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distribution. The over-all effect of such collisions is
difficult to estimate. Previous calculations'6 concerning
molecular beams interacting with the exterior cloud,
although not strictly applicable to the experiment, have
indicated the correction is probably of the order of only
a few percent. To emphasize the above considerations,
portions of the experimental curves where some doubt
exists concerning the magnitude of Ii (e) are indicated

by broken lines.
Finally, there remains the question of whether or not

the discharge electrons are in equilibrium with the elec-
tric 6eld at the values of pressure and electrode spacing
used in this experiment. While there is probably not
time for elastic collisions alone to cause the distribution

"I.R. Estermann, 0. C. Simpson, and 0. Stern, Phys. Rev.
71, 238 (1947).

function to reach equilibrium, inelastic collisions play
an important role. The product of electrode spacing
and reduced pressure, ps x= 2.2 Torr cm, is comparable
or greater than the ps x for which Chanin and Rory"
have obtained essentially constant rr/pp in helium for
fixed higher values of E/E. In view of their results,
there is strong evidence that the experimental distribu-
tion represents an equilibrium situation, especially in
the important range E/X&3)&10 "V cm'.
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The quantum theory of interaction of electromagnetic waves in a plasma is formulated from two diBerent
points of view. The Grst is to consider scattering of light oif light (in the form of laser beams) with the plasma
acting as a mediator of the interaction; the second is to consider scattering of one of the light beams oB a
system consisting of the plasma and the other laser beam. Based on the erst viewpoint, the light-light
scattering cross sections, both elastic and inelastic, are calculated in the lowest order. By summing over the
anal states of one of the photons, we obtain, based on the above results, the lowest order cross section of
scattering of the other photon from the photon-plasma system. In the presence of a second stimulating
laser beam, this cross section is enhanced. When both laser beams are very intense, the lowest order per-
turbation treatment is inadequate. The second viewpoint is then conveniently adopted to include the
plasma-laser beam interaction to all orders. The results are discussed and compared with those in previous
treatments. Finally, a simple model is considered. In this model, the plasmon is treated as the quantum of
a harmonic oscillator which is linearly coupled to a system of phonons. All the previous results are explicitly
veri6ed in this model, which is solved exactly.

I. INTRODUCTION

RKATMENTS of the interaction of light with

light in a plasma, both quantum mechanically"
and classically, ' have been given. However, the results

of Refs. 1 and 2 differ from those of Ref. 3. This di6'er-

ence was Gnally resolved in a brief communication. 4

~ P. M. Platzman, S. J. Buchsbaum, and ¹ Tzoar, Phys. Rev.
Letters 12, 573 (1964); also P. M. Platzman and ¹ Tzoar, Phys.
Rev. 136, Aj.1 (1964).

~ D. F. Dubois and V. Gilinsky, Phys. Rev. 135, A995 (1964).
3N. M. Kroll, A. Ron, and N. Rostoker, Phys. Rev. Letters

13, 83 (1964).
4 H. Cheng and Y. C. Lee, Phys. Rev. Letters 14, 426 (I965).

The present paper gives a systematic account of the
subject. '

II. GENERAL THEORY OF LIGHT-LIGHT
INTERACTION

We consider the interaction of a plasma with photons
1, 2, 3, and 4. The total Hamiltonian is

&=Ho+%+&s,
'After the publication of Ref. 4, a letter by D. F. Dubois

appeared LPhys. Rev. Letters 14, 818 (1965)j the results of which
are essentially contained in Ref. 4 and are roughly equivalent to
those of Sec. III in the present paper.
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Hl =C24(&ks (skip —k+(skt (tkppk) t

k=ki-ks,
(2)

and

Hs ——Cis(sk, ttsk p k +Hermitian conjugate, (3)
k'= kl —ks,

where Hp is the Hamiltonian of the plasma and the free
radiation Beld;

may indeed obtain the result in the latter case. However,
it is both interesting and convenient to formulate our
problem based on these two viewpoints separately. In
fact, the formulas obtained in the second formulation
prove useful for taking into account the interaction H»
to all orders.

Let us take the first viewpoint. The S matrix is
given by

Sf; (——» fnl'ns'ns'n4'
~

Q bstbs+k,
V u

C; = 2prt'se'(m'Vcp;I )-"'e"e .

(4)
XT exp ——

00

(Hi(t)+Hs(t))dt

In above, u~, uj, ~ and bk, b~~ are the annihilation and
creation operators for photons and electrons, respec-
tively; V is the total volume of interaction; m is the
electron mass, e; is the unit polarization vector of photon
i. The Hamiltonian H» represents the interaction of
photons 2 and 4 with the plasma, and H2 represents the
interaction of photons 1 and 3 with the plasma. Antici-
pating that both (s»—

4Qs~ and ((Qs—(Q4~ are close to the
plasma resonance frequency we have included only the
resonance interactions in Eqs. (2) and (3).In Hl and Hs,
the A j term is neglected. "

The problem of light-light interaction in a plasma can
be solved in two complimentary ways. We may con-
sider either the scattering of photons 1 and 2 into pho-
tons 3 and 4, with the plasma acting as a mediator, or
alternatively, the scattering of photon 1 into photon 3
by a combined system consisting of the plasma and the
other photons. In the former case, Hp is treated as the
unperturbed Hamiltonian and the scattering is caused
by Hi+Hs together. In the latter viewpoint, since
the interaction of photons 1 and 3 is given by H2,
therefore HQ+Hl is treated as the unperturbed Hamil-
tonian. If, in the former case, all processes contributing
to the scattering of photon 1 to photon 3 are summed, we

/i y (
Hs(t) = exp( —HQt )Hs eXp( ——HQt

(
.

Ea i Ea i
The lowest order term in (6) which gives rise to light-

light scattering is

(i)
Sf.

Ex)
dts((pfn, 'ns'ns'n4'

~

XT(Hi(t, )Hs(ts))
~ (/,ninsnsn4) . (9)

The probability of transition of photons 1, 2 to photons
3, 4 is equal to the square of the absolute value of Sf;
in (9) after summing over the final states and averaging
over the initial states of the plasma,

X
~
Q;ninsnsn4). (6)

In (6), Qpf and Qp; are the initial and final states of the
plasma; e»', iz2', m3', e4' and e», e2, e3, e4 are the initial
and Anal occupation numbers of photon states 1, 2, 3,
and 4, respectively; T is the time-ordering operator, and

fi
Hl(t) =expl -Hot IHi expl —Hot

Ii k~ i'

&=2 Z ISf'I'

C»32C242
dII» dt2 d/3 d] &

—i' (tl,—t3)+we' (t2-t4)

X
~

(ni'ns'ns'n4'~ as'(s4t4slas~ nlnsnsn4) ~'({T(pk(ti)p k (ts))) tT(pk(ts)p k (t4))), (10)

where
Gg= GD4

—Cd2
&

GO =GO» C03&

If we consider the scattering of photon 1 to photon
3, treating H2 to the lowest order only but including H»
to all orders, then (6) is approximated as

tf f' / f,f

( ) denotes the ensemble average over the initial plasma Sfi (&fnl ns ns n4 I

states and
pk(t) e(i/tl)HPtp e (i/k)HPt—

The term u~, ~el„p~ in H» does not contribute since e4 ——0
in the present case.

z 00

T exp
A

Hl(t')dt' H, (t) dt

X ~sppssnsnsn4)
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&»(ti)»(ts)»(tS)P4(t4)) .
tions of »o, then (20a) can be reduced by a procedure to evaluate expressions like
similar to that used in deriving (14) to the following
form:

z=—P&s.l~ If.)&f.l~„tls, )&a t(oo)B„(to)), (20c)
/2m n

where

&.(~)=

We shall make the following approximation:

(Pi(ti)P2(ts)P3(ts)P4(t4))

(Pl(tl)P2(t2))(P3(t3)P4(t4))

+&»(ti)»(tS) )(»(ts)P4(t4))
+&ps(tl)p4(t4))&ps(ts)p (ts)) (21)

X &I exp ——
&

—1

ab'(t')dt'
I

8„'(t)

X Tl exp —— »'(t')dt'

In doing so we have included only two-particle correla-
tion. In other words, only "bubble" diagrams are taken
into account. ' This approximation is consistent with
the random-phase approximation.

With the approximation (21), we have

W1

and
r(t) e (i ltt) sibotg e

—(i fit) I?bo t

II t(t) —e(tltt) irbotrf bte-(tltt) Hbot

III. LIGHT-LIGHT SCATTERING AND OPTICAL
MIXING IN THE LOWEST ORDER

In order to evaluate explicitly the transition proba-
bility of photons 1 and 2 into 3 and 4 from (10), we need

(&2 (pk(ts)p —k'(ts))) 2 (pk(ts)P —k'(t4)))
= (f2'(p (t ) — (t )))')(2'&p (t ) — («)))
+&Pkt(t1)P-k'("4) )(P-k' t(t2)Pk(t3) )

+(pkt(t1)pk(ts))(p k t(ts)p k.(t4)). (22)

Substituting (22) into (10),performing the time integra-
tions and dividing (10) by the total interaction time 2,
we obtain the transition rate for light-light scatter-
ing as

Transition Rate=
(2tr)4es ((31 e,)'-(es tb4)2

I ()k.k 2trIQ(oo —~') IS2 (k', (0) I '+&k.-k 22r~(co+co') IS(k', 40')
I
'j. (23)

m4V'

Accordingly, the diBerential cross section is given by

ds~ 1 sos (2~)'es 8(«+&2 (03 jks+ks —kslc)
(ei es)2(&2 &4)2 Is&(ks ks «—403)ls

d03dMS t" coyg sz orq co2—&3

II(—«+(02+~3—
I ks+ks —ki I c)

Is(ki —ks, «—oos) I

2 . (24)
G02 073—My

Integrating over tos, the elastic and inelastic differential cross sections are given by

with

and

do,)„1 1 (2tr)ses (ass
I Sr(ki —ks, (os—tu, ) I

'
(tbs es)2(es e4)'

d"s c' «td2 tts' ~s(401+402)—(ki+ks) ksc'

(03=(01+(02 Iki+ks ks I c,

dtr; .1„1 1 (2or)'e' (tss es)2(tbs ts4)sees'IS(k, —ks, (y,—(gs) I

2

d 4 c «(t)2 t)s
I ot)3(ot)2 «) (k2 ks) ' ksc

(25)

with
sos=« —(02+ Iks+ks —kilc. Sr(k,40) = dt '"'(T(p (t) (0))),

The first and the second terms in (23) and (24) come

from the erst and the second. terms in (22). The third

term in (22), corresponding to two independent in-

coherent scatterings, is neglected. "In (23), r is the

total time of interaction, and

S(k,co) —= «e'"&pk(t)p .(o)). (2S)

8M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).
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FIG. i. Elastic con-
tribution to the light-
light scattering cross
section. The center line
(dash-dot line) separates
the upper half from the
lower half which cor-
respond to the factors
Sy;* and Sy; in the tran-
sition probability, re-
spectively. These dia-
grams should be dis-
tinguished from the
Feynman diagrams.

Fxo. 2. Inelastic contri-
bution to the light-light
scattering cross section. The
center line (dash-dot line)
separates the upper half
from the lower half which
correspond to the factors
Sy;~ and Sy; in the transi-
tion probability, respec-
tively. These diagrams
should be distinguished
from the Feynman dia-
grams.

In deriving (23), we have made use of the relations

and
P~'(t) =P-b(t), (29)

(pb(tr)p b (ts))=lb, b (pb(tr)p «(ts)). (30)

The correlation functions Sr (k,re) and. S(k,co) can be ex-
pressed in terms of the longitudinal plasma dielectric
function e(k,M) in the well-known way:

and

—2k k' ( 1
S(k,ro) = Iml

1—e-~""44re' Ee(k,ot))
(31)

k'ts —
ph

Sr(k, rs) = — —coth Iml
44re' 2 ke(k, ro)J

( 1
y&Rel —1l . (32)

&e(k,40)

To help understand the nature of the approximation
made in (22), we express the left-hand side of (22) by
"diagrams. "Take the first term in the right-hand side
of (22) as an example. The factor ps(ts) and p q (t4)
correspond to the creation of electron-hole pairs at t3

and t4 respectively, and are represented in Fig. 1 by the
two lower vertices. Upon taking the statistical average
of T(pq(ts)p q (t4)), only those diagrams in which the
two electron-hole pairs are connected remain. Thus
the lower half of Fig. 1 corresponds to the factor
(T(pq(ts)p q (t4))). Similarly, the upper half of Fig. 1
corresponds to the factor ((T(pb(tr)p b. (ts))t). From
(30) it is seen that this term represents the contribution
from elastic light-light scattering; this is rejected by the
fact that the center line (the dash-dot line) does not cut
through any electron-hole pairs, which means that the
6nal state of the plasma is the same as its initial state.
Similarly, Figs. 2 and 3 correspond to the second and the
third terms on the right side of (22). This means that
the approximation made in (22) takes into account the
diagrams in Figs. 1, 2, and 3.

At a zero of Res(k, s&), a resonance in the scattering
occurs. The first term in the right side of (23) corre-
sponds to elastic scattering with the plasma state un-
changed. The second term in the right-hand side of

(23) corresponds to inelastic scattering, each photon
receiving an energy transfer co and momentum transfer
k from the plasma. These two terms are of the same
order of magnitude at resonance.

If we consider the scattering of photon 1 to photon 3,
and sum over the final states of the photons 2 and 4,
then the transition probability is expressed by (11).
To obtain P to the order e', we need to calculate M up to
the order e'. Write

then
M =Mr+Ms+3IIs, (33)

Fro. 3. Double incoherent
scattering. The center line
(dash-dot line) separates the
upper half from the lower half
which correspond to the factors
Sy;~ and Sy; in the transition
probability, respectively. These
diagrams should be distin-
guished from the Feynman
diagrams.

I'=((M tM )„,„,„,„,)
+((M2 Ms+Mr Ms+Ms Ml)esw4, msn4) y (34)

where M~, M2, and 3f3 are terms proportional to e', e4,
and e', respectively, in the expansion of (12). The
Feynman diagrams for M&, 3I&, 3f3 are illustrated in
Figs. 4, 5(a), 5(b), 6(a), and 6(b). Note that they are
Feynman diagrams written for 3II itself and not for
ensemble average value like those in Figs. 1, 2, and 3.
Since the expectation value (MtM)„,„4 „,„, with re-
spect to the initial photon states 2 and 4 is taken, only
those products in Mt& which have the same number of
a4t(ast) and a4(as) contribute. The term MrtMr is
illustrated in Fig. 7 and is given by

((MrtMr) ~,„4,„,~4)= (Crs'/ts')S(k')ro')r, (35)

where v is the total interaction time. The contributions
of ((MsatM24)asn4, asn4) and ((MsbtMsb)is+4, ase4) are
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FrG. 4. Lowest order Feynman diagram
depicting single incoherent scat tering.

illustrated in Figs. 1 and 8, respectively, and are
given by

((M JM.), . ..,)=(C 'C '/t'3')

X232234r
~

Sr(k', o&')
~

'R,a2&r8(ce —co'), (36)

(a)

Fxo. 5(a) Feynman dia-
gram depicting elastic light-
light scattering in the lowest
order. The plasma state
is unchanged. (b) Feynman
diagram depicting inelastic
light-light scattering in the
lowest order. Two plasmons
are created.

((tldsbt~sb)nsn4, nsn4) (C13 C24 /~ )
X232234r52(k&o&) 8a,1,2&r8(co—c0') . (37) (b)

S*(k,o&) =5(k,co) . (39)

In obtaining (36) and (37), uses have been made of the They are given by
relations

(k ) 5 ( k ) (3g)
((~1 ~sn)nsn4 'n2n4)+ ((~l ~sb)n2n&, nsn4)

Cga C24 N2S4
rS(k,o&)Sr(k, o&) t'&s. s22rb(oi o&'), (40—)

The contributions of

((~1~sn)nsn4, nsn4) & ((iid1 iaaf'sb)nsnc, nsn4) &

((~sn ~1)n2n4, n&n4) & ((1)fsb tl fi) nsn4, nsn4)

are illustrated in Figs. 9, 10, 11, and 12, respectively.

((iaaf sn )f1)nsn4, nsn4)+((Msb Ml)nsn4, nsn4)

Cg32C24'm F4
rSr*(k,o&) S(k,o&)8„„,22r8(o&—o&') . (41)

A4

From (34), (35), (36), (37), (40), and (41), we obtain

CO~@)2COSCO4

I' (2&r)'e' (ei e,)' (2&r)'e' (ei es)'(es e4)'
5(k',c0')+ nsrcsbs s2&rb(o) —o&')

~
5(k,o&)ySz (k,oi)

~

'.
ns'V ~~~3 m'V' (42)

Expressing 5(k,co) and Sr(k, o&) in terms of e(k,o&) by use of (31) and (32), we get

I' sre' (ei es)' —2I3 ( 1 ) sr'e' (ei es)'(es e4)' 1—e(k,oi) '
k' Im~ ~+ n222462ksti&;322r8(co oi,') — . (43)

1—e " (e(k,oi)J m V oisoisolso24 e(k, o&)

The differential cross section for scattering of photon 1 to 3 per scrsit eolssme of interactio23 is gis!ert css

Integrating (44) with respect to o&3 gives
I

do. e'(e, .es)2

403 4X'2C 4512
0

(k,—k,)
do& 3

—I111
1 esse" 2 "—'1 o21 Ee(ks —ki, o&s—coi)2

d'o. e'(ei. es)' Aks c03 1 ) e4&rs (es. es)'(es e4)' 232234—Im ~+ —
o&3 6'k45(k' —k)22rs(o& —c0')

do&sd03 42rsc4ms 1—e o"s o21 e(k&co)& c4m4 coioisc04 Vs

1—e(k, ce) '

e(k,cs)
(44)

where the condition

2e'sr' (ei es)'(es P4)' 232234 1—e(k, o&) '
+ (c01+ois—o24) hsk4P(k' —k)

C tS My&)2C04 V2 e(k,o&)

o&1+c02—o24= c ( k1+ks —k4
~

(45)

has to be satisfied. Since the roles of beams 2 and 4 can be interchanged, there is also a term for do/dps exactly
the same as the right-hand side of (45) with oi,k replaced by —oi,—k.
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IV. OPTICAL MIXING OF STRONG BEAMS
IN THE PLASMA

In this section we shall be concerned with the scat-
tering from the combined system consisting of the
plasma and laser beams 2 and 4. Our treatment will be
based on the second viewpoint. This is especially moti-
vated by the considerations below.

If the numbers of photons in beams 2 and 4 are m2

and e4, respectively, the probability of light-light scat-
tering in the lowest order is equal to the product of e2e4
and the right-hand side of (23). Comparing the expres-
sion so obtained with (42), we find that, at resonance
when Ree(kp&) =0, the elastic term in the former is
equal to the product of tanh'(Peek/2) (which is less
than one) and the e' term in the latter, provided that
(32) is taken into account. Now, (42) is the transition
probability of photon 1 to photon 3 including contribu-
tions from all 6nal states of the other photon. Since the
contribution from any anal state should be positive, it
may appear surprising that the total probability of
transition to all channels is smaller than that to one of
the channels, i.e., the elastic light-light scattering
channel.

To answer this we first note that in (42), we have in-
cluded the channel of incoherent scattering up to the
order e, in addition to the channels of light-light scat-
tering. If the ftrst term (proportional to e') in (42) is
much larger than its second term (proportional to e'),
so that the perturbation expansion is justi6ed,
then the total probability given by (42) is in-
deed greater than the probability to the light-light
scattering channels alone. If, however, the beam in-
tensities n2 and n4 are so strong' that in (42) the e'
term dominates over the e4 term, the probability of
transition to the incoherent scattering channel (Fig. 7

+Fig. 9+Fig. 10+Fig. 11+Fig. 12) becomes negative,
if terms of orders higher than e' are not included. This
clearly points out that the higher order terms are im-
portant. Neglect of the higher order terms is then
unjusti6ed.

Fro. 6(a) A higher
order diagram of in-
coherent scattering.
(b) Another higher
order diagram of in-
coherent scattering.

(a)

(b)

The fact that in the e' order the total probability be-
comes smaller than the probability to a certain channel
does not mean that the same is true to all orders. This
only makes it imperative to take all higher order terms
into account in the interesting cases when the lowest
order light-light scattering probability is greater than
the lowest order incoherent scattering probability.

It appears dificult to apply (11) and (12) to calculate
I' to all orders. We found that (16) and (15) are es-

pecially convenient for this purpose.
When the beams 2 and 4 are strong, we may treat

them as classical fields and disregard the commutation
relations governing the photon operators. Thus, in (25),
the photon 6elds can be taken out of the multiple com-
Inutators which now involve just the electron-density
operators p.

p g (t)e '""dt+—C24(ngn4)'t' dte '" ' dttLe '""p ~(tr)+e'""p~(tt), p q (t)]+~ C24(nen4)'I' ~—
EA

(Qg 'EGA dtl dt2Le '""p w(t2)+e'~ "p~(t2), [e '~ "p ~(tr)+e'""p~(tt), p ~ (t)]]+ . (46)

Notice that theexpansionparameterisnowC~4(n&n4)'t'. To evaluate (N &. „tN ~ „),one again only takes care
of two particle correlation as in (21). In other words, one breaks up the statistical average of a product of many
p's into products of the statistical average of pairs of p s in the following manner:

Also,

since

(pkgp+2'
' pq,„,pr,„)= (pz,pq, ) (pq,„,pq, „)+all other possible permutations.

(Pkgpkg' ' 'PLg„+g)

for k;/0

(47)

and since all the lr s involved in (46) are not equal to zero.
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Making use of (48), we obtain from (46)

(X k, „ X k
(Cs4(ese4) 'l') '

~f (P k't(—f )P '(f—)&~" +I )

e'baal

X dt's' Cft(PP k t(f'), e""'P k"(tt')+e '~"'Pkt(tt')7Le '""P k(tt)+e'""Pk(tt), P k~(f)7&+ . (49)

C24'N2m4

A2
dte

where

X(L *""P—(f )+ '"" (f ) — (f)7& (54)

p Ql ~r ckp k(f)e

Equation (54), together with (16), gives exactly the
same result as (42) or (43). This was not anticipated
since (42) or (43) includes Ht only in the lowest orders,
while (54) includes Ht to all orders. The agreement of
these two calculations is due to the exact cancellation
of all terms of orders higher than e'. For example, in the

Substitution of the erst term in the right-hand side of
(49) into (16) gives rise to the first term in (42). To
evaluate the rest of the terms in the right side of (49),
we first make use of (47) to obtain

(PlPsLPBP47& (PsPs)(rP3 P47) . (50)

Note that in (50), there is no pairing of any P inside the
commutator with any p outside of the commutator,
since all such pairings give vanishing result. For ex-

ample, if p3 is paired with p~, then after the pairing is
made, the relative order of p3 to p4 in the commutator
becomes irrelevant, and therefore the two terms in the
commutator [ys,P47 cancel each other. This argument
can be extended to give

(PlP2' ' 'Psgta+»)Pn+2y ' ' ' PPm+n »Pn+na7 ' ' —' 77)
= (PlPs' ' 'P &(G -+~,CP-+s, "LP + »P + 7 "—77).

(51)
One then has

(b~ bs 6o. t7P-7 77
x Q.+»Q.+s, [y.+~ »P.+~7 77&
=6 t,LPs LP.-~,P-7 77&

X((P-+~,LP +s ' ' 'EP + t P + 7 ''—77) ~ (5'2)

Furthermore, by similar arguments, one has

([jog,(ps. . LP. t,p 7 . 77&=0 when')2. (53)

Making use of (51), (52), and (53), one finds that the
only nonvanishing terms in the right side of (49) are the
two lowest order terms explicitly given there. Thus, we

have

approximation (47), Eq. (46) leads to

dte '"'

&&(L
'"" —(f )+ *"" (f ) — (f)7), (56)

which means that after statistical average is taken, only
the second term of the perturbation expansion in (46)
remains. Equation (54) can be rewritten as

(cV k cu E k ra &
—(P k ry P k rot&

+(X k, t&(E,k, „). (57)

Equation (57) is the formula implicitly used in Ref. 3
in which (E k „)is calculated only to the lowest order.
Our investigation explains why (54) and (16) agree with
the result in Ref. 3.The agreement, however, can not be
expected a priori In fa.ct, as was pointed out in the be-
ginning of this section, the lowest order perturbation
gives rise to a negative probability for scattering into
the incoherent channel, when the beams 2 and 4 are
su@ciently strong. Our discussion on the cancellation of
higher order terms means that the higher order correc-
tion to the probability of incoherent scattering is posi-
tive for strong beams. This in turn is exactly cancelled
by the negative higher order corrections to other proc-
esses. The probability of transition to any channel is
actually positive.

V. A SIMPLE MODEL

In the calculation of the probability of scattering of
photon 1 to photon 3 by the combined system con-
sisting of the plasma and the light beams 2 and 4 it was
not anticipated that we could obtain (E k tlV~,
accurate to all orders in H» by the use of Eq. (57) in
which (Ã k, ) is calculated to the lowest order in H&.

Fro. 7. Contribution of (3frt3fq), i.e.,
single incoherent scattering. The center line
(dash-dot line) separates the upper half from
the lower half which correspond to the
factors Sy;* and Sys in the transition prob-
ability, respectively. These diagrams should
be distinguished from the Feynman diagrams.
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FIG. 8. Inelastic contribution to
light-light scattering. This is the
same as Fig. 2 with the photons 2
and 4 interchanged. The center
line (dash-dot line) separates the
upper half from the lower half
which correspond to the factors
Sfs and Sy; in the transition
probability, respectively. These
diagrams should be distinguished
from the Feynman diagrams.

tonians defined in Eqs. (2) and (3). When the photon
fields are quantized, e;;=C;;A,t'A;, where A, At' repre-
sent the photon annihilation and creation operators.
In the limit of strong beams, the radiation fields 2, 4
can be treated as classical fields and es4 becomes es4(t),
which is just a c number depending on time explicitly.

When we consider the scattering of photon 1 to pho-
ton 3 by the combined system described by Hp+Hi due
to the interaction II2, the relevant quantity to be cal-
culated is Trfat(t)a(t')e ~~pj, where a(t) evolves in
time according to the Hamiltonian Hp+Hi Lsee Eqs.
(16) and (15)j. To calculate this quantity, we first

Our proof in Sec. IV that all higher order terms in H» do
not contribute to (1V ~. „tlV ~. „)was based on the
approximations (47) and (48). In the present section we
shall demonstrate that, in a simple model, Eq. (57) is an
exact relation in which (1V s, „) is indeed propor-
tional to H».

Let us consider a plasmon as the quantum of a har-
monic oscillator, which is linearly coupled to a system of
phonons. This coupling gives rise to a shift and a width
of the plasma frequency. When such a system is put
under the inhuence of photon fields 1, 2, 3, and 4, the

FIG. 9. Contribution of
(M&f3', ). The center line
(dash-dot line) separates the
upper half from the lower half
which correspond to the factors
Sy;~ and Sy; in the transition
probability, respectively. These
diagrams should be distin-
guished from the Feynman
diagrams.

Fro. IO. Contribution of (Mit3f&t, ) The cente. r line (dash-dot
line) separates the upper half from the lower half which cor-
respond to the factors Sy;* and SJ; in the transition probability,
respectively. These diagrams should be distinguished from the
Feynman diagrams.

solve for a(t). The equations of motion are

da(t)
i =)a, Hp+Ht j=tppa(t)

+P k;b;(t)+es4(t), (62)

total Hamiltonian is given by i(db (t)/dt)= $b, Hp+Ht j=ops;(t)+7p; a(t), (63)
H =Hp+Ht+Hs,

Hp pppata+g pp;b;tb——;++k;*ab;

with the initial conditions a(tp)=ap, b;(tp)=b;p, where
(0 is the time when e24 is turned on, ao, b;0 are operators

+g k;atb, +free radiation fields, (59)

Ht=es4at+es4 a,

Hs =etsat+et, *a.
(60)

In the Harmltonians, c, u~ are the annihilation and cre-
ation operators for the plasmon; b;, b;t are the annihila-
tion and creation operators for the phonons. They obey
the usual boson commutation relations. The Hamil-
tonians Hi and Hs of Eqs. (60) and (61), which repre-
sent, respectively, the interaction of the plasmon with
photons 2, 4 and photons 1, 3, correspond to the Hamil-

FzG. 11. Contribution of
(Ma, t'ai). The center line
(dash-dot line) separates the
upper half from the lower half
which correspond to the factors
Sy;* and Sy; in the transition
probability, respectively. These
diagrams should be distin-
guished from the Feynman
diagrams.
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pt
27r

&pe"" '»es4(p) p+itoo+Q
p+sMJ—

Frc. 12. Contribu-
tion of (Mo J3Eql. The
center line (dash-dot
line) separates the
upper half from the
lower half which cor-
respond to the factors
Sf;* and Sf; in the
transition probability,
respectively. These di-
agrams should be dis-
tinguished from the
Feynman diagrams.

e. (p)= dtes4(t) e ~ &' "~ .

From above, we see that yt is proportional to the
strength of the coupling in H& of Eq. (60). In the ab-
sence of the light beams 2 and 4, according to Eq. (64),
a(t) becomes

~"'(t)=«co++ P,Ao, (65)

which have evolved from the "bare" operators a, b;, re-
spectively, at the infinite past. Here, the radiation 6elds
of light beams 2 and 4 are treated as classical 6elds. By
I aplace's transform, it is straightforward to solve the
coupled Eqs. (62) and (63) for a(t). Thus,

i.e., u"'(t) is a linear combination of ao and b;o which is
as expected intuitively.

From Eqs. (64) and (65) it is now obvious that

( "(t) (t'))=( ""(t) "'(t'))+( '(t))( (t')) (66)

where

where

27ri

G(t) =&t~o+Z P b~o+7t'

dpen(& —&o) p+ j&oo+Q
p+ 2ooj-

gOO

dpep(t —to)

(64) (&p)=Tr{e ~~op)/Tre e~o,

by noting that (uo)=(b;o)=0, (a(t'))=y, and (et(t))
=yt~. Therefore, in this simple model, we have suc-
ceeded in showing that Eq. (66), which is analogous to
Eq. (57), is an exact relation in which (at(t)) and
(a(t')) are of the lowest order in Pt.
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