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The elastic nucleon-nucleon scattering, due to the exchange of ~, q, p, co, q, and an effective I=0 scalar o.

meson is calculated using unsubtracted partial-wave dispersion relations with a cutoff. The p, co, and q vector
coupling constants are related by SU3 to a single constant assuming pure P coupling. The ratio of the vector
to tensor coupling of the p meson is determined by the I= 1 charge and anomalous magnetic moment ratio
and the tensor couplings of co and y are neglected. The g-nucleon axial-vector coupling constant is related to
that of the pion by SU3 with a DiF ratio of —,.The I=0 and I= 1 phase shifts are calculated using a total of
four adjustable parameters: the mass and coupling constant of the effective 0 meson, the octet-vector cou-
pling constant, and the cutoG parameter. For each of the cutoff values corresponding to laboratory kinetic
energies of 600, 700, and 800 MeV, the remaining three parameters are adjusted to 6t the I=1, 'SD, 'Po,
'P~, and 'P2, and the I=0, 'S~ phase shifts at 25, 50, 95, 142, 210, and 310 MeV. In each of the three cases,
a goodness-of-dt parameter is obtained corresponding to a theory with approximately 10% inherent un-
certainty. A deuteron pole appears in the solution for the 'Sj amplitude corresponding to a binding energy of

10 MeV. All of the calculated higher partial-wave phase shifts are in good agreement with results of
phase-shift analyses. Having obtained a fit to the nucleon-nucleon phase shifts, the nucleon-antinucleon
scattering amplitudes are calculated after changing the signs of the odd G-parity exchange terms (~, co, and
y) but keeping the same values for the four parameters. For each of the three cutoff energies, a bound-state
pole is found in the I=O, ~SO, Sy, and 'I'0, and the l= 1, 'So and 'S~ amplitudes. These bound states have
the same quantum numbers as the g, co, g, x, and p, respectively. Although the masses of the bound states are
not near those of the physical mesons, it is argued that if the important meson channels (annihilation)
were included, the bound-state poles would move toward the physical values. These results lend strong
support to the conjecture that the observed mesons are composite particles.

I. INTRODUCTION

~

'HE nucleon-antinucleon interaction due to the
exchange of mesons is related by crossing sym-

metry to similar interactions in the AE system. In
principle, information about the XÃ scattering ampli-
tudes can be deduced from the known amplitudes for
iVA scattering.

The major diBerence between the lVE and XX sys-
tems is that inelastic channels are closed for low-energy
ES scattering whereas multimeson channels coupled
to the ÃÃ system are opened even at the physical SA'
threshold. Nevertheless, it is possible to separate in an
approximate fashion the absorptive effects from the two-
body potential in both cases. For the XX problem, the
first attempt along this line was that of Ball and Chew, '
in which they made use of the fact that the one-pion-
exchange potential in the XE system is the negative of
the same potential in the ÃE interaction. The absorp-
tion (annihilation) in their model was approximated by a
black sphere with a radius small compared to the range
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of the one-pion force. Although the fit to low-energy
XÃ scattering with the Ball-Chew theory was quite
satisfactory, it would be desirable to improve the black-
sphere approximation by making use of our present
knowledge of EfV and SA" interactions. In particular,
it would be of some interest to separately investigate the
effects of short-range (shorter than X ) two-body poten-
tials and those of annihilation processes. The present
paper is a study of the short-range XE forces due to the
exchange of various mesons.

Recent theoretical treatments of nucleon-nucleon
scattering, ' such as that of Scotti and Kong, ' have been
quantitatively successful in 6tting experimental data
solely in terms of an iVE interaction which arises from
the exchange of pseudoscalar (z-, g), vector (p, co,q), and
an effective scalar meson (o).' Because the source of
this interaction is meson exchange, the XÃ interaction
can be deduced directly from that for EA by simply

2 R. S. McKean, Jr., Phys. Rev. 125, 1399 (1952);R. A. Bryan,
C. R. Dismukes, and W. Ramsay, Nucl. Phys. 45, 353 (1963), S,
Sawada et a/. , Progr. Theoret. Phvs. (Kyoto) 28, 991 (1962); 32,
380 (1964).

3A. Scotti and D. V. Wong, Phys. Rev. 138, 8145 (1965),
hereafter called SW.

4 It was shown in Ref. 3 that the exchange of meson systems of
I=O, J=O, I'=+ must account for the attractive medium-range
nuclear force whether the o meson exists or not. If the o does not
exist, the same effect can still be produced by a low-energy s-wave
mx enhancement as in SW.
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changing the sign of the odd G-parity exchange terms.
The most significant feature is that the short-range re-
pulsion in the EE system which is produced by the
exchange of I=O, G= —1 vector mesons (rd and 9)
becomes a strongly attractive short-range force in the
SS system. As we shall show in the main text, the net
attraction in all four S-wave amplitudes (I and J=O, 1)
are suSciently strong to produce bound states. These
bound states have exactly the quantum numbers of the
p, vr, p, and ~ or p. ' From this observation it seems likely
that in any dynamical model of these mesons, the XS
interaction will play an important role. This is par-
ticularly true for the p since the only low-mass states
that are coupled strongly to the q contain at least four
pions. In fact, we find that the energy of the bound state
in the I=0, So amplitude is in the neighborhood of the
g mass while the remaining three S-wave bound states
correspond to masses in the neighborhood of 1.5 BeV.
In addition to the S states, the 'Eo amplitude for I=O
has the property that all of the exchange terms add co-
herently producing a very strong attraction which can
overcome the centrifugal barrier to produce binding.
Such a bound state has the quantum numbers of the
exchanged a.. While no attempt is made to include the
multimeson continuum in this work it can be shown
that these inelastic contributions are additional attrac-
tive interactions which will serve to increase the binding
energies of the Ng bound states. This would be an
improvement over the present result which gives too
high a mass for the m. , p, and y (or re).

In the present work we will use relativistic disper-
sion relations to produce unitary scattering amplitudes
starting from the sum of single-meson-exchange terms.
Our treatment will be similar to that of Scotti and
Wong, except for several important differences stated
below. Since we are interested in the calculation of the
EE and SX S-wave scattering amplitudes in terms of
the interaction without additional parameters, we can-
not employ the subtraction technique used by SW to
produce the S-wave scattering lengths. Therefore, we
must return to the NN problem, determine what inter-
action is necessary to fit the NÃ data and the S-wave
scattering lengths without using the subtraction method,
and then apply crossing to obtain the XX interaction.

Since our treatment of the SS system will have con-
siderable uncertainty due to the neglect of the multi-
meson continuum, it seems unwarranted to attempt to
obtain an ÃN interaction which contains a large number
of parameters all delicately 6tted to the experimental
data. I or this reason, we have minimized the number of
parameters used to describe the NN interaction to the
extent that a reasonably good fit to the NN phase shifts
can still be obtained. This simplification is achieved by
(i) employing a single sharp cutoff in all dispersion
integrals instead of the three Regge-slope parameters in

5 E. Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949); C. H.
Albright, R. Blankenbecler, and M. L. Goldberger, Phys. Rev.
124, 624 (1961);R. C. Arnold, Nuovo Cimento 37, 589 (1965).

SW; (ii) using SU8 to relate the coupling constant of the
p to that of the q&, ro mixture; and (iii) fixing the ratio of
the vector coupling of the p to the tensor coupling by
using the ratio of the charge to magnetic moment iso-
vector form factors. The resulting NN interaction then
depends on only four parameters: the cutoff energy s„
the coupling constant of the nucleon to vector mesons

g., the coupling constant of the scalar meson (&r meson)
to the nucleon g„and the effective mass of the scalar
meson m, . The four free parameters are sufhcient to
produce a good fit to the NN phase shifts obtained by
phase shift analysis of the data. ' The only remaining
assumption necessary to obtain the N¹interaction from
the NN interaction given this type of parametrization
is to relate the cutoff in the NN case to that in the XX.
For simplicity, we use the same cutoff in both cases.

In the following section we formulate the partial-wave
dispersion relations and the ÃD—' equations with special
attention given to removing a kinematical singularity
at zero total energy. In Sec. III the x, p, 0, p, co, and q

exchange contributions to the partial-wave amplitudes
are calculated. Section IV contains the application of
the ND ' equations to the NN problem together with
the resulting fit of the NN phase shifts. The interaction
obtained is then converted to the XX interaction and
the integral equations are solved to obtain the XE
scattering amplitudes and the masses of the bound
states. The last section contains a discussion of the
results and possible extensions and improvements of the
present calculation. Some remarks are made in support
of the composite-particle interpretation of mesons. '
Explicit formulas for the single-meson-exchange con-
tributions to the partial-wave amplitudes are given in
an Appendix.

II. PARTIAL-WAVE DISPERSION RELATIONS

The usual scalar variables s, t, and I are the following
functions of the center-of-mass energy, momentum, and
scattering angle:

s=4E'= 4(p'+m'),

t = —2p'(1 —s),
u = —2p'(1+ s)

where s= cose.
Following the notation of SW, the partial-wave

amplitudes are defined in terms of Stapp's nuclear-bar
phase shifts':

Singlet:
hg= (E/2insp)Lexp(2i5~) —1];

6 M. H. MacGregor and R. A. Amdt, Phys. Rev. 139, B362
(1965);H. P. Noyes et al. , ibid. 139, B380 (1965).

7 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A.
Benjamin, Inc. , New York, 1961);and M. Jacob and G. F. Chew,
Strong Interaction Physics (%. A. Benjamin, Inc. , New York,
1964).

8 H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.
105, 302 (1958).
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Uncoup/ed tri p/et:

hJs——(E/2imp)[exp(2ib js)—1]; (2)

Coup/ed trip/et:

hs i,s (E/2——imp) [(cos2es) exp(2ibs i,s)—1], (3)

hs+i, s (E/2—i—mp) [(cos2es) exp(2ibs+is) ,
1—], (4)

h = (E/2mp) sin2es exp[i(bs i, s+ bed+i, s)). (5)

These expressions hold for I=O, 1 NN as well as NN
amplitudes.

In the E2V probleni, the h's are related to the in-
variant helicity scattering amplitudes p&, p2 I@3 p4,
and q5 by'

region of interest s&4m'. On the other hand, if we con-
sider now the ÃN problem with the expectation of
finding strongly bound states, this singularity should no
longer be ignored. In our present treatment of partial-
wave amplitudes, proper account of this kinematical
singularity will be given.

A. Singlet Amplitudes

I.et us first examine the singlet amplitudes and give a
brief review of the formulation of dispersion relations
and the A'D ' method. From the phase-shift expression
given by Eq. (1), one obtains the usual unitarity
condition:

Imhs=(mp/E) ~hJ ~'; s)4m'

hs= ds Ps[pi pg], —
4m

hJJ= ds [dll &P3 d—11 P4] p

4m

p+&

hJ—1,J ds {JPj(pi+ pi)
27+1 4m

+(J+1)(dll Pi+i/ —11 4 4)

+4[J(7+1)]'"diosp5},

h J+1,J ds {(1+1)PS(pi+y&)
2J'+1 4m

+J(Ai ps+~ ii p4)—

(6) A dispersion relation for hs can be written in the form

(7)

mp' ~hs(s')~'
hg(s) =bs(s)+ ds' — ——, (12)E' s' —s—ze

where bs(s) is a real analytic function containing all the
singularities of hs below s= 4m . As in SW, bs(s) will be
approximated by contributions coming from single-
meson-exchange diagrams. One obvious defect of this ap-
proximation is that solutions of (12) will certainly not
have the required threshold behavior hs(s)~(s —4m') ~

(g) for J)0, because b J (s) itself has this behavior while the
dispersion integral is positive-definite at threshold.
Therefore, some rescattering correction to b~(s) must be
included. We shall modify Eq. (12) by using a similar
equation for hJ defined by

hs(s) =—(1/s) [(s+s,)/(s —4m')]shs(s), (13)

[J(J+1)]'"E +'
hJ— i/s {Ps(%1+Ã&)

4m

(d11 p 3+d—11 'P4)

+2/[~(~+1)] ~lo 0'&} (10)

For XE scattering, similar expressions hold except that
a factor of 2 should be multiplied into the right-hand
side of Eqs. (6)—(10)because the Pauli principle does not
apply to X1V scattering.

It was shown by Goldberger, Grisaru, MacDowell,
and Mong' that the amplitudes Epj, Ep2, Ep3 E+4,
and p5 have no kinematical singularity in the complex
s-plane (s =4E'). Therefore, it follows from Eqs.
(6)—(10) that hs and hss have no kinematical singulari-
ties, but the coupled triplet amplitudes hJ ~,J, hJ+~ J,
and h all have a (s)'t' type singularity at s=0. In the
work of SW, no attempt was made to remove this
kinematical singularity in the formulation of dispersion
relations because the point s=0 is far removed from the

M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D.
Y. Kong, Phys. Rev. 120, 2250 (1960);hereafter called GGMW.

where s, is a real parameter.
For this amplitude, the analog of Eq. (12) becomes

hs(s) =bs(s)

1 " /mp's' s' —4m'
~

hs(s') )
'

4~~ 4 E s +s~ s —s ze

where bs(s) is given by

1 s+s,
bs(s) =— bs(s)

s s—4m'
1 S,.

+— — (hg(0) —bs(0)) . (15)
s —4m'

Now, the threshold behavior of bJ from the single-
meson-exchange contribution will be like a constant.
The solution of (14), if it exists, will also produce a
constant threshold behavior for hJ, thus the partial-
wave amplitude hs(s) given by the inverse of Eq. (13)
will have the proper threshold behavior. However,
hs(s) will now have a 7th-order pole at s= —s,. This
singularity is interpreted as an approximate replace-



142 ONE —BOSON —EXCHANGE MODEL OF NN AN D Eg I NTE RACTION 1003

ment for the singularities produced by rescattering
corrections.

Aside from the Jth-order pole at s= —s„we have also
introduced a (1/$) factor in the definition of h$. Of
course, if bJ($) and h$(0) were known exactly, there
would be no point in considering the amplitude hg
instead of hq. However, with a given approximation for
bz($), the solution of Eq. (12) for the partial-wave
amplitude may be improved by using the above manipu-
lation in (13)—(15)provided hz(0) can be obtained by an
independent method. It was shown in GGMW that
h$(0) is in fact related to a combination of other partial-
wave amplitudes at s=0. Namely,

h$ ——h$+~+ 0+1 E2J+1]

tion (11), we obtain

$—4m' $ mp$
ImD$($) =- cV$($); $ & 4m' (18)

$+$, E

and the dispersion relation

1 " ($'—4m' $ mp'$' 1V$($')
D$($) = 1—— d$'i —. (19)

7l 4~~ 5 $ +$~ E ($ —$)

For the X function, it must contain all the singulari-
ties of b$($)D$($) below $=4m', but must be pure real
above the threshold. Hence the expression for E~ reads

1 " b$($') ImD$($')
IVY($) =5$($)D$($) d$—— (20)

X{(J+1)h$ g,$+Jh$+g, $—2LJ(J+1)j'~'h$} 7f' 4m' S —S
/

J+3 1
4'yi, z+i-

(J+1)(J+2) J+2 2J+5~

2J+3

X{(J+3)78$+1,$+2+ (J+2)hZ+3, $+2

—2t (J+2)(J+3)]"'h$+'}. (16)

h$($) =AT$($)/D$($) (17)

and impose the condition that Eg is real above s=4m'
and Dz is real below s=4m'. From the unitarity condi-

For J=O, the second term in Eq. (16) vanishes and
we obtain a relation between the singlet 5-wave ampli-
tude and a combination of P and higher partial waves.
Since our single-meson-exchange model of 1V1V and At'g

interaction will be more reliable for higher partial waves,
Eq. (16) will probably yield a better determination of
hp(0) than the corresponding quantity obtained through
the dispersion relation without the (1/$) factor in (13).
In practice, it is sufhcient to approximate the right-
hand side of (16)by using dispersion relations analogous
to Eq. (14), but with ~h$($') ~' replaced by ~b$($') ~'.
For J)0 in Eq. (15), we shall simply approximate
hz(0) by b$(0).

Once b$($) is given, Eq. (14) can be solved by the
familiar X/D method provided b$($) vanishes faster
than (ln$) ' as $ —++~. This asymptotic behavior is in
fact not satisfied due to the logarithmic divergence
produced by the exchange of vector mesons. On the
other hand, if a cutoff is imposed on the dispersion
integral, then a solution can be obtained. For simplicity,
we will impose the cutoff at s= s„where s, is the same
parameter which enters into the Jth-order pole at
s= —s,. This cutoff procedure is considerably simpler
than the Regge-pole approximation of SW and reduces
the three Regge-slope parameters to a single cutoff
parameter for the present calculation.

The fV/D equations are obtained as follows. First, we
express h~ in the form of a quotient

After substituting Eq. (19) into Eq. (20), we obtain the
integral equation

Sc

N$(s) =5$($)+— d$'Lb$($') —b$($)]

B. Uncoupled Triplet Amplitudes

For the partial-wave amplitudes h»($), the orbital
angular momentum is equal to J and is greater than
zero. Therefore, no advantage will be gained by making
use of relations at $= 0 such as those given by Eq. (16).
The problem of threshold behavior is, however, handled
in the same way as in the singlet case. We define

$+$,
h$$($) = h»($),

s—4m'

$+$, )$
&»($)=

$—4m')

(22)

(23)

and use the same E/D equations as (19) and (21) ex-
cept that the (mp'$'/E') factors are now replaced by

($'—4ts' tÃp'$') A $($')
Xi

5 $'+$, E' I ($' —$)

Equation (21) is a regular Fredholm equation of the
second kind which possesses a unique solution for a
given bz($) This equa. tion can be solved by straight-
forward numerical methods. Having solved Eq. (21)
for the E functions, the D functions can be evaluated by
using Eq. (19). For a b($) corresponding to a strong
attractive interaction, the D function will pass through
zero at a point below the threshold. This zero corre-
sponds to a bound-state pole in the partial-wave ampli-
tude. The square of the mass of the bound state is equal
to the value of s at the pole.
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(mp'/E'). Here again b J denotes the meson-exchange Explicitly, the relation is
contribution to hgq.

1

hj 1 j h

Iz~ Ized+1, g~
(24)

The unitarity condition can then be expressed as

(mph 1 0
Im/z

—'= —
I I; s) 4m'.(rf 0 1

' (2S)

If it were not for the (s)'/2 kinelnatical singularity, we

could immediately write down SD ' equations in the
matrix form" as long as Imh ' is a known function in
the physical region s&4m'.

As we shall see below, the (s)'/2 singularity appears
in a simple form in the helicity partial-wave ampli-
tudes given by

where

Hl 1 H12
H=—

I
=x&hx,

H21 H22

( J )1/2 J+] 1/2

E2J+1)

( J+1q1/2 ( J pl/2

.K2J+1p/ (2J+1)

(26)

(27)

C. Coupled. Triplet Amplitudes

For any given total angular momentum J, let us de-
fine h to be the 2)&2 matrix

H12~=H21~= (I J(J+1)7'/2
2J+1

X(h. .,.—h,+1,.)+h'&, (»)
1

H22~ (——(J+1)hJ 1,Z
2J+1

+Jh&+» —2I J(J+1)7'"h')

By making use of (28)—(30) and the relation between
partial-wave amplitudes and invariant scattering ampli-
tudes given by Eqs. (6)—(10), one can easily verify that
II~~~ and H~~~ are given in terms of Eq ~, Eq 2,

I' p3, and
Eqp4 while H12~(H21~) involves only EVpz. Therefore, the
(s)'/2 singularity only appears in H»~(H»~), thus this
kinematical singularity can be removed by simply
dividing H» (H» ) by (s)'/'. Unfortunately, the task
of formulating the AD—' equations is a somewhat com-
plicated matter. Not only do we want to remove the
kinematic singularity from the partial-wave amplitudes,
but we must also perform a transformation similar to
Eq. (22) to produce the proper threshold behavior.
Since the helicity amplitudes EX»~, II22, and II~~~ are
each a combination of h~ j g, kg+a ~, and h, there are
three algebraic relations at the threshold which must
be maintained in the ED -type equations. For this
reason we introduce a new set of amplitudes given by

where

(A»'
I= I"HI,

kA 21~ A 22~)
(31)

H»~= (JAJ l, z
2J+1

+(J+1)hJ+l,J+2I J(J+1)7'"7z'), (2g)

g+ g, (~+1) /2

p2(J+1)1/2I
2

/ss /s+s. )&ss'&s'
p'J'"I —I—

Ez E

(S+S.y l~-"/'
m(J+1)'/2I

Q2J+1 4 pz)I"=-
p' psps)( )t's

gJl/2I

(32)

For the individual elements of the 2&(2 matrix, the above transformation gives

2J+1) s+s.) ~—'
((J+1)m2H11 +JE2H22 —2LJ(J+1)7 / mEH12~)

p4 i p2 i
(2J+1 (s+s, ~

((J+1)mH»'+ JmH22' —
t J(J+1)71/2(»ym2)H12~/+)

p

~ p' & p'

g+g ) J'+1

A 22' ——(2J+1) —
I ((J+1)H»~+ J Hm/2I2s 2 2[J(J+1)71/zmH»~/Is ) . —

2

(33)

(34)

(35)

' J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
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It is easily seen that these amplitudes have no branch point at s=0 and all behave like a constant near the thres-
hold. The inverse transformation from 3 to h will give the proper threshold behavior for each element of h.

At this point, we can derive the .VD— equations for the 2)&2 matrix A. First, the unitarity condition is given by

p =—ImA —'= Im(VrXrhXI') '

—(Is -1)(X—1)(Imh) (XT)-1(ls T)—1

~mp~ p' s-'- 1

k E i s+s.) J(1+1)

'(J+1)E2+Jm-'

(2J+1)

(
mE'~

s+s.i

t
mE2~

I s+s,J
s&4m'.

JE2+ (J+1)m'

(2J+1) s+s,

(36)

Expressing 3 in the form

and making the usual requirement that the Smatrix is
real on the right s&4m' and the D matrix is real on the
left s&4m', we obtain

1 " p(s')cV(s')
D(s) =I — ds—'

4~' s —s

where the product pÃ is of course understood as a
matrix product. Finally, we denote the meson-exchange
contribution to A~ by B~ and obtain the integral equa-
tion for E as before:

&c

E(s) =Bs(s)+- ds'

&&, i&'( ')—&'( )jp( ')&( ') (38)
s —s

Returning now to the definition of A~~~, 3~2~, and
A22s given by Eqs. (33)—(35), we see that, in general,

has a pole at s=O given by

= {4J(2J+1)m'(—s,/m2)s+2EI22 (0))/s, (39)
a~0

In order to take proper account of this pole, the 822'(s)
element appearing in Eq. (38) must be replaced by

~-'()-~-'()
+{4J(2J+1)m2( —s /m2) s+~e22s(0)

-L & '( )j -o)/ (4o)

For J=1, we make use of Eq. (16) to obtain the
following expression for &22'(0) in terms of I' and
higher partial waves:

P22' ——2h2 —2h2 —(5/3)h2, 2+(8/3)Z22 (41)

As in the case of the singlet S amplitude we approximate
the right-hand side of (41) by the meson-exchange con-
tribution plus a dispersion integral obtained from the
first iteration of the meson-exchange terms. For J&1,

the quantity appearing in the bracket of Eq. (40) will be
neglected.

Now we proceed to the calculation of the meson-

exchange contribution to b&(s), bshe(s), and Bs(s).

III. SINGLE-MESON-EXCHANGE
CONTMBUTION

In the following, we write down explicitly the
t-channel meson-exchange contribution to the EA
helicity amplitudes y&, , y5 in the I=O state. The
u-channel contribution gives rise to a factor of 2 which

must be supplied to the right-hand side of Eqs. (6)—(10)
for all partial-wave amplitudes that are not excluded by
the Pauli principle. For the Xg partial waves, there is

only one crossed channel having baryon number zero.
Therefore, one needs not supply a factor of two in the
calculation of meson-exchange contribution. However, a
factor of two is already present in the relation between
partial-wave amplitudes and the invariant scattering
amplitudes as we noted earlier. The net result is that the
magnitude of each meson-exchange contribution is the
same for a given NN and SE partial wave provided
that the E)V state is not excluded by the Pauli principle.
As one can verify by general arguments, the odd 6-parity
meson exchanges (2r,&o, y) have the opposite sign in E1V

compared to EN, and the even Q-parity mesons have
the same sign. Hence, all of the meson-exchange con-

tributions to the NÃ partial-wave amplitudes can be
inferred directly from those of the EE partial-wave
amplitudes.

To avoid ambiguities in the definition of coupling

constants, we shall write down the conventional

Lagrangians which will give rise to the following in-

variant amplitudes in the erst-order perturbation
expansion.

A. m Meson

The Lagrangian is given by

Z=(42r)'~'g gy2~ P f.
The I=O helicity amplitudes corresponding to the
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in agreement with the coupling constant determined by
most nucleon-nucleon phase-shift analysis. '

The Lagrangian is

B. g Meson

&=(«)"'g.@7~v A (48)

The I=O amplitudes can be obtained from x-exchange
terms by replacing g

' by (—g„'/3) and )M by tg„. The
coupling constant g,' can be obtained from g

' assuming
SU3 symmetry provided the (D/F) ratio is given. The
relation is

g, '= a(1—4~/(D+~))'g-' (49)

In the work of Martin and Wali, "they And that

F/(D+ J ) 0.25 (50)

t-channel single-pion-exchange diagram are

(E/m) pg&" =0, (43)

(E/m) y2&') = (3g '/4m)t/(Ig ' t),— (44)

(p/m) &31
&0) —0 (45)

(&/m) &
4"'= —(3g-'/4m)(1 —s)2P'/(t -'—t), (46)

(1/sine) p(;&') =0. (47)

We shall use

would give a good 6t to the masses and coupling con-
stants of the baryon decuplet members S~, I'~*, ™*,
and Q. This would yield a very small value for g„'. On
the other hand, if one assumes the approximate SU6
symmetry, then one finds

F/(D+F) =0.4.

However, Eq. (49) should now be applied to the axial-
vector coupling constants rather than the pseudoscalar
coupling constants. One obtains, then,

g '~(mm'/m„')(1 —1.6)'gm'~0. 3. (52)

We note that our Anal solutions for the ElV and XA
amplitudes are quite insensitive to the value of g„. For
example, setting g,'=12 as in SK will require a small
modification of the scalar and vector coupling constants,
but has a rather insignificant effect on the Gt to the
nucleon-nucleon data. The bound-state energies in the1'problem are also insensitive to the variation in g„.

C. p Meson

The Lagrangian includes the vector coupling con-
stant g» and the tensor coupling constant g p2.

&=2(4~)'"(g»+g»)&V.~ «9
(4 )"'(,—/2 )(p+P').P~,V' (53)

The I=0 ÃS helicity amplitudes corresponding to the
t-channel diagram are

Z ( 33., ) gp+ , (1+.)-m(3-3 p -3—-g.+.—

m k m2 k 4m m, ,'—t m m, ' t—
E 3g, ') 1—s 3g, 'p') —3p' —m'+2P's+(P'+m')s' gg, g. 1

)+
2m I m ' t 4m' 3—' mp' —t 2m m2 —t

33 s"l ()+s)(P'+lm') 33. 'P') (1+s)(*—1)—Va")= + +
m mi m2 t 4m m2 t

(3g, ' (1—s)m' 3g, 'p' (1—s)(3p'+m'+p's+m's) gg„g„) (1—s)p'

m k m mp' —t 4m' mp m —mp —t

(54)

(56)

(58)

Ke shall assume that the electromagnetic form factors where p„=1.83 is the gyromagnetic ratio of the isovector
of the nucleon are dominated by the contribution of the anomalous moment. From (59) and (60), we obtain
vector-meson pole. We then have = 13.4 . (61)gp2 —&~ gpi—

e-= (g,rg„,/m, '),
2

(59)

tg„(e/2m) = (gp2gp, /2mmp'), (60)

A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).

D. u and q Mesons

The Lagrangians for the or and q interactions are the
same as that for p except for the replacement of (~ )pg)

by p. As in SW, we omit the g„& and g„2 coupling in
view of the extremely small isoscalar anomalous mag-
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netic moment. In the present work, we also assume that
the vector-baryon coupling is primarily in the form of a
pure F-type octet. We can then obtain all the coupling
constants in terms of one parameter g, :

gpss =gal = 2gyi =gv j
2 2 1 2 2.

g p2 13 4gv ~ g&2 ge2
(62)

Here we also use the ~-y mixing hypothesis to obtain
the ratio between g„& and g„1. In the actual calcula-
tion, we will set all the vector-meson masses equal to
an average value, hence the results are independent of
the co-q mixing ratio.

E g.') -m'(1+s)-

m 2m) m, '—3

g' — ' m2 1—s
(P2(0)—

m 2m m, '—3

g.' (1+s)m'-
3(0)

m 2m m2 —t

(63)

(64)

(65)

(g, ') (1—s)(p'+m')
——p4(o) —

(

&2m
(66)

1 g&
—m

~ (0)—
sintI 2m m, '—3

(67)

IV. NUMERICAL RESULTS

A. Nucleon-Nucleon Scattering

Having obtained the formulas for the single-meson-
exchange contribution to the helicity amplitudes as
given in the previous section, one can apply Eqs.
(6)—(10) to evaluate the partial-wave projection of these
amplitudes. These results are explicitly given in the
Appendix. Some of the parameters appearing in the
single-meson-exchange terms are measurable quantities
which will be taken with 6xed values, namely,

m=938 MeV,

m„=140 MeV,

m, =548 MeV,

g~ = 13.

E. I=O Scalar Meson (ol

Following SW, we approximate the contribution of the
I=O, J=O, I=+m ulti mes oncontinuum by an effec-
tive scalar particle of mass m, and coupling constant g,.
The Lagrangian reads

2 = (4r)'"g.P p.f .

The I=0, EE amplitudes are

gpss =go)1 =2gyl =gv ~
2 — 2 —1 2— 2 (69)

The tensor coupling constants g„2 and g„2 are set equal
to zero and g,2 is determined by the isovector anomalous
magnetic moment to charge ratio:

g,2'= 13.4g p12= 13.4gv'.

The g coupling constant given by Eq. (52) is

g,'=0.3.

(7o)

The only additional parameter is the cuto6 s, which
enters into the i7D-' equations.

To summarize, we have a total of four adjustable
parameters: g., m, g., and s,. For a given value of s.,
we vary g„, m„g, to obtain a best fit to the pP: 'So,
'&o, 'I'i, 'I'q and np: 'Sq phase shifts at 25, 50, 95, 142,
210, and 310 MeV. 6 Results for the cuto8 s, corre-
sponding to laboratory kinetic energies of 600, 700, and
800 MeV are presented in Table I. It is apparent that
the Qt is not very sensitive to the value of the cutoff
in this region. In terms of the "goodness-of-fit" pararn-
eter, all of these fits are consistent with a four-parameter
theory having an inherent uncertainty of approximately
10%%u~. The best values of the three physical parameters

g ', m ', g,' for each value of the cutoff are given in
Table II.

By calculating the D function (the determinant of the
D matrix in the coupled triplet case), we find that a
bound-state pole appears in the I=O coupled triplet
J=1 amplitude. This pole corresponds to a deuteron
with binding energy in the neighborhood of 10MeV. The
amount of discrepancy between this value and the true
binding energy of 2.2 MeV is not surprising in view of
the simplicity of our four-parameter theoretical model.

We note that it is not possible to obtain a reasonably
good fit with a cutoG below 400 MeV or above 1200
MeU.

For each set of parameters corresponding to Table II,
we also calculated tht: D and higher partial-wave phase
shifts. These results are comparable to those obtained
by SW and they are in fairly good agreement with
those given by phase-shift analyses. '

B. Nucleon-Antinucleon Bound States

After itting the EÃ scattering phase shifts with the
four adjustable parameters, we solve the ED ' equa-
tions for XX scattering without changing the values of
the parameters. The only modification needed is to
change the sign of the (vr,~, p) exchange contributions as
required by crossing symmetry. Here, we also calculate
all of the partial-wave amplitudes excluded by the Pauli

For simplicity we will use an average mass for the vec-
tor rnesons p, co, and q.

m„'= „'(m-p'+ m„'+2 m„') ~(6 45.m, )' . (68)

The weight is taken according to the coupling strength
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TABLE I. Comparison of theoretical and experimental nuclear bar phase shifts in degrees.

Cuto8
(MeV) 50

Lab kinetic energy in MeV
95 142 210 310

Pp 'So Expt.
Theor.

3Eo Kxpt.
Theor.

~Pi Expt.
The or.

np 3S& Kxpt.
Theor.

'E2 KxPt.
Theor.

~ ~ ~

600
700
800
~ ~ ~

600
700
800
~ ~ e

600
700
800
~ ~ ~

600
700
800
~ ~ ~

600
700
800

50.2+0.4
52.0
47.8
45.1

5.6+0.9
9.0
8.6
8.7

—3.5+0.4
—4.8—4.9—5.0

2.0+0.2
2.4
2.0
1.9

78.7&5.2
95.7
95.4
95.2

37.7+0.6
42.0
39.2
37.3

12.0&0.8
12.6
12.0
12.1

—8.0+0.3
—7.8—8.2—8.2
6.1.a0.2

5.8
4.9

60.8+2.7
76.4
76.4
76.2

25.1~2.4
28.6
26.9
25.9

12.8a1.9
12.0
11.2
11.3

—13.0+0.5
—11.4—12.2—12.3
10.6a0.5

11.3
9.6
8.6

44.5~1.7
56.4
56.4
56.4

16.6+0,7
17.4
16.6
16.1

6.3&0.6
7.9
7.0
7.4

—17.1+0.4
—14.4—15.4—15.7
13.7+0.2

15.4
13.0
11.7

29.6+0.9
42.0
42.3
42.2

5.1&0.6
3.6
3.8
4.1

—0.7&0.6
—0.1—0.6

0.0
—21.6a0.6

—18.4—19.9—20.2
15.9&0.3

18.7
15.9
14.1

17.6%2.4
25.9
26.3
26,7

—6.9+1.6
—15.1—13.2—11.5

—11.3&1.7
—12.8—12.9—11.6

—28.5+1.3
—24.8—25.5—26.7
16.4+0.7

20.2
17.4
15.2

—1.0+5.2
5.8
7.0
8.1

principle in the ÃlV problem. For each of the three sets
of parameters given above, we find tha, t there are Ave
and only five bound-state poles in the partial-wave
amplitudes. They are the four 5-wave amplitudes hav-
ing the quantum number ot g, m., &u (or p), and p, and
the I=0 'Pp amplitude having the quantum number of
the 0. Numerical results are tabulated in Table III.

V. REMARKS

As we have stated before, the main objective of the
present work in regard to ÃiV scattering is to use a
minimum number of phenomenological parameters in as
much as an over-all Qt to all the I=O, 1 phase shifts is
possible. The results given above indicate that the two-
body nuclear forces are, to a good approximation, domi-
nated by x, o., g, p, co, and q exchange.

Although a reasonable fit to the '5~ phase shift will
guarantee the occurrence of the deuteron pole, it is
rather encouraging that our calculation yields a binding
energy within 10 MeV of the physical deuteron in spite
of the fact that the potentials due to an individual meson
is typically several hundred MeV in strength.

From a pragmatic standpoint, the question of
whether a particle is composite can be answered by an
5-matrix calculation using our knowledge of the strong

interaction at any given stage. If the calculated 5
matrix agrees with the scattering data to the expected
accuracy and contains a, pole with the proper mass and
the proper sign of the residue, then this pole corresponds
to a composite particle. A physical particle must be
found with the same quantum numbers and approxi-
mately the same mass and coupling constant, otherwise,
the fit to the scattering data would be invalidated. In
the case of the deuteron, experience has strongly sup-
ported the composite-particle interpretation and we
have only added one more claim along that line. Pre-
sumably, nuclei with baryon number grea, ter than
two are also composite in the same sense. The more
interesting questions concern particles of baryon num-

ber one and zero.
For the baryon number one, many authors" have

contributed works showing that the baryons and the
baryon resonances are composite particles consisting of
mesons and baryons. However, the knowledge of the
forces, the 5-matrix method, and the scattering data

TABLE III. Square of the masses of the nucleon-antinucleon
bound states {in pion units) having the quantum numbers of p,

co) p) and 0.

tof'f
Bound sta 600 MeV 700 MeV 800 MeV

Cutoff 600 MeV 700 MeV 800 MeV

TABLE II. Masses (in pion units) and coupling constants of the
effective 0 meson and coupling constants of octet vector meson ob-
tained by fitting nucleon-nucleon scattering phase shifts.

I=O 'So
I=i ~So
I=0, 'Sg
I= 1) 'Sg
I=O, 'Po

71
171
172.8
155.3
172.3

—10
171.6
173
150
169.9

—75
172.8
173.4
146.4
168.0

5.15
3.90
1,36

4.80
3.95
1.41

4.15
3.85
1.41

"G. I'. Chew, Phys. Rev. Letters 9, 233 (1962); K. Abers and
C. Zemach, Phys. Rev. 131, 2305 (1963); J. S. Ball and D. Y.
Q'ong, ibid. 133, 3179 {1964}.
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are all less reliable than those in the XÃ problem.
Nevertheless, from the point of view discussed above, it
is fair to say that the accumulated evidence is in favor
of all baryon and baryon resonances being composite.

When one examines particles with baryon number
zero (mesons), the question of compositeness is still
more dubious. The most frequently discussed problem
is that of the p meson. "In all of the works without the
SX channel, a very short-range force of phenomeno-
logical nature either in the form of a cutoB or in the
form of a distant unphysical singularity has to be in-
cluded in order to produce the physical p meson as a
composite particle. On the other hand, our present work
shows that the 1'channel alone is capable of producing
a bound particle in the I= 1, triplet J= 1 state without
using a distant cutoff. The fact that the same nuclear
forces used in the SE problem do produce the bound
state in the XE system can be taken to be a strong evi-
dence that this composite state is associated with a
physical particle. Due to the omission of the low-

lying mm. , EZ channels, it is to be expected that the
bound state we produced is substantially more massive
than the physical p meson. It seems rather likely that
the combination of these meson channels together with
the XX system can yield a fairly realistic picture of the

p meson.
For the or and q mesons, we have also found a bound

state in the SX system having the proper quantum
numbers. Again, the inclusion of meson channels such as
EE will lower the mass of the bound state. However, it
is very unlikely that the meson channels will produce an
additional composite particle to account for the physi-
cally distinct or and p. Since the physical or and p are
commonly believed to be mixtures of a singlet and an
octet in the SU3 scheme, one should naturally take
strangeness into consideration. As one can easily see, the
baryon-antibaryon system can couple to the singlet as
well as the octet states. Generally speaking, the poten-
tials in the singlet state tend to add coherently and is
therefore stronger than those in the octet. On the other
hand, the existence of the bound state with the quantum
number of the p indicates that the potential in the octet
is already strong and attractive. Hence, one might 6nd
that the addition of the AX, ZZ, and ™™channels will

yield two bound states of I=O and J=1with the singlet
particle more tightly bound than the octet. Further
addition of the two-pseudoscalar channel will then
lower the mass of the octet particle without affecting
the singlet since the latter is forbidden by Bose statistics.
Of course, the foregoing arguments are speculative and
can be substantiated only by calculations. Nevertheless,
this seems to constitute a feasible dynamical model
of the co-p mixing.

For the singlet J=0 systems, our result for the mass of
the I=1 bound state is approximately a factor of 10

"For reference to earlier works, see, for example, I. R. Fulco,
G. L. Shaw, and D. Y. Wong, Phys. Rev. 137, $1242 (1965}.

heavier than the pion mass. Clearly, the NE system is

not the dominant channel in making the physical pion.
Among the available meson channels, the totally sym-

metric three-pion system seems to be the most likely
candidate to produce a low-lying bound state. '4 It would

be of some interest to combine the XX channel with the
three-pion system and investigate the migration of the
bound-state pole. In particular, one can observe whether

there is one or more composite particles in the com-

bined system.
As we have shown in the previous section, the bound

state in the I=O, J=O amplitude is considerably more

tightly bound than all of the others. It is also the only

bound state that is sensitive to the cutoG parameter.
The square of the mass varies from 71m ' at 600-MeV
cutoB to the unphysical value of —75m ' at 800-MeV
cutoG. Although these results undoubtedly indicate the

inadequacy of the present S-matrix calculation, never-

theless, they also show that the attractive force in this

state is clearly stronger than that in the other states.
There seems to be no compelling reason to believe that
other channels will be important in a realistic calcula-

tion of the q meson. Among the meson channels, the
lowest lying ones are the ZE* channel and the uncor-

related four-pion channel. It is not surprising that the

XX channel is indeed the dominant one.
For the 'Po amplitude, the correspondence of the XE

bound state to any physical particle is somewhat dubious

because of the lack of clear cut experimental evidence

for an I=O, J=O, P=+ praticle. Theoretically, it will

be of some interest to examine the behavior of this

bound state under the coupling to the x7r channel, par-
ticularly in regard to the question of whether there
should be a threshold enhancement or an actual peak
in the xw cross section.

Finally, among the other E-wave states, we And that
the strongest attraction appears in the I=1, 'E~
amplitude. Although no resonance is found, the phase
shift is sufljciently large ( 40') that a resonance can

easily be produced when an additional attractive channel
is turned on. This might be a relevant consideration in a
dynamical model of the 8 meson. "
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APPENDIX

We now present explicit formulas for the contribu-
tion of each type of meson exchange to the amplitudes

' A. Ahmadzadeh and J. A. Tjon, Phys. Rev, 139, 81085
(1965).

"M. Abolins et a/. , Phys. Rev. Letters 11, 381 (1963).
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~z, km', bs j.,z, kg+i, g, and h~. These contributions are
bJ ~J'J ~j'—g, J bJ+g„J and b and are the re-

sults of performing the appropriate angular projection
operations on the q

's as given in Sec. III. Each meson-
exchange term is to be multiplied by the isotopic spin
crossing matrix. For the t-channel contribution,

where I is the isospin of the meson and I~~ is the iso-

spin state of the EX.The e-channel contribution gives

rise to a factor of 2 for all nonvanishing partial-vive
amplitudes. This is included in the expressions below&.

A. Pseudoscalar Exchange

The contribution of x exchange and g exchange has

the foljoming form:

J+1y
Q.—(z.)—Q.(z.)+ iQ.+ (z.),

p J+1y J
iQ~-~(Zn)+Q~(Z. )— IQ~+~(Z.),

E2J+1/ »+st

g.'t'
im.—(Z.)-Q.(Z,)j,

2m&2J+1)

b~+~, ~= — —— ILQ~(Zn) —Q~+i(Zn)],
2m 2J+1)

Z.' LJ(J+1)j'"b- (—Q~-x(Z.)+2Q~(Z.)—Q~+i(Z.)),

where g~ is the pseudoscalar coupling constant, the Q's are Legendre functions of the second kind, and

Zn=1+(I P'/2p'),

p„being the mass of the exchanged meson.

3. Scalar Meson Exchange

The scalar-meson-exchange contribution, i.e., the 0 meson is as foHom's:

— (» J+»
Ip'Q~-~(Z. )+(p'+2m')Q~(Z )— — Ip'Q~+~(Z. )

2mp (2J+1)
' '

2J+1)

g, ' — ( /+1. i J
Ip'Q~-~(Z*)+(p'+2m')Q~(Z )— p'Q~+~(Z )

2mp' E2J+1)»+1
(E(2J'+2J+1)(p'+2m')+4J(J+1)m~lQz-~(Z. )( g.'&

(2mp2/ (2J+1)2
+2J(J+1)(p'+2m' —2m&)Qg~~(Z. )—(2J+1)'p'Qz(Z. )),

g
2

&a+i,z= (2J(J+1)(p'+2m' —2mB)Qz g(Z.)—(2J+1)'p'Qz(Z, )
2mp' 2J+1

+I (2J y2J+1)(p +2m )y4J(J+1)m~]Q&„(Z.)),
g

' LJ(J+1)j'"b- (—p' —2m'+2m&) (QI-~(Z )—QJ+~(Z ) )
2mp' (2J+1)'

where g, is the scalar-meson coupling constant and Z, = 1+(p,'/2p'), p, is the mass of the scalar meson.



C. Vector-Meson Exchange

%e will erst present the results for the vector meson-nucleon charge coupling, which is applicable to the p, ~,
and q exchange. This contribution is

by= —(gyp/mp')(2p'+m')Qg(Z. ),
gyp' t' J+1 J

, I
p'Q.—(Z.)+(p'+ ')Q.(Z.)+ p'Q".(Z,),

mp' E2J+1 (2J+1)

gv«
f [(J+1)'p'+(2J'+2J+1)m'+2 J(J+1)m&]Qg g(Z.)

mp' 2J+1
+(6J'+5J+1)p'Qg(Z. )+J(J+1)(p'+2m' —2mB)QJ+g(Z. )},

gv«
bg+gg= —

, (J(J+1)(2m +p —2m')Qg y(Zy)+(6J +7J+2)p Qg(Z„)
mp'-2J+1

+[J~p2+ (2J2+2J+1)m2+ 2J(J+1)mE]Qg+y(Z~) },
gvi' LJ(J+1)]'"

bJ'— {[—(J+1)p' —m'+mE]Qg g(Z.)+(2J+1)p'Qg(Z. )+(—Jp'+m' mE)—Qg+g(Z, )},
mp' (2J+1)'

where g~p is the vector-meson charge coupling and in these equations as well as in the following Z„=1+(m, '/2p'),
where m, is the mass of the vector meson.

For the p meson the existence of an anomalous magnetic-moment-type coupling gives rise to two additional
contributions, one in which both vertices are pure magnetic coupling and the other, a mixed coupling resulting
from charge coupling at one vertex and magnetic at the other. The pure magnetic-coupling terms are

gp22 J(J—1) J
bJ= O'Q~- (Z2)+ (2p'+4m')Q~-i(Z. )

4m' (2J+1)(2J'—1) 2J+1

[(SJ+SJ-4)p+2(2J-1)(2J+3) ]Q,(Z.)
(2J—1)(2J'+3)

(2J+2) J'+3J+2
+I l(p'+2m')Qzpi(Z. )+ p'Q~+~(Z )(2J+1i (2J+1)(2J+3)

gr22
- (J+1)(J—1) - -(2J+3q t' 2

p'Q.—.(Z.)+ I lp'+I lm Q.—.(Z, )
(2Jy1)(2J—1) (2J+1i E2Jgli

10J'+10J—9 — 2J—1) ( 2 — J(J+2)
p'Q~(Z )+ I

p' —
I

m' Q~+~(Z )+- —p'Q~ (+Z)
(2J—1)(2J+3) 2Jyli &2J+1 (2J+1)(2J+3)

gF2
bJ «z=

4m'(2 J+1)
[(2J'+2J+1)(p'+2m')+4J (J+1)mE]

(2J+1)(2J—1)

XQJ a(Z.)+- [ (4J+ S+J)3'p—14'J'm+4(JJ+1) Em] gQg(Z. )(2J+1)

[(—20J3—30J2+D+9)pm+(8J3+4J2 —6J+6)m'+4J(J+1)mZ]Q, (Z, )
(2J—1)(2J+3)

1
+ — I[—(4J'+3J—1)p'+4J(J+1)m' —4J(J+1)mE]QJ+g(Z, )2J+1i

-2J(J+1)(3+2)
(p'+2m' —2mB)Qg+g(Z. )

(2J+1)(2J+3)
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gvP 1 -2J(J—1)(J+1)
~J'+1,J (p'+2m' —2mE) Q~ 2(Z.)

4m (»+1) (2J+1)(»—1)

J
L.(4J+3» -4(J+1)-+4(J+1)-E]Q.-.«.)

2J+1

[(—20J~—3OJ~+u+8) p2+ 2(4J3+~OJ2+SJ—4)m~ —4J(J+1)mE]Q&(Z.)
(»—1)(»+3)

D4J'+3J+2)p' 4(J+—1)'m2 4J(J+—1)mE]Qg+g(Z. )
2J+1

J+2
D»+»+1)(p+2 )+4J(J+1) E]Q".(Z.),

(2J+1)(2J+3)
gvP(LJ(J+1)]'~ J—1

(p'+2m' —2mE) Qg p(Z. )
(»+1) (»+1)(»—1)

Lp2 —2(8J2+8J—7)m' —2mE]
+ (3p'+4Jm'+2mE)Q (Z,)+ Qz(Z )

2J+1 (2J'+3) (2J—1)

L--3p+4(J+1) -2 E] J+2
Qg+y(Z&)+ ( p 2m +2mE)QJ+R(Ze)

(2J+1) (»+1)(2J+3)

where gy~' is the tensor coupling constant of the vector meson.
The mixed charge and magnetic coupling gives

gv~gv2 J & p J+1)
iQ.—.(Z.)-Q.(Z.)+I IQ.+~(Z.),

m ~ 2J+1J 42J+1J

g vugg v ~ J+1
Q. .(Z.)+Q.(Z.)-l IQ; (Z.),

m 2J+1 k2J+1)

4J +2J+1+4J(J+1)—Q. (Z.)-(2J+1)(4J+1}Q.(Z.)+4J(J+1)I 1—IQ" (Z.),
m(2J+1)2 m- m)

gv~gv2
be+~, J =

m(2J+1}'
r4J(J+1)I 1—Q.—(Z.)-(2J+»(4J+3}Q.«}

m

+ 4J~+6Jy3+4J(J+1)
i

— Q~+~(Z,),
km

gvlgv2 tJ(J+1)]b'= — 2J—1+2 — Qz i(Z.)—2(2J+1}Qz(Z.)+ 2J+3—2 — Qr+i(Z. )
m (2J+1)' m


