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Relativistic Corrections to the Imyulse Ayyroximation in Elastic
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Equations are derived for the deuteron form factor in the impulse approximation which include corrections
to order M ', where M is the nucleon mass. The corrections are of two types, arising from (1) the expansion
of the nucleon current to order 3f ' and (2) the treatment of the deuteron wave function in a relativistic
manner so as to retain terms of order M ' which describe the distortion of the wave function of a moving
deuteron. Qlhile some of the former corrections have been discussed by several people, detailed results for the
latter corrections have not been given before. All of the results are expressed as functionals of the non-
relativistic 5- and D-state wave functions, so that numerical results may be calculated for any deuteron
model. Numerical estimates of the charge correction term indicate that it is large enough to substantially
affect the determination of the neutron-char'ge form factor from this experiment, making the form factor
more positive than results obtained from the uncorrected theory. Corrections to the magnetic moment are
also discussed.

1. INTRODUCTION AND SUMMARY

'
N this paper we derive equations for the deuteron

- ~ form factor in the impulse approximation, accurate
to order M—', where M is the nucleon mass. The method
we use for treating loosely bound systems relativistically
has been discussed in an earlier paper, ' and most of the
discussion has been given there. %e will however indulge
in some further discussion in Sec. 4.

The principal idea behind the method is to rearrange
the perturbation series for the deuteron form factor so
that all those terms which diGer only in their contribu-
tion to the deuteron or nucleon structure are lumped
together, and the proper vertex function which results is
then either talmn from experimental data (as is the
nucleon form factor) or determined from some model,
as are the deuteron wave functions. One then has a
reduced perturbation series, in which just those diagrams
which are irreducible (i.e., cannot be partitioned into
nontrivial pieces by cutting only 2 nucleon lines) are
included and all point vertices are to be replaced by
proper "bubbles" and all internal propagators are to be
regarded as "dressed".

The impulse approximation is then just the erst term
111 tllls scrlcs (scc dlscussloll 111 Scc. 4 RIld Flg. 1) Rlld.

a method for calculating it approximately was discussed
in A. This involved examining the singularity structure
in the internal energy, and eliminating this troublesome
variable by integrating over it and retaining only the
largest term, which one finds is accurate to order M '.

In earlier attempts to treat the deuteron form factor
relativistically we made use of dispersion relations. '
This approach is very elegant, and gives one interesting
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I F. Gross, Phys. Rev. 140, 3410 (1NS). Referred to as A in the
text.' F. Gross, Phys. Rev. 134, 3405 (1964) referred to as I; Phys.
Rev. 136, 3140 (1964) referred to as II.

insights into the behavior of loosely bound systems. In
particular, it demonstrates the importance of the singu-
larity structure of the Feynman diagrams, and lead
eventually to the method being used in this paper. How-
ever, one of the properties of the dispersion method is
that it tends to mix up the internal structure of the
interacting particles (deuteron wave functions and
llllclcoll form fRctol's 1I1 this case) wltll tile ovcl-all 1Iltcl-
action (the deuteron current). Since the calculation of
the general form of the deuteron current can be expected
to be easier and more reliable than the calculation of
deuteron vrave functions, it is convenient to express the
Anal results in terms of the usual 8- and D-state wave
functions, so that numerical results can be obtained for
any deuteron model. The present formalism is better
suited to this task than is the dispersion formalism,
where the weight functions of the wave functions enter
directly (see I and II) and the role of the wave function
tends to be obscured. Finally, interpretation of the dis-
persion theory results is greatly facilitated by compari-
son of the formalism with potential theory, so that a
formalism closer to potential theory would seem to be
a better choice.

Although it may be somewhat hazardous to generalize,
our results indicate that there are advantages in a return
to relativistic wave functions. A similar point of view

has been taken recently by other people, ' and the use
of spectral representations in the relative energy, a
feature of the approximate method discussed in A,
may be helpful in treating other strong-interaction
problems. 4

In Sec. 2 we present a wave function for a deuteron of
total momentum d and relative internal Inomentum r.
This wave function was obtained in A by reducing
a relativistic Bethe-Salpeter —type wave function to

' See for example, C. Schwartz and C. Zemach, Phys. Rev. 141,
1456 (1966).' J. G. Taylor (private communication).
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Pauli form and retaining terms up to order M '. It is
phenomenological in that it is determined by requiring
that it reduce to the nonrelativistic wave function when
d= 0, and hence it maybe used with any deuteron model.

In Sec. 3 this wave function is used with the rela-
tivistic nucleon current to derive expressions for the
deuteron form factor. In Sec. 4, we estimate the size of
the charge corrections to the form factor by calculating
the slope of the correction term at q'=0. This slope is
of the right sign to make the neutron-charge form
factor more positive (in agreement with thermal neutron

data), and is large enough to substantially effect the
results. Ke also estimate the correction to the static
magnetic moment, and discuss the accuracy of the
formalism.

For convenience, we outline our principal results here.
The cross section' for elastic electron-deuteron scatter-
ing is:

dQ d~ N. s.
Gc'1 Go-'—

X 1+2 1+
~

tan'8/2 G»r't (1.1)I'
where the 3 form factors Gg, GQ, and G~ are invariant
functions of the 4-momentum transfer q

= qo
—q',

which are dined in terms of the relativistic deuteron
current (see II). However, if we work in the Breit frame
and reduce the current to nonrelativistic form we have
an equally good definition. Introducing ( and (' as non-
relativistic deuteron polarization vectors,

&D'li plD)=«C* (
+(1/6M~')GoPC* a4 a—eV 6 (12)

(D'~ j»~D)=(1/2M, )G~(g'g" q —g'+»g q), x=1, 2.
In Sec. 3 we will obtain the following results for the
form factors:

riGo=Fc (u'+w')j p(r)dx+FoIc(q')+(2F»I Fc)Jo(q'—),

gGQ —P Q

6v2Mg' " w' )
uw j~&(7)dx+F&I@(qP)+(2F»I Fo)J&(q')—,

q' p +83
2 q' 3

1+ Fc+(&'c F~) —— ~'L jp(~)+ jp(~)]dx
32M' 16' 4 p

(1.3)

g2

+I 1+
32M'

1 ",((&'—p'~') jp(~)d*+—
I
&~+ ilp(~) d*

V2 p E V2)

+FoJ»»'(q')+F»r J»r'(q')+F»»Jm'(q')+(Fc F~)J~'(q')—

Do
=1+

JET 32M'

In Eqs. (1.3), Fo and F»» are the usual isotopic scalar
form factors of the nucleon, while j„ is the spherical
Bessel function of order n Ldefined in Eq. (2.9)],
r =-,'

~ q ~
x, u= u(x) and w= w(x) are the 5- and Dstate

wave functions of the deuteron and

e=u(x)+ (1/4M') u"(x)
"VP =w(x)+ (1/4M')(w" (x)—(6/x')w(x)) . (1.4)

We use the prime to denote diBerentiation with respect
to x.

The functions I are correction terms of order M '
which arise from the dependence of the deuteron wave
functions on the tota/ momentum of the deuteron. The
J functions are correction terms which originate from
corrections to the usual nonrelativistic current. All of

' M. Gourdin, Nuovo Cimento 28, 553 (1963).

these functions are of order M ' with respect to the
leading terms. If one neglects all of these terms, then
%L=I and 'N =m and our results reduce to the standard
nonrelativistic results.

A complete tabulation of the rather lengthy func-
tionals I and J in terms of u and m are given in the
Appendix. In the Appendix we have also collected
together the remaining expressions relevant to this work
(the current and the deuteron wave function).

We will now turn to a derivation of the results.

2. THE DEUTERON WAVE FUNCTION

In A, we introduced the following relativistic deuteron
wave function:

A(r) =0-s"(r,d)u-(l d+r)u~'(ld —r)+.—.(,d).(--,d-), (-,d-), ( )

where u (p) is the free Dirac spinor representing a
nucleon of momentum y and polarization n (normalized
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to unity), ' d is the total 3-momentum of the deuteron,
and r is one-half the difference of the 3-momenta of the
two nucleons in the deuteron (or simply the "relative"
momentum). Summation over repeated indices is
implied.

In A we discussed how the functions p++ and 1' + are
related to the four invariant functions of the deuteron-
nucleon (d-1V) vertex with one nucleon off the mass shelL
There we also discussed their physical interpretation;
p++ is that part of the bound state in which both nu-
cleons have positive energy, and p + corresponds to
the part in which one of the nucleons has negative
energy. The corresponding functions p+ and 1t would
also contribute had we not restricted one of the
nucleons to the mass shell. To restrict one nucleon to
the mass shell is an approximation which considerably

simplifies the calculation, and yet still allows one to get
an accurate calculation to order M ' and hence improve
the usual nonrelativistic treatment of the deuteron.
This has been discussed in great detail in A, and will

be discussed further in the following sections. In this
section we will take (2.1) as our starting point for a
relativistic deuteron wave function and re-express it in
terms of the usual S- and D-state deuteron wave func-
tions. Our results will be accurate to order M '.

The method by which (2.1) can be determined from
the nonrelativistic wave function was also discussed
in A. We assume that when d=0, the deuteron is
completely and accurately described by the nonrela-
tivistic wave function, and that since this clearly makes
no allowance for the negative energy states, p + must
be zero when d=0. Hencer

(2.2a)

(2.2b)

This procedure is justified by the fact that the phe-
nomenological nonrelativistic wave functions are calcu-
lated from potentials which have been chosen to re-
produce actual nucleon-nucleon scattering data (in the
center of momentum system), and hence should already
simulate the negative energy effects as well as possible
with a nonrelativistic theory.

In view of (2.2), the primary significance of (2.1) is
that it tells us what the wave function of the deuteron is
in a system irl, @which it is rot at rest. Since it is never
possible to find a system in which both deuterons are at
rest, (except when des=0), it is essential to have this
information in our calculation of the elastic e-d cross
section. Omitting this information introduces systematic
errors of order 3f '.

' We have adopted the conventions used in J. D. Bjorken and
S. D. Drell, Eetutieistic QNuntlns Mechanics (McGraw-Hill Book
Company, Inc. , ¹wYork, j.964).

The identi6cation given in (2.2) above differs by a factor
(M/E0)'/' from that used in A, as discussed in the next section. We
believe the identi6cation used in this paper to be the most
correct.

Here C is the charge conjugation matrix and f is the
4-polarization of the deuteron subject to the conditions
t„@=1and $„d&=0. The 4-vector P is determined by
the prescription that one of the particles is on the mass
shell (see A) so that P= (Ps,P), where

Finally,

P —$Mp2+d2]1i2 +f2+(id r)2)1/2

P=-,'d+r.

f=P2=P22 —P',
i~=Ps/I M2+(-'2d+r)sj'f2.

(2 5)

(2 6)

The functions A and 8 are regarded as unknown
scalar functions of t for the time being, ' but will shortly
be determined from (2.2a).

The nonrelativistic wave function in momentum
space is:

where'
y pN"(r) = (22r)'f2X eeNaio'Xp (2 7)

8Na=ue(r)1r g+(1/v2)res(r)L3o" rr g/r2 o g], —("2.8)

and for any function f(x)

fi(r) = f(x)xj i(rx)dx

(1 d)' siny
ji(y) = (—y)'I ——

I

ky dy) y

(2 9)

In these expressions u(x) and w(x) are the x-space 251
and 'D~ deuteron wave functions, respectively, while

ji(y) is the spherical Bessel function of order L

We will now use (2.2a) to determine A and 8 in terms
of No and m2. First we have a straightforward matter of
reducing (2.3) to two component Pauli form. In making
this reduction we retain terms to order M ' in 2, and
M 4 in J3. This is necessary if we wish to have all terms
to order M ' in zv2 in the end, and is direct]y justified
by the fact that 8 is about 20 times the size of A (see
II). The final result of the reduction is:

pep++(r&d) = (22r)'isX *8(r,d)io'X (2.10)

s These functions are related to the d-N' vertex invariants as
described in A, so that they could be calculated theoretically if
desired.' For the remainder of the paper we write r=

~
r ~, and 4-vectors

will always be explicitly indicated with Greek subscripts.

Equations (2.2) are four equations for the four d-X
vertex invariants. Using (2.2b) to eliminate two of them
(see A), we emerge with

P p++(r, d) =(1+X)u (s'd+r)A"Cups(2'd —r)$„, (2.3)

where

(22r)'"6"=A (f)y"—B(t)(P"/M)(P+M/2M) . (2.4)
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rood g
+%i +44

rd

-o'dg r+o r"g d

y, =A(t) L1—(n'/2M')7+q&o,

where

8(r,d) =ygo" (yypL3o" rr (/r' —o" (7

(2.11a)

dA(tp) 1 d 1
A'(tp) — ——— up(r)+ —wp(r)

dto 2 dr2 v2

1
B'(tp)=— 3M'

2%2

d -wp(r)-

dr r

(2.15)

are easily evaluated in terms of the wave functions:

y 4
= (B(t)r'/3M') [1 (r'—/2M') —(n'/2M )7

—(A (t)r'/6M') (2.11b)

y, = —(rd/4M')A (t),

|t4=B(t)(rd/4Mo) L(r'/M') —(r d/2M')+ (n'/M') 7.

Here e'=Sf' where c is the deuteron binding energy.
Note that when the deuteron is at rest (d=0) neither

Pp nor $4 contribute to the wave function and g++ has
the same structure as in the nonrelativistic case.

The next step in our reduction is to note that the
argument of A and B depends on d. To take this
properly into account we expand t to order 3E ':

Putting Eqs. (2.12)—(2.15) together gives finall

y, =uo+-', h(up'+v2'wp' —(1/v2) (wp/r')),

v24t, =wo+ ', a(-wp' (w—/pr')),

yo ———(rd/4M') (up —(wp/K2)),

v2$4 = (yd/43II2)wpL3 o (r ' d/yp) +(3n%2)7

where

&=to t=M —'(r'+n')d r ((d.r)—'/2M')

dup(r) 1 dup(r)
No'=—

dr 2 2r dr

(2.16)

(2.17)

t=M' —2 (r'+n')
+ ', M '{jd r—r' n'7'+—2n'—}. (2.12)

lt will be convenient to have the x-space representation
of the wave function when we turn to the calculation
of the form factor. This Fourier transform is

The d dependence in the term of order M ' will make
corrections to the wave function of the same order as we
have already considered, "and hence must be retained.
This can be easily done by expanding A(t) and B(t)
about the point tp, the value of t for d=0. With this
modification (2.11b) becomes

P p(x, d)=
(24r)'

o'*'y p++(r, d) d'r

= (Sor) 't'X—*O(x,d)io'Xp
where

xO(x,d) =Lu+(d'/M')g, (x,d,s)7o (

(2.18)

Q

4~(t)=A(to) 1-
23P

+A (tp) (t tp) +y o(t), — 1 d' -3o"xx g
'w+ ifp(x, d,s) —o'

B(t,)r'- r2

~ (t)—=
3%2 2%2 2M2

(2.13)

xocd g i
+go(x,d) +—&4(x,d, s)

Mow' v2

A(t)=A(to),

B'(tp)(t —tp)yo A(tp)ro

6' 2
( xo'd+( do'x

X (2.1~)
3f2@2

44(t)—=44(to), The wave functions P; are given as functionals of u and
m in the Appendix. The variable s is the cosine of the

where A'(to) =dA(t)/dt~ t, and po and y4 are unchanged angle between d and x.
up to order M '. Finally, Eq. (2.2a) gives

3. THE DEUTERON FORM FACTOR
up(r) =Qy(to) (1/&2)wp(r) =go(tp) . (2.14a)

To lowest order these are

up(r) =A (tp)+(B(tp)r'/3M')

(1/v2)wp(r) = (B(tp)r /3M )
and hence to lowest order the derivatives of 3 and 8

"9'e wish to thank Professor D. R. Yennie for interesting con-
versations in which this point was brought out.

(Mi
Ezg

X tr(p;, (p+-,'41)&"(g)Q 4, (14——,'9)}, (3 1)

(2vr)'

Now that we have the correct relativistic wave func-
tion, we calculate the deuteron form factor in the
impulse approximation to order M '. We begin with the
expression derived in A:



CORRECTIONS TO I M PULSE APPROXI MATION 1029

and define
X~p

—=—zo 2X~+

Q p++= fp, ,++

(3.6)

(3.7)
Hence

P~p++= —(2n)I Xpj.o OX~+=(2s) I XN+Br40 Xp (3.g)

where 8 was introduced in (2.10).
Using (3.5), Eq. (3.1) for the form factor becomes

e (M
~'pI —L&-p"(p+4q, l q)fp,"(q)

0

GD"(q) =
(2s.)'

X0.-"(p—4q, —lq)3, (39)
where the Pauli current is

fop."(q)=up(p+-:q)F" (q)u, (p—-'q), (3 1o)

and we have used the fact that

u.'(—p)up'( —p) = b-p. (3.11)

The only advantage of (3.9) over (3.1) is that the
terms are in 2 component form so that they may be
easily compared with the usual nonrelativistic results.
The expression (3.10) for the relativistic current has
been obtained many times before, "and our results are
the same as that usually obtained once we have included
only the positive energy parts of the wave function. "
The new result in (3.9) is the appearance of corrections
in the wave function as a consequence of our treatment
"See for example M, Gourdin, Nuovo Cimento BS, 1105 (1965);

R. J. Adler, Ph.D Thesis, Stanford University (1965); K. W.
McVoy and I.. Pan Hove, Phys. Rev. 125, 1034 (1962)."Had we not neglected p +, we would have had terms involving
4'

+ and the matrix element of the current between g and I
spinors etc.

where F"(q) is the nucleon isotopic scalar form factor

F"(q)=Fi(q')7" 4—(F2(q')~""/2M)q. , (3 2)

normalized so that

Fg(0)=1; F2(0)= —0.12. (3.3)

The factor Eo LM——'+p'Jl' appears as a natural con-
sequence of the reduction of an invariant 4-dimensional
integration to 3 dimensions. The relativistic wave func-
tions have been discussed in the preceeding section
except that

44(r) = —CT'A'(r)(CV') ' (3 4)

In this paper we ignore the oG-mass-shell dependence
of the nucleon form factor. The principal reason for this
is that it is probably small (see the next section) and is
dificult to calculate.

Furthermore, as discussed in the last section and
A, we ignore the antiparticle contributions p ~ to the
wave function. From Eq. (3.4) and (2.1), it follows that

P4(r) = Pp+—+(r,d) C7'up( ', d r)-(C—7'u, )r(-', d+r)
= —y p++(r, d)up. r(-', d —r)u .(-,'d+r)
=pp. .++(r,d)up (-',rd —r)u (-', d+r), (3.5)

provided we obtain the polarization n' from o, by

Fe Fg (q——'/4M—')F2,

F~=Fi+Fm
(3.13)

Note that the presence of the term (1+P'/2M')
multiplying Fz would mean that if our wave function
were normalized to unity beforehand, charge would not
be conserved (because p'/2M makes a small but nonzero
contribution to the value of charge form factor at q'= 0.)
This difhculty can be avoided, of course, by renormal-
izing the wave functions as has been proposed by
Adler, " but if our wave function approach is really
consistent such renormalization should be unnecessary.
In fact, this is true if the factor of M/Eo in (3.1) is
incorporated into the current, for it contains a term
which precisely cancels the p'/2M. In A, we choose to
incorporate the M/Eo symmetrically into the wave
function; it appears now that this procedure was in-
correct and that a preferably procedure is to include
it in the current.

A further point to be considered is current conserva-
tion, which requires that q j=—p j=0. We will show
explicitly that our expressions do satisfy this condition
shortly. The result is that, if we choose q to define the
s axis, j' is zero. Hence the current becomes (where
k=1, 2)'4

(M) 2F~—Foj'—=
I

—If-p'(q)=x. * Fo i(p xq)—~ xp
EZ,) 4M

(My F(-p'
yj =I —If,p (q)=x,* z,(z xq

EEO/ 2M 4 2M')

P'( P'
&

i(0 xp)' +F(, I
1—

2M 2M' M 4 23PJ
p~ z(exp) q q

+(Fo—F~)— —
I Xp (3 14)

SM2)

13 R. J. Adler, Ph.D thesis, Stanford University, 1965 (unpub-
lished)."Qne might object to retaining terms of order M 3 in the spatial
current. However, since the leading term is only of order M—~ the
additional terms still provide corrections of order M '.

of the bound-state wave function on an equal footing
with the current.

The Pauli reduction on the current gives us

( P' ) (2F~ Fo)—
f-p'(q)=X«* Fel 1+

I—,~(pxq) «p,
2M2]

Fe
f pk(q)

—X 4 i(& x q)k+ pk
2M 3f

P'Q
(i(«p)'+lq') +(F —F )2' 2' 2'

( i(o xp) —q q' )
XI + I xp, (3.12)

2M' 4M'I

where Fq and F~ are the charge and magnetic-moment
form factors:
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Finally, we are ready to combine the results of Sec. 2
with the current above to calculate the form factor.
Ke have

G&~(q) =
(2m)'

d'p «(«'(a+l «, k«) ~'P(p, «)

X8~(p—l«, —l«)~'), (315)

Hence, to prove current conservation, it is sufficient to
show that the spatial part of (3.15) is antisymmetric
in g and g'*. But, observing that

8(r,d)=8( r, ——d), (3.17)

where we have added subscripts to 8's to remind us of
the fact that the incoming polarization g is different
from the outgoing polarization g'.

We can use the form (3.15) to easily demonstrate
current conservation. First, we observe that after the

p integration has been performed, the only vectors left
out of which we could construct invariants of the form
factor are $, g', and q. Hence the only spatial invariants
which can be constructed (up to arbitrary functions of
q') and which are bilinear in the ('s are

VC* «+&'*"( q, C*.4", 6* «( m" (3 16)

where j& is a current operator obtained from j& by sub-
stituting iV+x'q for p (see the Appendix). The traces
can be performed and the results expressed in terms of
the wave functions presented in Sec. 2.

When all of the algebra is completed, one emerges
with the structure of the results presented in Sec. j..
The explicit form of all of the functions is given in the
Appendix.

4. DISCUSSION

While the precise effect of these correction terms will
have to await a detailed calculation using realistic wave
functions, it is still of interest to obtain a rough estimate
of their effect. To this end we examine (1) the slope of
the charge term Io at q'=0 and (2) the value of the
correction to the magnetic moment.

Both of the charge correction terms are zero at q'=0.
The interest in their slope lies in the mystery surround-
ing the slope of the neutron-charge form factor. This
slope has been quite accurately determined by thermal-
neutron scattering data" to be about 0.021 F', while the
electron-deuteron scattering data, whee interpreted with
the Uncorrected moereluti~istic theory, suggests that this
slope is zero."

Introducing

and taking the transpose under the trace in (3.15),
we obtain

(I'+w')j p(r)dh,

the nonrelativistic theory without correction is

(4.1)

GD"(c)=
(2~)'

d'p trf~'8t'(p+l«, -'«) j""(—p, q)~' Gc= (I"a'+I" c~)Dc,

X8p'(p —~q, —-', q)), (3.18) and hence by the above assumption

(4 2)

and hence Gn~ is antisynunetric in g, (*provided Go'= I"c~'+Dc' (4 3)

j"(u,«) = —~'i"(—p, q)~'. (3 19) since Fo (0)=Do(0) = 1. When we now include the
correction term Io (Jo is negligible) Eq. (4.3) becomes

Examination of Eq. (3.12) veri6es that this is true. The
antisymmetry in ( and ('* is also a convenience in
evaluating the matrix elements.

Equation (3.15) can be put in x space in order to more
closely resemble the nonrelativistic results. We have

Gc'= I"c '+I"c"'+Dc'+Ic'i (4 4)

Since none of the numbers have changed, this means
that

(4.5)

GD"(v) = d'rd'f'd'x e'('—"—'q&'x

(2m)'

Xtr(8r(r, —',q)n'j~8(r', ——,'«)0')

Hence, if —Ic' is comparable to the known neutron
slope of +0.021 F', then it will help explain the mystery
by bringing the electron-deuteron data into closer agree-
ment with the thermal-neutron scattering experiments.

However, examination of Io (in the Appendix) indi-

X tr(O ( r'qx) 'j"00( x, 'q) o')——-

X tr{Or(x, -', q) O'PO(x, —',q)0'), (3.20)

"See R. Hofstadter, Nuclear and Nucleon Structure (%. A.
Benjamin, Enc., Nevr York, 1963) for reprints of a number of
papers.

'60f course this experiment gives practically no information
about the slope at g'=0, because the accuracy is not great enough.
%e take the point of vier' here that the neutron charge form factor
is rather slowly' varying, and that its behavior in the /~= I—3F ~

region is inQuenced by its slope at q'=0, so that this experiment
gives indirect evidence about the slope.
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cates that

dg q~ p 2~ 0

dx up~'+uP~'(-', )

v2 V2
+—ug40 ——uiP4', (4.6)

9 9

than this estimate (by about a factor of 2, expected
because there are 2 deuterons involved), and of the right
sign to improve the consistency between experiments.

The corrections to the magnetic moment of the
deuteron can also be estimated from our expressions. If
we neglect the contribution from J~', which appears to
be small, and look only at those terms which involve
I', we Gnd from the Appendix that

where we have neglected all functionals bilinear in z
(i.e., have retained only u' and uw terms).

Substituting from (A2) we have
apq= ~F~ dx u"u(2)+-,'u"x'~—

231' 0

5) uw 13
dx u'( ——,', )+uxu' —i+—

241 K2 12

e
(—0.011).

2M
(4.10)

xw' 111 uXw
+ —I+u«(A)+ (—6)

VZ 121 v2

Observe that

o'Nr 11 e x 1

(4.7)
v2 12

oo 1
NxQ dx= —— s dx.

2 0

To get a rough idea of the size of S, assume that

u=3.65w=0.98(e ~'—e ~*)

where P=7n and n=~~in units of pion masses. This
choice gives

(u'+w') dx= 1,

(w')dx=0. 07.

Then we have
S= (—0.30)/(2M)' (4.8)

q2/m. ~=0.125q2/m 2. (4.9)

What (4.8) tells us is that these corrections are larger

where we have neglected the terms involving m I which
can be expected to give a small positive contribution.
Now M'—25 F—', and hence S is seen to account for
approximately one-third of the neutron slope 1

The above is only a rough estimate, and. is model-
dependent. And, of course, what one is really interested
in is the behavior of the correction terms at 6nite q'.
We take (4.8) as an indication that these correction
terms should be taken into account in extracting the
neutron charge form factor from the data.

The size of (4.8) seems quite reasonable. Offhand,
one might expect corrections of the order of (e/c)', which
in the Breit frame would be

Unless this term is canceled by the combined aQect of
smaller terms, the correction is negative and tends to
increase the discrepancy between a 7% D state and the
experimental moment. Of course, the magnetic moment
is very sensitive to a great many other processes not
included in the impulse approximation. The exchange
current contributions are one such processes, and what
(4.10) may indicate is that exchange current effects are
larger than the present estimates would suggest. "

We will now turn to a discussion of the accuracy of
our results. First, we point out that we have neglected
the dependence of the nucleon current on the masses of
the incoming and outgoing nucleons. The approxima-
tion resulting from the integration over po leads
naturally to the placement of the spectator nucleon on
the mass shell, but the interacting nucleon is not on the
mass shell, and strictly speaking one must therefore
include the off-mass-shell dependence of the nucleon
form factors to be completely consistent. We do not
include this because we do not know what it is, and
because we expect it to be small enough so that our
calculation of the correction terms in Sec. 3 are still
meaningful. There are several facts which support this
view. The 6rst is that the Ward identity guarantees that
F~ at q'=0 is indepeederst of the nucleon masses —it is a
constant. Hence, one would expect the mass shell de-
pendence of Fj to be considerably suppressed at small
q'."Although the same need not be true for F2, the fact
that F2 is small compared to F~ means that it is less
important. One is further helped by the fact that only
the isospin ~ A-x scattering amplitude will contribute
to the off-mass-shell form factor, and this is essentially
zero until quite large energies, "suggesting that the oG-
mg, ss-shell dependence of the form factors is at worst a

'7 R. J.Adler and S.D. Drell, Phys. Rev. Letters 13,349 (1964).' Imagine expanding F& in a power series in q', y = t—M, and
y'=t' —M', where t and t' are the masses of the oB-shell nucleons.
Then the Grst few terms would be

~l(g t t') =~1(0M M )+C1—P+C2—4+~3M4+' ' '

and hence our errors in neglecting the y and y' dependence are of
order M 4.

"' Recall that the lowest I=-', resonance is at 1480 MeP.
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slowly varying function of the masses. On the basis of
these considerations we guess that these effects are of
the order of 20% of those already calculated. "However,
it would be extremely instructive to have a better
estimate of these effects, and at the moment we have
no guarantee that these effects are not comparable to
those already calculated.

Our second remark concerns the perturbation series
of which the impulse approximation is the 6rst term.
In Fig. 1 the next few terms of this series are displayed. "
The diagram in Fig. 1(b) contributes to the exchange
current contribution discussed by Adler and Drell. '~ as
well as other contributions from the proper yg ~ mÃ

scattering amplitude. "A priori, one would expect these
contributions to be of the order of magnitude of the
corrections presented here.

The contribution from Fig. 1(d) Lalso 1(e) and (f) for
that matter] are especially interesting. If our proposed
perturbation expansion is to make any sense, this con-
tribution should be much smaller than that of Fig. 2,
which should be equal" to the impulse approximation
since it is already included in it and is in fact indis-
tinguishable from it. And indeed, by a judicious exami-
nation of the singularities and treatment of the internal
energies involved one can show that Fig. 1(d) is of the
order of (p'/M')' times Fig. 2. Normally this would
not be a helpful result, but in our case the rapid con-
vergence of the wave function guarantees that the
dominate part of the integral arises when p'/3P((1 and
hence 1(d) is down to order M ' of 2. Thus, this pertur-
bation series appears to make some sense, and it might
even converge. A similar expansion might be applicable
to other problems.

~ Qne obtains this by conjecturing

J (q2, ~,t') =F&(q)

=J (q)
3'+3'

Hence, the correction is

s=F2—=—2P,—=—0.2—.p p
M~ M~ ' 3P'

"This series appears to bear some resemblence to the first few
terms shown in Fig. 3 of I. However the formalism here is quite
different from that discussed in I. In particular, in I we focused
our attention on only the discontinuities of the diagrams above.
Furthermore, the contribution from Fig. 3(d) of I which posed
perhaps the greatest threat to the validity of the approximation
discussed there, can be shown to be canceled in the anomalous
region, and hence need not be considered at all. This is reQected
in the fact that there is no such diagram in Fig. 1 above )except
those parts already included in 1(a)j. When we integrate over
the internal energies in each diagram shown in Fig. 1, and make
the approximations discussed in A, it is equivalent to considering
the leading singularities as discussed in I, and it is in this way that
the two formalisms would appear to lead to the same result.

'~ By "proper" in this context we mean the scattering amplitude
excluding the direct and crossed nucleon poles.

~ More precisely, since the one-pion-exchange contribution rep-
resents only one of the contributions to the potential, we may
only assert that it, along with the other uncrossed contributions to
the potential, must equal the impulse approximation.

FIG. i. The &st few terms of a rearranged perturbation series
for the deuteron form factor. Double solid lines are deuterons,
solid lines nucleons, and dashed lines pions. The bubbles are proper
vertex functions.

and the reduced wave function 0 can be shown to satisfy
a Dirac type equation obtained by an approximate
reduction of the Bethe-Salpeter equation

P(—3II)8,(r) = V8, (r),

where V is some potential operator and

(4.12)

as in Eq. (2.5).
P—= -', d+r

Fre. 2. An example of a term already contained
in the impulse approximation, and of the same
size as the impulse approximation.

As a anal remark we wish to provide additional

insight into our treatment of an off-mass-shell fermion

as a superposition of mass shell spinors N(p) and s(—p).
Since the deuteron wave function discussed in Sec. 2

contains only one off-mass-shell nucleon, it is sufhcient

to study the reduced wave function 0 obtained from

Ps(r) by multiplying it from the left by upr(-', d—r).
Hence
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Now it is natural to question the choice of the form

(4.1) for the wave function. It is not the only choice
which can be made, '4 although it leads naturally to the
intuitive view of the off mass shell nucleon as a super-
position of a mass-shell nucleon of momentum p and a
mass shell antinucleon of momentum —p as suggested

by the hole theory (see A). The crucial question, how-

ever, concerns the interpretation of p++ and/ + as wave

functions, implying that the square of their modulus is
a probability density. In what sense is this justihed?

The way to correctly obtain positive and negative

energy wave functions would presumably be to diago-
nalize (4.12) with a Poldy-Wouthuysen transformation.
Now the interesting but rather trivial fact is that if
V—=0, then such a diagonalization of (4.12) gives the
P++ and p +introduced in Sec. 2. and hence in this case
the choice of (4.1) appears to be the appropriate one
for comparison with nonrelativistic probability wave

functions.
Of course the potential is not zero, and hence it would

appear that the correct p++ to identify with the non-

relativistic wave function is not the p++ introduced in

Sec. 2, but divers slightly from it by terms involving the
potential V. To pursue this analysis in detail would be
difficult, and it is not clear that the additional accuracy
thereby achieved would be meaningful, or worth the
effort. This is true particularly in view of our neglect
of terms like that shown in Pigs. 1(d)—1(f), which also
contain the potential explicitly. The best way to im-

prove on this approach would be to attempt an explicit
calculation of p +.
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70 420
1 1

Pg= —gu+gxu + w+ xw2' 4'
|t4' ——3~w+4xw'+r3n'x'wr

f4' —8(w —wr) —.—

In these equations

D-state wave functions) as follows:

$1,2=4'1,2 +Zlpl, 2 (Pl(s)/xd)+ 11,2 +2(s) p

(A1)6=A'+~4 4'x&I'i(s)
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u'= —u(x),
ds

X=x'~ — —n' ~, where n'=Me,
kdx'

APPENDIX

In this Appendix we have collected together the
detailed results of the paper. "The deuteron wave func-
tion is deined in Eq. (2.18) and (2.19).The correction
terms can be expressed in terms of u and w (the S- and

e= deuteron binding energy,

"w(x')
—dx .

x'2

These results were obtained with use of the identity

«&- na+« l 1 p g 1q
—«)1 dq m, f(x)

-( ——
( x"+'+~+'~ ——

( (A3)
xVxx) kx de x'+'-"

27r2

47r r'+~j ~(rx) dr dx'f(x')x'j „(rx')= (—) t &~+' "&—
0 0 pm+1

which holds for m+3 —u= even integer.

~ See I. J. Mcoee and L. Durand, III, Bull Am. Phys. Soc. 10, 62 (1965), who use oB-mass-shell spinors.
"In this Appendix all vectors are 3-vectors so that g'= g'.
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A convenient form for the current j as an operator in x space is:

1jp=Fo+(2F24 Fc—) (V'X«) 4r4'
F — +2 g2 q2

-
leak

- ( P2 1/2 q2 ) q2

i(e x«)' 1+ — -+ + +i —F&l 1+ + + I+(Fc' F24)
m m2 F2 3m2 m & F2 4m2 32u2) 1m2

~3f -+

+ ( x~)'—
23I

Q2 g2 V'~e qe V
+z(4rx«) +(Fc F24)—

3P 435' M 4'�'
The arrow above the operator indicates to which direction it is to operate. In using (A4) for j, oely the terms

a22iisy2u222etric in $ and $'* are to be retained. Then, if one makes the substitution

&=—ir'= —i(p——4«), &=ir= i(12+4«),

1 1 ( Bi/4

+ P i 5wlP4+xw i/4 —xw
Bx

q wlp2 1 3i Pg(s)-Pp(s) i w Eg
Z uA — — (wA+v2&2+uA)P2(s)— +—u+—A-

23IP 2 2V2 10' v2 v2

Jc= (q'/4~')r (»/2) w'(P2(s)/r)

3 P4(s) —P, (s) wu( P2(s) P,(s)) w'( 6 Pp(s) 3 P1(s)iIo = —6v2 p —x(uw' —wu') + 19 +6 I

—
I

— +—
20 r 20( r r I V2(10 r 20 r )

00 mR'

J24' —— dx (u41——,'ww) jp(r)+—uw+ j2(r)
0 K2 K2

1 u)' w xw' w x'(u '

+ Q 0 x' —
~

———+———
~

— —V2xw'+
v2 2&2 2%2

w — P2(s)

which is required by Eq. (3.20), (A4) is seen to reduce to (3.14).
Using (A4) and the deuteron wave functions leads to the results given in Sec. 1. The correction functions are

q2 2i P1(s) 2i P2(s)
Ic= Q~ uf2+wf2+ uf4

2M2 342 r 3

w&2 2i P,(s) w&4 ('3 Pp(s) 11 P2(s)
4= &~2 Z —(~6+~4 — I' (~)+~4 —~

I

— +-
v2 3 r V2 (5 r 15

q' 9i P)(s) i P1(z) 1 8&4) P2(s)
I2r' +~—— 2 +-wg4' L1—P2(s)$+—4~4—xw'||4+xw

23P 4 7 8 8 Bxl

1 (u+—w
i

-', u"
m

Q Q ZO R'

+, +, P()+ —+ +
6%2 2v2x&

w ( u" 2u' 2u) I" I' u z" z' 4m
+—

I
—+ —iP2(s)+ ——+ +——

v2 4 2 * x2) 2 2x 2x' 2' 2&2m %2x'

e sTz

4+x'

In these expressions r= 2qx, u= u", w= w"—6w/x2. These expressions can be reduced for numerical computation
to one-dimensional integrals by expanding the integrands in Legendre polynomials and using the identity


