di/(P—k'T(t/)p_k'(l))ei“"("“‘)—f-(———T*> / dt’eiw’t'/ dig—iv't

¢ t
X/ dtl,/ Ao (1), e p_it(t)F e~ pit(t2") JLe~ i p_s(81) + e pi(tr), poe () D+- -+ . (49)

Substitution of the first term in the right-hand side of
(49) into (16) gives rise to the first term in (42). To
evaluate the rest of the terms in the right side of (49),
we first make use of (47) to obtain

(p1p2Lpsps])=(p202){[p3,p4]) - (50)

Note that in (50), there is no pairing of any p inside the
commutator with any p outside of the commutator,
since all such pairings give vanishing result. For ex-
ample, if p; is paired with p;, then after the pairing is
made, the relative order of p; to ps in the commutator
becomes irrelevant, and therefore the two terms in the
commutator [ps,ps] cancel each other. This argument
can be extended to give

(p1p2' . 'pn[Pn+1,[Pn+2;‘ : ‘[Pm+n—1:Pn+m]' o ID
= <p1P2' . 'Pn)([PHl;[Pn+2: T [Pn+m-l:pn+m:|' . ]]) .

(1)
One then has
(CosLpz- - - [onadpa]- - - 1]
X [ont1,Lont2," * * [ontm—1,pntm] - - 1)
=({Los,[p2" * - [pn-1,0]" - 1T
X{[ontv,[pnt, * *[ontm—tspnam]- -+ TI).  (52)
Furthermore, by similar arguments, one has
(Lps,[p2" - - [pn—1,0n]- -+ ]])=0 when n>2. (33)

Making use of (51), (52), and (53), one finds that the
only nonvanishing terms in the right side of (49) are the
two lowest order terms explicitly given there. Thus, we
have

(A‘T—k' ,—wTAT—k’ ,—w’>= (p——k’ ,——w’TP—k’ ,—w’>

Cog®nang| * !
/ diei / iy
h? — —
2
X{[e~®tp_y(tr)+e“tpu(ts), o—w (| , (54)
where .
b= f dip (et (55)

Equation (54), together with (16), gives exactly the
same result as (42) or (43). This was not anticipated
since (42) or (43) includes H; only in the lowest orders,
while (54) includes H; to all orders. The agreement of
these two calculations is due to the exact cancellation
of all terms of orders higher than 3. For example, in the

approximation (47), Eq. (46) leads to

Coa(nan)!? = o
(1\7_1;1 ,_w1>+—-——;——‘f die t/ dity

—00 —00

X{[etp_y(t1)+-e“tpi(tr), p—w (D),

which means that after statistical average is taken, only
the second term of the perturbation expansion in (46)
remains. Equation (54) can be rewritten as

(‘7\7—1(',—-0)' JrZV-—k’ ,—w’> = <P—k’ ,mw’fp—k' ,—w’)
+ <]V—k’ .—w'1><N—[k' ,—w’> . (57)

Equation (57) is the formula implicitly used in Ref. 3
in which (NV_ys _.)is calculated only to the lowest order.
Our investigation explains why (54) and (16) agree with
the result in Ref. 3. The agreement, however, can not be
expected @ priori. In fact, as was pointed out in the be-
ginning of this section, the lowest order perturbation
gives rise to a negative probability for scattering into
the incoherent channel, when the beams 2 and 4 are
sufficiently strong. Our discussion on the cancellation of
higher order terms means that the higher order correc-
tion to the probability of incoherent scattering is posi-
tive for strong beams. This in turn is exactly cancelled
by the negative higher order corrections to other proc-
esses. The probability of transition to any channel is
actually positive.

(56)

V. A SIMPLE MODEL

In the calculation of the probability of scattering of
photon 1 to photon 3 by the combined system con-
sisting of the plasma and the light beams 2 and 4 it was
not anticipated that we could obtain (N_w—,'N_x/ o),
accurate to all orders in Hy, by the use of Eq. (57) in
which (N_w o) is calculated to the lowest order in H,.

F16. 7. Contribution of (M,1M,), i.e.,
single incoherent scattering. The center line
(dash-dot line) separates the upper half from
the lower half which correspond to the
factors Sy;* and Sy; in the transition prob-
ability, respectively. These diagrams should
be distinguished from the Feynman diagrams.
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Fic. 8. Inelastic contribution to
light-light scattering. This is the
same as Fig. 2 with the photons 2
and 4 interchanged. The center
line (dash-dot line) separates the
upper half from the lower half
which correspond to the factors
Sy* and Sy in the transition
probability, respectively. These
diagrams should be distinguished
from the Feynman diagrams.

Our proof in Sec. IV that all higher order terms in H, do
not contribute to (V_ix N _x ) was based on the
approximations (47) and (48). In the present section we
shall demonstrate that, in a simple model, Eq. (57) is an
exact relation in which (N_x ) is indeed propor-
tional to H;.

Let us consider a plasmon as the quantum of a har-
monic oscillator, which is linearly coupled to a system of
phonons. This coupling gives rise to a shift and a width
of the plasma frequency. When such a system is put
under the influence of photon fields 1, 2, 3, and 4, the

Fic. 9. Contribution of
(M1'M3,). The center line
(dash-dot line) separates the
upper half from the lower half
which correspond to the factors
Sy:* and Sy; in the transition
probability, respectively. These
diagrams should be distin-
guished from the Feynman
diagrams.

total Hamiltonian is given by
H=H+H+H»,
H0= woaTa—l-Z wjbijj'i-Z k,-*abﬁ
i i

(58)

42 kjatb;+free radiation fields, (59)
i

(60)
(61)

In the Hamiltonians, ¢, ¢t are the annihilation and cre-
ation operators for the plasmon; b;, b;t are the annihila-
tion and creation operators for the phonons. They obey
the usual boson commutation relations. The Hamil-
tonians Hy and H; of Egs. (60) and (61), which repre-
sent, respectively, the interaction of the plasmon with
photons 2, 4 and photons 1, 3, correspond to the Hamil-

Hi=exuat+ex*a,

Hy=¢eal+e3*a.
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tonians defined in Eqs. (2) and (3). When the photon
fields are quantized, e;;=C;;4,74;, where 4, A repre-
sent the photon annihilation and creation operators.
In the limit of strong beams, the radiation fields 2, 4
can be treated as classical fields and e becomes eq4(2),
which is just a ¢ number depending on time explicitly.

When we consider the scattering of photon 1 to pho-
ton 3 by the combined system described by Hy+H; due
to the interaction H,, the relevant quantity to be cal-
culated is Tr[e!(¥)a(t)eFH0], where a(f) evolves in
time according to the Hamiltonian H,+H; [see Egs.
(16) and (15)]. To calculate this quantity, we first

Fic. 10. Contribution of (M:1M;). The center line (dash-dot
line) separates the upper half from the lower half which cor-
respond to the factors Sy* and Sy; in the transition probability,
respectively. These diagrams should be distinguished from the
Feynman diagrams.

solve for a(f). The equations of motion are

da(?)
1: P = [d, H0+H1]= woa(t)

+ X kibi(0)+eul®), (62)

i(db;(1)/dt)="[b, Ho+Hy]=w;bi(t)+k;ta(t)

with the initial conditions a(ty)=ao, 8;(to)=>b;0, where
to is the time when ey, is turned on, a,, ;o are operators

(63)

Fic. 11. Contribution of
{(M3stM1). The center line
(dash-dot line) separates the
upper half from the lower half
which correspond to the factors
S7:* and Sy; in the transition
probability, respectively. These
diagrams should be distin-
guished from the Feynman
diagrams.
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F1c. 12. Contribu-
tion of (M3;tM1). The
center line (dash-dot
line) separates the
upper half from the
lower half which cor-
respond to the factors
Sr* and Sy; in the
transition probability,
respectively. These di-
agrams should be dis-
tinguished from the
Feynman diagrams.

which have evolved from the “bare’” operators a, b;, re-
spectively, at the infinite past. Here, the radiation fields
of light beams 2 and 4 are treated as classical fields. By
Laplace’s transform, it is straightforward to solve the
coupled Egs. (62) and (63) for a(z). Thus,

a(t) =acao+z Bitbjote, (64)

where

1 pi
Q=
271 J _i
ki *
sz=——"
2

T J —4oo

[k 2 77
dpep<‘"’°’[p+iwo+z } :
i ptiw;

dpep(z_to)

kl 2 —1
X[(p+iwj)<p+iwo+2 (B )] ,
U ption
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ptioid
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vim—— [ dporinup priocts
TJ i

and

524(17> =/ dteu(t)e“l’(‘—"’) .
to

From above, we see that v, is proportional to the
strength of the coupling in H; of Eq. (60). In the ab-
sence of the light beams 2 and 4, according to Eq. (64),
a(?) becomes

d(o)(t) = atdo‘l“z ,Bjtbjo y (65)

i.e., ¢©(¢) is a linear combination of @y and b;, which is
as expected intuitively.
From Egs. (64) and (65) it is now obvious that

(at(D)a(t))= (e ()a @ ¥))+(at()a(t)) ,

where

(66)

(¢)=Tr{ePHop}/Tre~FHo,

by noting that {(ao)=(bjo)=0, {a(¥'))=v» and (a'(t))
=+¢*. Therefore, in this simple model, we have suc-
ceeded in showing that Eq. (66), which is analogous to
Eq. (57), is an exact relation in which {(a'(¢)) and
{a(t')) are of the lowest order in H;.
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