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A simple model is proposed for the calculation of free-electron wave functions for low-energy electrons
incident upon neutral atoms. The region of interaction of the electron with the atom may be separated into
three important regions of potential: Coulomb plus exchange, Coulomb, and far-Geld induced polarization.
The division of regions is based on mathematical and physical reasons for the characteristic behavior of
wave functions in the scattering problem. Examples are given for the elastic scattering of electrons from
nitrogen, oxygen, and argon. The agreement with experiment and effective-range theory is good. The appli-
cation of the method to the prediction of low-energy electron scattering from homonuclear diatomic mol-
ecules is discussed.

I. ATOMS

«~OR low-energy electron scattering from atoms or
molecules, the important interactions are well

known to be Coulomb, exchange, and induced polariza-
tion. The relative emphasis of these interactions as
applied to the scattering problem appears to be the
basic difference between the approximate methods of
calculation that have been reported. '—"However, there
are certain fundamental properties of solutions to the
self-consistent 6eld and the scattering problem that
must be considered in the formulation of any model.
The treatment of exchange is one of the most important
considerations because of its consequence of producing
orthogonality between solutions of like angular sym-
metry. "The orthogonality property and its relationship
to the free-electron phase shift has been discussed in

'D. R. Bates and H. S. W. Massey, Phil. Trans. Roy. Soc.
London A239, 269 (1943).

s M. J. Seaton, Phil. Trans. Roy. Soc. London A901, 469 (1953).' L. B. Robinson, Phys. Rev. 105, 922 (1957).
s A. Temkin, Phys. Rev. 107, 1004 (1957).
5 P. Hammerling, W. W. Shine, and B. Kivel, J. Appl. Phys.

25, 760 (1957).
6M. M. Klein and K. A. Brueckner, Phys. Rev. 111, 1115

(1958).
s R. G. Breene, Jr., and M. C. Nardone, Phys. Rev. 115, 93

(1959).
8 R. G. Breene, Jr., and M. C. Nardone, Phys. Rev. 123, 1718

(1961).
s W. R. Garrett and R. A. Mann, Phys. Rev. 130, 658 (1963)."P.M. Stone and J. R. Reitz, Phys. Rev. 131, 2101 (1963)."W. R. Garrett and R. A. Mann, Phys. Rev. 135, A580 (1964).
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the electron-hydrogen problem by Temkin. " Related
to this, Helliwell" has also observed the near radial
coincidence of zeros of solutions of the same angular
symmetry in a given atomic system. This appears to
be true of inaction points and zeros generally. '5 As
an example, the second zero outward from the origin
of a low-energy free-electron s function will nearly
coincide with the nonzero inAection point of the 2s
function. However, this characteristic is not produced
if only Coulomb interactions (Hartree) are considered,
but is produced when exchange is added (Hartree-Fock)
to the interactions, as seen in the work of Breene and
Nardone. ~ ' Also demonstrated in that paper is the
stability of the second zero from the origin of the low-
energy s wave, "which shows the principal variation
in the wave functions to occur on the exterior portion
of the atom where the polarization interaction is im-
portant. This is a simplifying property of low-energy
scattering solutions which would allow calculation of
free-wave functions for complex scattering centers such
as molecules, when the ground-state wave functions
are known, by placing the appropriate zero and cal-
culating the solution in the far field only, thus avoiding
the multiple interactions inside the core. This may be
seen by integrating the nonlinear diQerential equation

"A. Temkin, J. Math. Phys. 2, 336 (1961)."T.M. Helliwell, Phys. Rev. 135, A325 (1964).
'The reader may satisfy himself on this by examination of

any multielectron-atom Hartree-Fock solution.
"Reference 8, Fig. 2.
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for the phase shift'~

—= —kV(r)
dr

-sin(kr+r)(r)) '

TAELE I. Comparison of Hartree-Fock (HF) and parameterized-
Slater-modified Hartree-Fock (PSHF) 2s wave functions. The
inflection-point zeros occur at r=0.274 a.u. (HF) and r=0.276
a.u. (PSHF).

for the s wave, where g is the phase shift, k is the
square root of the energy in rydbergs and V(r) is the
scattering potential. The phase shift at a zero E. of
the wave function would be —M. The integration for
the phase shift would then range from E. to ~. And
the important contributions to the phase shift would
then come from the potential on the outside of that
zero.

However, if a good approximate potential could be
used that would accurately produce Hartree-Fock (HF)
solutions out to the point of the appropriate node,
then that potential could be used as the scattering
potential for the inner core region.

It is much more important in any approximation
scheme that good solutions be obtained rather than
making approximations that produce good ionization
potentials for the bound states, because it is the func-
tional character of the solutions which is useful in
partial wave analysis and effective range theory. Thus,
a method is needed which will produce good approxi-
mations to the Hartree-Fock solutions in the region of
interest. Such a method is the parameterized-Slater-
modified Hartree-Fock method (PSHF)" which is es-

pecially attractive because it eliminates the coupled
terms in the Hartree-Fock equations and thus auto-
matically ensures orthogonality for solutions of like

angular symmetry. The accuracy of this method may
be judged from the comparison with the oxygen 2s HF
solution in Table I." The region where the PSHF
method breaks down is values of r considerably outside
the important nodal point, which does not affect the
bound solutions because they are exponentially decay-
ing in that region, but would affect the low-energy free
solutions because they are increasing to large values
in that region. The region where the PSHF method
begins to break down is about where the Hartree (H)
potential form is becoming dominant so the scattering
potential must make a transition from the former to
the latter in the region outside the node. Next, it will
be shown that the induced polarization potential rises
in importance as the H potential diminishes and is
negligible on the interior of the atom so that an ap-
propriate approximate polarization potential may be
added for the entire radial region.

The treatment of polarization by some authors has
been parametric and has been adjusted in such a way
as to serve as both exchange and polarization. Because
the sign of the interaction is the same, an overemphasis
of polarization in the absence of exchange will tend to
compensate for the absence. In these cases of para-
metric treatment of polarization, '"' the region of in-
teraction is extended to the interior of the core charge
distribution when polarization, as will be shown, is
principally a surface effect and a perturbation on the
atomic Geld, not the same size or larger than the atomic
field in the region of the maxima of the outer electrons.
Because of this, that method does not give the proper
behavior of the cross section below 0.5 eV.

One writes the induced polarization potential from
Grst-order perturbation theory as

r (atomic units)

0.01
0.04
0.10
0.14
0,20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.60
2.00
2.40
3.00
4.00
5.00
6.00

a ReferenCe 19.

HF 'I'

0.090
0.282
0.410
0.379
0.241

+0.086—0.079—0.388—0.632—0.800—0.902—0.951—0.960—0.941—0.851—0.610—0.401—0.252—0.120—0.0325—0.0085—0.0025

PSHF

0.094
0.293
0.426
0.392
0.248

+0.087—0.083—0.398—0.643—0.812—0.911—0.956—0.961—0.937—0.845—0.605—0.397—0.249—0.121—0.0343—0.0093—0.0025

where g is the ground state, m are excited con6gura-
tions, and the V~ are the terms in the expansion of
r~2 ' in spherical harmonics of order /. Then for values
of r greater than R„an indicator of the atom's radial
size, defined by

where P;(r) is a one-electron ground-state radial wave
function, e is a small number such as 0.01 and the sum
is over the ground-state electrons which number E,
the induced potential, in lowest order, comes from the
terms for l=1. This gives rise to the asymptotic inter-
action potential

Vr =rr/r'= Q„ag„/r4,

where the n,„are the partial polarizabilities from Eq.

'r B. R. Levy and J. B. Keller, J. Math. Phys. 4, 54 (1963)."C. J. Lenander, Phys. Rev. 130, 1033 (1963).
'il D. R. Hartree, %.Hartree, and B. Swirles, Phil. Trans. Roy.

Soc. London A238, 229 (1939).
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(2) and a is the total polarizability. The contributions
to the 0., radial integrals are appreciable only in the
region considerably outside the region where the ground-
state exchange interaction is important. As an example,
it may be seen that the radially dependent polariza-
bility in oxygen has its principal contributions in the
region outside of the nonzero inQection points of the
2s and 2p functions. See Table III.

( nce the atomic core is penetrated (r(R,), matrix
elements for the interacticn term which transforms as
I=O will be nonzero and cause the mixing of terms in
the polarizability of the same symmetry as the ground
state. 'Ihis will lea, d to interactions which would be the
same as those produced in a perturbation approach to
the outer electron's wave function.

In the present work, the interaction inside the
core is assumed to be the Geld of the ground state
with the exchange interaction approximated by the
PSHF exchange potential out to the radial value
where the approximation is no longer proper, that is,
the value r= E where the effective charge for potential
LRVpsHF(E)7 is one. At that point the potential is
continued as the H potential matched to the total
potential's amplitude at that point: V(r) = Vn (r)/
VH(R) this will cause the free wave function to be
nearly orthogonal to the bound wave functions because
the actual mismatch of the PSHF and H potentials in
this region is numerically small and thus forms a good
region to make the transition to the asymptotically
correct H potential. The matching point will occur well
outside of the nonzero inQection points of the outer-
most bound functions in the region where the free-
functions are linear in r and nearly invariant with
energy. The matching point will occur, for the case
shown in Fig. 1, between the second zero of the free-
function and r=2. It is the region out to r 4 which
determines the orthogonality to the 2s function, be-
cause the 2s function is quite small for larger r. If the
PSHF potential were used all the way out to this
region, the free function would automatically be orthog-
onal, as a property of the Sturmian set of equations.
Also, the near-coincident inQection-point node of the
free function will be properly placed, because it will
occur inside of the matching point.

Further justification for using the atomic Gelds in
the inner region of the atom may be seen in an examina-
tion of the HF wave functions" for 0 and 0 I. The
important orbitals to examine are the 2s and 2p, be-
cause the s and p waves will be the most important in
the low-energy scattering problem as the centrifugal
term in the Hamiltonian will dominate the behavior of
the higher l waves. And the s and p waves, for low

energy, will have much of the character or functional
behavior of the 2s and 2p core functions in the inner
core region. The change in the positions of the nodes
and maxima of the 2s and 2p functions with the addi-
tion of an electron to 0 z is little. The principal differ-

ence in the functions occurs in the outer region of the
core where the potential becomes principally an H
type. The efIect of the longer "tail" on the 0—functions
is to unshield some of the nuclear charge thus lowering
the outer H potential with respect to that of the 0 I
atom.

Thus, it is seen that there are three principal regions
of interaction for the free electron wave function: in-
terior core with Coulomb and exchange, outer core with
Coulomb dominant, and the far Geld of the polariza-
tion potential. The radial regions are: 0 to R, R~E,
and E,—+~, where R is the point where the effective
charge for the potential equals one, and R, is given by
Eq. (3).

The polarization potentials calculated for Cs by
Stone and Reitz" and the polarization perturbation
calculated by Temkin for oxygen4 indicate that the
polarization potential rises to its maximum near the
atomic radius and then decreases rapidly to some
negligible value on the interior of the atom. An analytic
form which describes this type of behavior and has
been successfully utilized for polarization is' "' "

V (r) = (n/2r4) {1—expL —(r/«) "j) (5)

where e&4 and ro is a cutoft' value which will be chosen
later. The most common choice is rI,=8, even though
the n, „/r4 of Eq. (4) go to zero at least as r'. However,
there is little change ((10%) in the scattering results
whether rI,=4, 6, or 8 as the atomic Gelds swamp the
perturbation field on the interior of the atom. Here
e= 8 is chosen because of the rapid cutoff with decreas-
ing r after the maximum of Eq. (5) at r~0.95 «, which
would give the least interference with the core potential.

H. MOLECULES

Properties of the solutions to the diatomic-molecule
problem are much the same as the solutions to the
atomic problem, which are often used as basis func-
tions for approximate molecular solutions. And, what
was said about zeros and inQection points for the
atomic problem is formally true for the molecule. That
is to say, that the higher energy molecular orbitals
(MO) will have inflection points near the exterior of
the molecular electron distribution and the molecular
scattering solutions of the same symmetry as the MO's
will have inQection point zeros near the inQection points
of the MO's and on the interior of the charge distribu-
tion will take on the functional character of the MO's,

completely in analogy with the atomic case. Then, if
an imaginary spherical surface is drawn symmetrically
about the molecule at a radius outside any reasonable
MO charge density, the far field potential will be, to
first order, the classical polarization form and centered
at the molecular center of mass. However, the actual
polarization charge forms two dipoles whose axes of

~ L. Biermann and H. Harting, Z. Astrophys 22, 87 (1942)..
"H. J. Brnder and S. Borowitz, Phys. Rev. 120, 2053 (1960).
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symmetry intersect the interatomic axis between, but
near the nuclei. This is suggested by Van Vleck. 's"
observation that the molecular polarizability is approxi-
mately equal to the sum of the constituent atomic
polarizabilities. " However, if o., nl&, and n& are the
atomic polarizability, polarizability parallel to and per-
pendicular to the axis of symmetry of the diatomic
molecule, respectively, then it is usually true that O, li

is slightly larger and e& is slightly smaller than 2n.
Radial integration outward along the axis of symmetry
for I=0 will yield an inRection-point zero in the
molecular orbital near the exterior inQection point of
the highest energy 0- orbital. This zero will occur,
relative to the nearest nucleus, at nearly the same
relative point as the zero occurs in the atomic problem.
That is to say, that the wave function along the inter-
nuclear axis will be given by tIb(r) —P&(r—R), where P
is the molecular orbital, P~ is the atomic orbital, R is
half the internuclear distance, and r is the distance from
the molecular center of mass and is larger than E.
Then, any variation in the molecular wave function
exterior to that point that divers with the atomic
wave function will be due to the diGerence in the
surface electron fields and polarization fields. This is
primarily the near doubling of the polarization field
which becomes apparent outside of some distance large
with respect to interatomic distance so the inverse-
fourth-power potentials centered on each atom are about
the same. Presumably, this distance will be far enough
such that the contribution to the scattering length in
the exterior region is negligible. At some large value
of r, the molecular potential approaches spherical sym-
metry and along with it so does the wave function,
i.e., P(r) —+ p~(r —R) for values of r that are off the

internuclear axis. The far field behavior of tb(r) is
sin(kr —kR+b)/k, which gives a phase shift 8'= kR-

+Li, or, equivalently, changes the scattering length by
—E. Examining the form for 6 given by Levy and
Keller, "one would expect the low-energy scattering to
behave with a scattering length R+Ag, where A~ is
the atomic scattering length, and with the inQuence of
twice the atomic polarizability. That is

a. 4s-L —(R+A ~)—-'ss-(2n)k]' (6)

III. METHOD OF COMPUTATION

The central charge distributions used were the PSHF,
self-consistent to 1.0'P~, as described elsewhere, " and
the analytic H distributions calculated by Strand and

should give the low-energy behavior. That this is not
the case, can be seen from Fig. 2, curve c, which gives
half the momentum-transfer cross section for N2. The
experimental scattering length'4 for N2 is about 0.65 ao
and the polarizability average is about 15.3 ao' which
would give a different 0. from the observed one in which
the apparent values of A and tr (Ns) are 2A ~ and n (N)/2
or A~/2 and 2tr(N). The problem appears to be due to
two things, the neglect of the e6ect of molecular over
the atomic polarizability on the scattering length and
the corrections, according to Levy and Keller, ' to the
scattering length and to the term of the order of k in

Eq. (6) due to the electric quadrupole field. The neglect
of the quadrupole interaction is quite serious for the
elastic scattering, but may not be as serious in the
calculation of bound free matrix elements for inelastic
processes where the free function is constructed as
suggested here.

10—

FIG. 1. Shown are the 2s func-
tion of 0 z and the s waves a, b and
c with k'=0.001, 0.005 and 0.01,
respectively. The nearly common
second zeros are 1.4938, 1.4930
and 1.4921, respectively.

ss J. H. Van piecing 2'Lte 27teory of Etectric ortd Magnetic Sgsceptibitities (Oxford University Press, London, 1932), p. 82.
23 This appears to work better when the principal contribution to the atomic polarizability is from the continuum rather than

excited bound states as in nitrogen as opposed to hydrogen.
s4L. S. Frost and A. V. Phelps, Phys. Rev. 127, 1621 (1962).
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2
10

FIG. 2. Cross sections for N I. Curve
a is the result of this work, b is a
straight line drawn through the higher
energy values of Ref. 28 and c is one
half the N2 momentum-transfer cross
section from Ref. 32. Partial-wave
sum to /=4.
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Bonham. "The polarizabilities were taken from Dal-
garno'6 for Arl and calculated for Nx and Or by
n =nN, (ZN, /Zx)', where nN, is the polarizability of
neon and the Z's are the nuclear charges of the ele-
ments involved. Agreement with experimental values"
is rather good, see Table II which cites Ref. 28. The
Schrodinger equation was integrated outward using
the Numerov" method to a point r, =2Xo+r, where

Xo is the wavelength of the lowest energy considered
and r is the point where the central charge potential
is less than 0.005. This was always several hundred
Bohr radii. The radial intervals used were: Dr=0.005
for 0&r&0.5; d,r=0.02 for 0.5&r&2.5 and Dr=0.1 for
2.5&r&r, .

The solutions were normalized to k ' at the closest
maximum to r, and the phase shift t3t(k) was evalu-

210—

FIG. 3. Elastic scattering cross sec-
tion for 0 I with the experimental value
from Ref, 33. Partial wave sum to
/=4.
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G. Strand and R. A. Bonham, J. Chem, Phys. 40, 1686 (1964).
Dalgarno, Advan. Phys. 11, 281 (1962).
A. Alpher and D. R. White, Phys. Fluids 2, 153 (1959).
F. O'Malley, Phys. Rev. 130, 1020 (1963).
Numerov, Publ. Observ. Astrophys. Cent. Rusie ll (Moscow, 1923); Rei. 30, p. 71.
R. Hartree, The Caicglatiort of Atomic Strlctgres (John Wiley 8r Sons, Inc., New York, 1957).
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15
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FIG. 4. Cross section for Ar I near
the Ramsauer minimum. Curve a is
the result of this work and b is the
momentum transfer cross section of
Ref. 37. Partial wave sum to /=4.
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ated from the nearest zero to r,„, as taunt(k) = jt(kX)/
rtt(kX) where X is the value of r where the solution
crosses the r axis as given by linear extrapolation from
the points on either side of the axis and the jt(kX)
and rtt(kX) are the spherical Bessel functions. This is
the best way to obtain the phase shift because it
avoids curve fitting by making use of the linear property
of the solutions in the neighborhood of an inQection-
point zero.

The scattering cross section is then expressed as

ratio of that partial cross section to the sum including
that partial cross section is less than 0.01 for two
successive waves.

Figure 1 presents some wave functions of 0 I, and
cross sections for N r, 0 I, and Ar I are presented in
Figs. 2—4, respectively.

The computer program was checked by calculating
the square-well problem and gave results agreeing with
the analytical solution evaluated by use of a standard
table."

o =P o t =—P (2l+1) sinst bt (k)j,
lM Q lM

TABLE II. Cutoff radius, polarizibility, and scattering length
from this calculation compared to other values. Quantities are
given in atomic units.

N
0
Ne
Ar

6.75
5.90

7.65
5.20
2.65

Cexp

7.65
5.20
2.65

11.0

0,257
0.305
~ ~ ~

—1.60

0.333b
0.300b
0.240b

—1.70&

' Calculated here.
b Power relation.
e Dalgarno, Ref. 26.
~ O' Malley, Ref. 28.

where 3E is determined as the value of / for which the

IV. DISCUSSION OF RESULTS

This simple model appears to predict the general
behavior, with energy, of the low-energy-electron
elastic-scattering cross section for atoms and by the
simple extension for molecules also. Also, the cross
section reported here for" N x is enhanced in the upper
range because the PSHF produces an exchange inter-
action with an extra ~~ electron because the number of
electrons for N I is odd. The agreement with experiment
for Or is good in the range where data is available. "

s' P. M. Morse and H. Feshbach, hIethods of Theoretic'al
Physics (McGraw-Hill Book Company, Inc., New York, 1953),
Vol. II, p. 1926.

S~R. H. Neynaber, L. L. Marino, E. H. Rothe, and S. M.
Trujillo, Phys. Rev. 123, 148 (1961).

~R. H. Neynaber, L. L. Marino, E. H. Rothe, and S. M.
Trujillo, 'Phys. Rev. 129, 148 (1961).
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Considering the approximate power-rule'4 transforma-
tion properties of solutions to the atomic problem, it
would be expected that the cross section for Nz would
be more like that for Or in behavior with energy and
not begin to decrease at as high an energy as 4-5 eV,
as reported. "This behavior in the measurement may
be caused by the interference of the inelastic process
which dominates the N2 cross section in the 1—5 eV
range. ""The corresponding inelastic cross section
does not occur in" 02 and thus would not eRect the
reported measurement in 0 r.

The results for Ar I were quite sensitive to the value
chosen for rp for the placement of the s-wave cross-
section minimum. However, the general behavior with
energy remained the same. The p wave seemed little
aRected by a variation in rp, predicting a Ramsauer
minimum at about 1.2 eV in comparison to the experi-
mental value 1.1 eV. The resultant scattering length
—1.60 is between the value reported by O' Malley" as
—1.90 and the value of about —1.4 at 0.01 eV calcu-
lated from Englehardt and Phelps. '~

Values of the cross sections for k' lower than 0.001
Ry (0.0136 eV) should not be taken too seriously,
because the electron's wavelength is becoming on the
order of the length of the gas interparticle distance so
a collision may not be thought of as a two-body inter-
action. Indeed, the electron will be interacting with
several centers at once.

The behavior of the scattering cross sections in
diRerent ranges of energy appears to be attributable
to separate interactions. Although the interactions all
contribute simultaneously there are energy ranges in
which certain interactions dominate the cross section
behavior: polarization in about 0.08 to 1 eV, and above
that, Coulomb and exchange. It is conceivable that a
long-range force such as the quadrupole field would
dominate the region below that for the dipole polariza-
tion. In any event, partial-wave, two-body analysis is
questionable in such a low energy range.

Choice of rp was the most indefinite portion of this
method. In an eRort to establish values for rp, excited
state functions were generated and the matrix elements

(g~r ~e) were calculated. The contribution to the inte-
gral with increasing r was observed and rp was expected
to be near the region where contributions to the inte-
gral became small. The calculation for 0 I: is given in
Table III. It has been shown" that the majority of the
polarization for this row atom comes from the low-

energy continuum and because of the inward shift of

'4This rule comes from the observation that zeros, maxima,
matrix elements and eigenvalues are closely predictable by the
transformation of the unit of length by the ratio of the nuclear
charges: rq/rs (Z2/Z~)."G. J. Schulz, Phys. Rev. 125, 229 (1962).

"G. J. Schulz and J. T. Dowell, Phys. Rev. 128, 174 (1962).
'7 A. G. Kngelhardt and A. V. Phelps, Phys. Rev. 133, A375

(1964)."H.P. Kelly and H. S. Taylor, J.Chem. Phys. 40, 1478 (1964).

TABLE III. Contributions to the radial matrix elements of the
two lowest states used in Eq. (2).

r(a.u.)

0.10
0.20
0.30
0.40
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
5.00
6.00
7.00
8.00

n(2p lr )»)X 1O

0.0188
0.0603—0.0574—0.4332—0.9986—1.2809

+1.1020
1.2359
2.0949
2.3105
2.0921
1.6885
0.8892
0.3941
0.1574
0.0584

~(2p ~r ~3d)X1O

0.0141
0.0715
0.1975
0.3523
0.4940
0.5790
0.5983
0.5649
0.4165
0.2586
0.1435
0.0732

the s-free functions the maximum contribution to the
polarizability lies inside that of the 3s function. The
initial guess was" rp= 5.5. The final value was rp= 5.9
to give the scattering length in near agreement with
the power rule value continued from neon as was done
for the polarizability.

Variation of polarizability should be predictable by
the power relation within a given nl shell, however,
the rp value for group IA and IIA atoms will have to
be estimated from polarizability calculations. In these
cases the principal contribution will come from the
lower excited states and should be easily estimated
with the PSHF method.
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» This is about the region where the polarization charge is
entered appreciably as seen in Ref. 4, I'ig. 2.

V. CONCLUSION

A simple method for the approximate prediction of
low-energy elastic scattering of electrons from atoms
has been presented and an extension to homonuclear
diatomic molecules has been proposed and appears to
give generally good results for the cross sections. The
model, I believe, has demonstrated that induced polari-
zation is a perturbative eRect and not a strong inter-
action on the interior of the atom. The interactions
used are only the general ones on the assumption that
at low energies the electron wavelength is too long to
"see" the details of the scattering center's structure.


