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The radiative corrections to the lepton spectrum and decay rate for Ez+ decays are calculated, assuming a
phenomenological weak E-m vertex and using perturbation theory. The answer depends logarithmically
on a cutoff. The result applied to pion beta decay yields a fractional change in lifetime of —1.2% and is not
sensitive to reasonable variations in the cutoff. The radiative correction to the electron spectrum from
E,e+ decays at rest is substantial, averaging about 5% in absolute magnitude over most of the measurable
energy range, and is insensitive to the cutoB. The correction to the E,I lifetime, the E„3 lifetime and muon
spectrum is probably small (a fraction of a percent) although the numerical estimates are sensitive to the
cutoff.

'HE study of the three-body leptonic decays of E
mesons can furnish valuable information about

the nature of the strangeness-changing weak interac-
tions. The coarser features of these decays appear to be
rather well established experimentally. ' ' There is agree-
ment with the presence of only V—A interactions, p, -e

universality, lepton locality, etc. However, more accur-
ate experimental knowledge of decay spectra and
branching ratios than is presently available would be
desirable, particularly for the determination of the form
factors involved. It is to be expected that sufhciently de-
tailed measurements of these decays will require an
estimate of the radiative corrections. In this paper we
will describe a calculation of such radiative corrections.
Recent experiments' have sought an accurate measure-
ment of the lepton momentum spectrum; thus we shall
concentrate on the radiative correction to the lepton
spectrum and to the decay rate.

%e adopt the point of view that a complete phe-
nomenological description of the E'-xlv vertex in E~3+
decay is given by an appropriate strangeness-changing
weak Hamiltonian, or equivalently, by the corre-
sponding transition Inatrix element. %e then calculate
the radiative corrections using ordinary perturbation
theory. This approach ignores the possible eGect of elec-
tromagnetic corrections to the strong-interaction re-
normalization graphs. However, there is no satisfactory
technique at present to calculate such effects. An un-

fortunate feature of the simple perturbation-theory
approach is that the radiative corrections turn out to be
cutoff-dependent. This fact has its origin in the non-
renormalizability of the conventional theory of weak
interactions. Thus, the usefulness of the present cal-
culation is open to question. Nevertheless, we can esti-
mate the numerical value of the radiative corrections

using a "reasonable" value of the cutoff, provided the
estimate is relatively insensitive to variations in the cut-
off. (This is customary in nucleon leptonic decay, where
the radiative corrections are also cutoff-dependent. )

Let us begin by writing down the transition matrix
element for the zero-order E is+ process (Fig. 1a)

Rs= i(2rr) sr—rsi't'(4ErrE Ei) 't'5'"(Plr ps pi p,)— — —
XL(p~+P-)-f++(P~ —P-)-f-)~.v-s(& —its)ei (&)

Here, the mass sts, energy E, and four-momentum p of
the various particles are denoted by appropriate sub-

scripts, I and s are Dirac spinors. The form factors f~
are, for locally coupled leptons, functions of the
invariant four-momentum transfer (pic—p )'. They
are analytic in the cut plane with a cut starting at
(rrsrc+srt ) . There is some justification in assuming that

f+ are slowly varying functions since the physical region
of momentum transfer, srsis& (pit —p )'& (mir —srt )' is

relatively far removed from the cut. ' ' Experimental
data thus far are consistent with constant form factors.
Since the radiative correction is itself small we can
safely neglect any small energy dependence of the form
factors in calculating it. (These remarks apply a
fortiori to s,s).

Concerning the normalization of f~, in the limit of

unitary symmetry, the form of the weak K—x vertex is
the same as the weak m.—x vertex, the latter being given

by the conserved-vector-current hypothesis. ' Assuming
also the octet hypothesis of Cabibbo, ' one has

f+ ~ 2Xs XG"s tang, P= f /f~ &0 —(2)—
where C~p is the weak coupling constant determined
from 0"decay, and 0 is the Cabibbo angle. The factor
of 2 arises from the de6nitionr of gge, while the —, is an
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(e)

Fzo. |.Feynman
diagrams for the
lowest order radia-
tive corrections to
It:»+ decay. (a) zero-
order diagram; (b)-
(f) virtual diagrams;
(g)-(i) inner brems-
strahlung.

cally, neglecting possible electromagnetic corrections to
the strong-interaction renormalization graphs. The am-
plitudes for the diagrams in Fig. 1[(c), (d), and

(i)7 are given by the gauge-invariant substitution

p -+p —eA.
The zero-order matrix element, Eq. (1), can be re-

written as

~o=2p. y+(1+()pt y (4)

Rg= if~(2—rr) 'mt'"(4EtrE Et) 't'

X &'"(ptr —p.—pt —p.)&.t)f oz(1—its)nt, (3)
where

The evaluation of the matrix element arising from the
virtual diagrams is straightforward and, with a defini-
tion similar to Eq (3)., is found to be

SU(3) Clebsch-Gordan coefficient. For the actual decay,
symmetry-breaking interactions associated with the
difference of mx and m, can introduce a nonzero f
term. Thus, for example, consideration of such inter-
actions together with the assumption of E* domi-
nance of the E'—or vertex leads to a value for ( of
—(m&' —m ')/mxa'= —0.31. Experimentally the exact
value of c is still uncertain, but it is believed to be
small.

Finally, a word should be said about time-reversal
invariance. If T is conserved f+ and f are relatively
real; if not $ is complex. The decay rate and spectra are
relatively insensitive to the imaginary part of $ (Im)
enters only in

~ $ ~

'); however, Imf enters directly into
the component of the lepton polarization perpendicular
to the decay plane. ' ' As yet, there is no experimental
indication of a nonzero Imp.

We now turn to the calculation of the radiative cor-
rection to E&3+ decay. "The lowest order perturbation
diagrams are shown in Fig. 1[(b)—(i)7. As mentioned
earlier, we treat the weak E—m- vertex phenomenologi-

where
M;,p,„,i=2p y ', A+(1+-$.)pt p ,'B, -

A = (a/or) [-,' ln(A/ml) —1
—2 ln(X/mt)+tr[ —~zt2mts(1+$)(ptr —pt)'7, (6)

B= (n/n-) [——', ln(A. /ml) —(7/4)
—2 ln(X/mt)+tr —2t2/(1+ $)7. (7)

In Eqs. (6) and (7), A is the ultraviolet cutoff, which is
introduced as a Feynman regulator for the photon
propagator, and X is the "fictitious" photon mass. The
infrared divergence associated with the latter will be
exactly cancelled when the contribution of the inner
bremsstrahlung diagrams is included. For simplicity,
we will only give expressions for t& and t2 in the center-
of-mass system [ptr = (O,mrc)7 which we will use hence-
forth. The lepton energy and (three-) momentum will

be denoted by E and p.

( 2p
l ( 2mtrp

r
(m& E+p l (E+p

p kmz —E+pp kw (s+p) mph kmz —z pp \ mx)——

(E+p~
— (E+pq+ 21n—+1—ln( ) ln( [, (8)

m, ( mt ) ( mt J

t2 [(mlr L)/——p7 ln[(E+p—)/mt 7—in(mtc/mt) .

In Eq. (8) the function Li&(x) is the dilogarithm (the negative of the Spence function) defined by"

Lie(x)=
ln(1 —z) x"

dz= g —.
' N. Cabibbo and A. Maksymowicz, Phys. Letters 9, 352 (1964).' I'n this paper we consider the decay of charged kaons only. We present an explicit calculation for positively charged kaons

although the results apply also to negative kaons. Radiative corrections to the three-body leptonic decays of neutral kaons will
be the subject of a future paper."L.Lewin, Dttogartthpas aptd Assootatod FNppotiopts (MacDonald, London, 1958).
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From the above equations we obtain the lepton energy spectrum in the c.m. system (i.e., for decays at rest):

where

)ddr~ I f+I' p m. ' '

idd), (2 )' 2m' P')
/dry If+I' p / m. ' '

hdtv„;, „g (2 )'2m+k B'))

mPI I+ gI')
d, dd(dd*+ ~+~, dd Re(i+d),j

( m)'I 1+ ( I
'B)

P&.III H'2+ - I+ ~~mdH' ReC(1+/)(3*+8)] (12)

m. ' & H2=—(px—p)) '=ma' —2m~E+mp & (m~ m—))' (13)

It now remains to calculate the contribution from the inner bremsstrahlung (IB), diagrams (g), (h), and (i) in
Fig. 1. The IB differential decay rate is found using standard techniques to be (c.m. system)

nI f+I' dydq / m. ')' m('I1+(I') q G
2G+

(2')' SmjrEqok G'l 2 ) q p(

where

(p, e)'-( m, 'II+)I')
G+ l(m~' —mP —G')+2mPG'Re(1+$), (14)

kp( q)

m '&G'=—(H—q)'~&H'

and q= (q„q) is the photon four-momentum.
As no provision is made experimentally to detect inner bremsstrahlung photons we will integrate Eq. (14) over all

kinematically compatible photon momenta. Care must be exercised in allowing the photon a "fictitious" mass X

when performing the integrations and the polarization sum. After a somewhat lengthy calculation we obtain the
result

t «& If.l' p
—

t 'II+Sl'
p) HI H'+ +mg'H' Re(1+$) Io

kdEP xs (2s)' 2m~ s. 4

Iy (H2 m 2)2

+— ——m '(H' m')+m, ' ln ——
I

2p; H+ 2m~' Re(1+()—2- 2
' '

m2

mPI1+tI')

(H' —m 4 H'i
XI —2m 'ln

I +
m. 'd) 4m' p

I2 (H' —m~')' m '(H' —m ')' H2 '))—tn ' B'—m '—B'ln
m. '1

where,

m 'I1+$I' (H2 m')' — H2
+3m (H' —m ') —m.'(2H'+m ) ln (16)

2

and

m ' ' H2(H' —m ') N, ' B'
Io= 1- I1 ln -i-ln —-I3-I4 Is Il i- --ln

m& 1s~52~ mdi B' m' (17)

Il =2[(E/p) 1nC(E+p)/my] 1], —

I2= lnC(E+ p)/m~)+-,' 1nC(m~ —E+p)/(mz —E—p))

I8 (E/p)[-,' LimC(E —p——)/2E) —-', Li2C(E+p)/2E)+lnC(E+p)/md) ln(2E/m&)l

(19)

(20)

I4= (E/P)[L4C(E p) /m] —L4C(E+—p)/m~]]+1 1n( H/
2—&m')

+( )"/m~p)»C(E+ p)/md] —C(mx' —mP)/2m'] lnC(m~ —E+p)/(m~ —E—p)], (21)

Is 1+(E/p) DnC(E+ p)/md) ———Li,(p/E)+Lim( —p/E)]. (22)

«m»»ng Eqs. (11), (12), and (16) gives the leptonenergy spectrum

dr/dE= (dr/dE)0+(dr/dE)„;„„. ,+(dr/dE)is= (dI /dE)0+(dr/dE)„g, — (23)
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Fro. 2. e„a lpion beta
decay): zero-order elec-
tron spectrum and radia-
tive corrections for h.=m~.
In Figs. 2-6 the abscissa
is the lepton energy,
which runs from E .
=m) to E =(mg+mP
-m ')/(2m'); the ordi-
nate is proportional to
dr/dZ.

Some numerical values of the fractional change in life-
time for different values of the cutoB A. are given below:

A7./7.
—1.1'—1 2'

1.4'Po

h.

mp=769 MeV
m~=938 MeV

2mB

the lifetime is

& /r=( —0)/ =1—r/ro= —rac/ro (24)

where the last two terms represent the radiative cor-
rection of order n. It is to be noted that the infrared
divergent terms in Eqs. (12) and (16) exactly cancel, as
they should. However, the result still contains a de-
pendence on the ultraviolet cutoB A.

Equation (23) is directly applicable to experiments
which measure the shape of the lepton energy or mo-
mentum spectrum, and we have analyzed the various
terms in it numerically, by computer. The results are
presented below. It is also of some theoretical interest
to calculate the radiative correction to the decay rate
r (or equivalently the lifetime r= 1/1')—which we ob-
tain by integrating Eq. (23) over E. In principle, this
could be done analytically (as is easily done with the
zero-order spectrum") however, since the total cor-
rection is small, and in any case, not unambiguous due
to the presence of the cutoff, a numerical integration is
more than adequate. In the Appendix we give the result
of an analytic integration of Eq. (23) in the limit of
vanishing lepton mass. (This limit applies to E.3+ de-

cays quite accurately, but much less accurately to
z.,s+ decays. In z.„+decay approximation E=p is poor
since E, is only 4.5 MeV. )

We should mention that radiative corrections to
pion beta decay have been published twice previous to
the present eGort. "However, both of these previous
papers are marred by misprints, and are further limited
by several approximations. Dr. Chang has kindly sup-
plied us with the relevant parts of his thesis, and his un-
published result is in agreement with the nz~ ~ 0 case
given in the Appendix. This provided a valuable check
on our work.

We now turn to the numerical evaluation of the terms
in Eq. (23) and the integral of these over the lepton
energy. These results (largely self-explanatory) are pre-
sented in Figs. (2) through (6). It is convenient to dis-
cuss the three cases, m, 3+, E,3+, and E„3+separately.

The radiative corrections to the electron spectrum in
pion beta decay are shown in Fig. 2. As this decay is
quite rare, only the correction to the lifetime is of ex-
perimental interest at present. The fractional change in

The dependence of the radiative correction on the
cutoff h. is quite transparent from Eqs. (11) and (12),
where h. occurs only in A and J3. In the approximation
m, —+ 0 the effect of varying A from some initial value,
say one proton mass m„, is to add a multiple of the zero-
order spectrum, namely

((3n/27r) ln(A/m„))(dr/dE)e
=(0.0035 1n(A/~„))(dr/dE), . (25)

For A=2m~ this is just 0.24%%uo of the zero-order spec-
trum. The effect on the fractional change in lifetime is
just the negative of the above factor, i.e.,

Ar/r = (Dr/r)g= „(3/2nr) 1m(A/jw~—), (26)

again, about 0.24%%uo for A.=2m~. It is interesting to note
that the same "universal" term is present in the radia-
tive correction'4 for nucleon leptonic decay. From Eqs.
(A8) and (A1) we see that this term is approximately

—(3n/27r) ln(m„/rim, +) ~ —(3n/2z-)

Xln(~,/E, .)+O( / ), (2&)

25—

l5

IO FIG. 3. E,3+: zero-
order electron spectrum
and radiative correc-
tions for A=m„,

where E is the end-point energy. The contribution
from the "universal" term is about —

1%%u~. The results
for this case agree with the earlier results of Chang, "
and were useful in debugging our computer program.

The radiative correction to the electron spectrum
from E,3+ decays at rest is shown in Fig. 3 and in the

"A. Fujii and M. Kawaguchi, Phys. Rev. 113, 1156 (1959).
~' N.-P. Chang, Phys. Rev. 131, 1272 (1963). G. Da Prato and

G. Putzolu, Nuovo Cimento 21, 541 (1961).

-I0—

"S. M. Berman and A. Sirlin, Ann. Phys. (N.Y.) 20, 30 (1962).
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FIG. 4. Ratio of radiative corrections to zero-order lepton spec-
trum for A=m„. . The E„3+spectrum is for &=0,

upper curve in Fig. 4. The correction is considerable,
averaging about 5% in absolute magnitude for the
energy range 50 to 229 MeV. As the above discussion
for the x,3+ case shows, the spectrum is insensitive to
variations in the cutoff over a reasonable range (except
where the spectrum crosses through zero). Doubling
the cutoff (from m„ to 2m„) adds only 0.24% of the zero-
order spectrum. The shape of the spectrum due to the
radiative corrections is interesting in so far as there is
almost equal amounts of positive and negative correc-
tions. In fact, the integral of the radiative correction
very nearly vanishes, the fractional change in lifetime
for h.=m„ is only hr/7 = —0.03%. This is much smaller
than the —0.24% ambiguity resulting from the ultra-
violet cutoff. From Eq. (27) we see that in this case the
"universal" term is in fact small since E,„, is large
(229 MeV). Therefore, although the radiative correc-
tions to the electron spectrum are substantial and quite
insensitive to reasonable variations in the cutoff, we get
a completely ambiguous result for the correction to the

20

l5

FIG. 6. E„3+:zero-order
muon spectrum and radi-
ative corrections for
A=m„, and )=+1.

-IO

decay rate. The most we can say about the latter is that
it is probably small.

The corrections to the IC„3+ spectrum are shown in
Figs. (4)—(6) for various real values of $. The correction
to the spectrum averages only a fraction of a percent
through the entire energy range. It is to be expected that
the radiative corrections are much smaller in the E„3+
case than in the K,3+ case owing to the difference in
mass between the muon and the electron whereas the
energy available is about the same. In the E»+ case, a
variation of A. from m„ to 2m„will add an amount to
the correction comparable to the correction at A.=m„
as shown in Fig. S. Some values of Ar/7 for different
values of $ are given below for A=ms~,

1.0
0.5
0.1
0.0

ai (%)

0.25
0.15
0.065
0.045

~ / (%)
0.025—0.053—0.19

The sensitivity of these values to the cutoff is great.
For E»+ decay we have, analogous to Eq. (26),

h7/7 = (6r/r)p= (3n/27r)g($) in(A—/m„), (28)

FIG. 5. E~3+. zero-order
muon spectrum and radi-
ative corrections for
A=m~, 2m„and &=0.

20

I5

0'

where g(—1)= 1 and g(0) =0.8.Therefore, our numerical
results for the radiative corrections to E»+ decay are
meaningful only as regards to their general order of
magnitude.

In conclusion, we have calculated the radiative cor-
rections to Ei3+ decays assuming a phenomenological
weak Hamiltonian and using perturbation theory. Our
result, applied to pion beta decay, gives a fractional
change in lifetime of —1.2% and this is not sensitive to
reasonable variations in the cutoff. The radiative cor-
rection to the lepton spectrum from K,a+ decays is sub-
stantial, averaging about 5% in absolute magnitude
over most of the measurable energy range and is insensi-
tive to the cutoff. The correction to the E,3+ lifetime,
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and in general to It „0+ decays, is probably small (a frac-
tion of a percent) although the numerical estimates are
sensitive to the cutoff.

We wish to thank Paul Eschstruth and Dr. E. B.
Hughes for encouraging this calculation and for many
discussions. A conversation with Dr. N. -P. Chang was
also very helpful. We are also grateful to Professor Henry
Primakoff for his comments on the manuscript.

APPENDIX

In this Appendix we consider the radiative correc-
rections in the limit m&~0 analytically. Vhth the
de6nitions

g = 1 (m—,'/mrr'), and x=E/E, „, (Ai)

Eqs. (11), (12), and (16) become

( f+i'/mzri ' q'x'(1 —x)'

idxJ p 4w' i 2 f (1—gx)

I f+ I'/mJr) ' ~ n'x'(1 x)' — h-. ~' / (1—*)(1—»)»—1+2 Lip(~x) ——+Iii » —1 i+in» ln(1 —»)
dx)ac 4m' i 2 ) ~ (1—qx) m( 3 i x(1—g)

(A2)

where

1— 2 /i —»i-
+&+ (1 x)0+{(1 &) +»(1 2rj)1

2 i 1 &/—
( ~)—g4x(1 —x) ' ln(1 —»)+g'xIi
1—gx

(1—»)
+gI0 —(1—x) (x'—5x—2)+—(1—x)(3+x)—g(1—x)+ (1—g)'(1 —gx) ini i, (A3)

6 2 ii —&I

and
Ig 2[in(mr——r»/m4) 1], —

I0 1(n——~my / xm) 40 ln—(1—») .

(A4)

(A5)

The integral of Eq. (A2) gives the zero-order decay rate

Fp ——(i f~i'/4s')( m/rr2)'I, I=—(1—g)' l—n(1—g) —41+-,'g' ——',g' ——,', g4. (A6)

Then integral of Eq. (A3) gives the lowest order radiative correction to I'0, and can be written in the form

where

Jag=-,' ln
m~g

IRc= (&/0r) Pp ' IRc,

1 343 173 125 21——pm' ——,+- — g+2

I 72 24 72 64

(A7)

SS 23 3 25 11 i
+(1—g)' 3 Lip(1 —g) —3 Lip(1) ——+Lip(1 —q) i

ln(1 —g) +i ——+—g+-g' ——ri' ——q4
i
ln(1 —g)

3 72 18 4 36 72

43 52 2 1 /25 14 1 1
+ ~+6~' ~—' ——~' Lip(~)+ I

~+3~' ~' ~'1»(1—n)
12 6 3 6 i12 3 3 12

25 25 31. 13
+ g g'+ —rP+——g' l—ng . (AS)

12 8 36 144
In Eq. (AS) Liq(x) denotes the trilogarithrn function defined by"

Lip(x) —=

* Lip(s) x"
ds= P—

n=l Q3
(A9)

The fractional change in lifetime due to the lowest order radiative corrections is just

ar/r = (n/~)IRC- (A10)


