Al²⁷ and the Excited-Core Model*

V. K. THANKAPPAN

Department of Physics, Indiana University, Bloomington, Indiana (Received 16 July 1965)

The nuclear properties of the low-lying levels in Al²⁷ are discussed in terms of a model in which a proton hole is coupled to the observed levels of Si28. The calculated electric E2 transition probabilities are found to be in good agreement with the experimental values, but the agreement between theory and experiment for M1 transition probabilities does not appear to be so good. It is found that the core-particle interaction required to fit the observed levels of Al27 contains multipoles of order up to four. A possible explicit form for this interaction is suggested.

I. INTRODUCTION

 $E^{\rm XPERIMENTS}$ on the inelastic scattering of deuterons 1 and alpha particles 2 seem to indicate that the low-lying levels of Al²⁷ might be described as a proton hole coupled to the levels of Si²⁸. The formalism for a model in which the energy levels of an odd-mass nucleus are envisaged as resulting from the coupling of a particle or hole to the observed levels of the neighboring even-even nucleus (the core) has been discussed by Lawson and Uretsky³ and de-Shalit.⁴ The interaction between the core and the particle can, in general, be represented by a sum of scalar products of irreducible tensor operators:

$$H_{\text{int}} = -\sum_{r} f_r(\mathbf{T}_c^{(r)} \cdot \mathbf{t}_p^{(r)}). \tag{1}$$

In Eq. (1), $T_{c}^{(r)}$ operates only on the degrees of freedom of the core while $\mathbf{t}_{p}^{(r)}$ operates only on those of the particle. The parameter f_r denotes the strength of the interaction. Recently, Thankappan and True⁵ have employed a core-particle interaction of the form

$$H_{\rm int} = -\xi (\mathbf{J}_{c}^{(1)} \cdot \mathbf{j}_{p}^{(1)}) - \eta (\mathbf{Q}_{c}^{(2)} \cdot \mathbf{Q}_{p}^{(2)}), \qquad (2)$$

in order to explain the observed properties of the levels of Cu⁶³ within the framework of the excited-core model. In Eq. (2), $\mathbf{J}_{c}^{(1)}$ and $\mathbf{Q}_{c}^{(2)}$ are, respectively, the angular-momentum operator and the quadrupole-moment operator for the core, while $\mathbf{j}_{p}^{(1)}$ and $\mathbf{Q}_{p}^{(2)}$ are similar operators for the particle. In the present paper we would like to examine the validity of the excited-core model with a core-particle interaction represented by Eq. (2) in describing the properties of the low-lying levels of Al²⁷.

II. CALCULATIONS AND RESULTS

Since it appears from experiments on (p,2p) reactions⁶ that the single-particle levels in the region of mass number 28 are well separated (by >3 MeV), we include in our calculations only the lowest level, viz., the $1d_{5/2}$ level. Moreover, the core states are restricted to the ground state and the first excited state. Thus the levels of Al²⁷ are assumed to be given by the coupling of a proton hole in the $1d_{5/2}$ subshell to the 0^+ ground state and the 2^+ first excited state at 1.77 MeV in Si²⁸ (see Fig. 1). The method of calculation is described in detail in Ref. 5 and we will follow the notations of that paper. A state of total spin I obtained by coupling the $d_{5/2}$ proton hole to a core state of spin J_c is denoted by $|J_{c}, d_{5/2}^{-1}: IM \rangle$, where, M is the z component of I. The parameters of the model are ξ , $\chi_1 = \eta \langle 0 \| \mathbf{Q}_c^{(2)} \| 2 \rangle$ and $\chi_2 = \eta \langle 2 \| \mathbf{Q}_c^{(2)} \| 2 \rangle.$

The experimental data on Si²⁸ and the observed levels of Al²⁷ relevant to our discussion are shown in Fig. 1. The data on Si²⁸ are taken from Skorka and Retz-Schmidt.⁷ The mean life of 7×10^{-13} sec for the 2⁺ state is also consistent with the result of Robinson et al.8 The level energies, spin, and parity assignments for Al27, are from Endt and Van der Leun,9 Towle and Gilboy,¹⁰ and Ophel and Lawergren.¹¹ The reduced matrix element $\langle d_{5/2}^{-1} || \mathbf{Q}_{p}^{(2)} || d_{5/2}^{-1} \rangle$ is obtained from the relation (see Ref. 12, Chap. 22)

$$\langle d_{5/2}^{-1} \| \mathbf{Q}_{p}^{(2)} \| d_{5/2}^{-1} \rangle = - \langle d_{5/2} \| \mathbf{Q}_{p}^{(2)} \| d_{5/2} \rangle$$

and the oscillator parameter ν that occurs in the evaluation of this matrix element⁵ is taken to be $\nu = 0.333$ F⁻².

The parameters ξ and χ_2 are determined from the experimental separation of the levels $\frac{1}{2}^+$, $\frac{7}{2}^+$, and $\frac{9}{2}^+$ in Al²⁷. The value of X_1 is then obtained from the observed separation of the ground state, $\frac{5}{2}$, and the first excited state, $\frac{1}{2}^+$. The values so obtained are¹³

$$\xi = -0.179 \text{ MeV}; \quad \chi_1 = 0.507 \text{ MeV } \text{F}^{-2};$$
 (3a)
 $\chi_2 = 0.014 \text{ MeV } \text{F}^{-2}.$

⁷S. J. Skorka and T. W. Retz-Schmidt, Nucl. Phys. 46, 225

- ⁽⁵⁾ S. J. SKOFKA and L. W. KCLZ-COMMUN, LAR. 24, 27, 17, 11963).
 ⁸ S. W. Robinson, R. D. Bent, and T. R. Canada, Bull. Am. Phys. Soc. 10, 525 (1965).
 ⁹ P. M. Endt and C. Van der Leun, Nucl. Phys. 34, 1 (1962).
 ¹⁰ J. H. Towle and W. B. Gilboy, Nucl. Phys. 39, 300 (1962).
 ¹¹ T. R. Ophel and B. T. Lawergren, Nucl. Phys. 52, 417 (1964).
 ¹² A. de-Shalit and I. Talmi, *Nuclear Shell Theory* (Academic Press Inc. New York, 1963). Press, Inc., New York, 1963). ¹³ The sign of X_1 is chosen such that the calculated ground-state

^{*}This work was supported by the National Science Foundation.
¹ H. Niewodniczanski *et al.*, Nucl. Phys. 55, 386 (1964).
² J. Kokame, K. Fukunaya, and H. Nakamura, Phys. Letters 14, 234 (1965).
⁴ R. D. Lawson and J. L. Uretsky, Phys. Rev. 108, 1300 (1957).
⁴ A. de-Shalit, Phys. Rev. 122, 1530 (1960).
⁶ V. K. Thankappan and W. W. True, Phys. Rev. 137, B793 (1965).

^{(1965).} ⁶ G. Tibell, O. Sundberg, and P. U. Rendberg, Arkiv Fysik 25,

^{433 (1964).}

quadrupole moment has the same sign as the observed one.

FIG. 1. The low-lying positive parity levels of A^{27} obtained by coupling a proton hole to the lowest two levels of S_1^{28} , using a core-particle interaction (a) given by Eq. (2) and (b) given by Eq. (1), in the text. The observed levels of A_1^{27} are shown at the extremes. The experimental information in this figure has been obtained from Refs. 7, 9, 10, and 11.

The excitation energies of the $\frac{3}{2}$ and $\frac{5}{2}$ * levels¹⁴ are calculated using these values of the parameters. The resulting level scheme for Al^{27} is shown in Fig. 1(a). The position of the ³/₂ level is in good agreement with experiment, but the $\frac{5}{2}$ * level is predicted at 1.915 MeV while the observed level is at 2.73 MeV. Ciuffolotti and DeMichelis¹⁵ have reported levels at 1.65 and 1.83 MeV and Winterhalter¹⁶ has observed a level at 1.9 MeV; but these findings have not been confirmed by other experiments. The $\frac{3}{2}^*$ level at 2.98 MeV is unaccounted for in the present model. The wave functions of the $\frac{5}{2}$ and $\frac{5}{2}$ * levels are given by

$$\Psi(\frac{5}{2}) = 0.9088 | 0, d_{5/2}^{-1}; \frac{5}{2} \rangle + 0.4172 | 2, d_{5/2}^{-1}; \frac{5}{2} \rangle, \qquad (4a)$$

$$\Psi(\frac{5}{2}) = -0.4172 \left| 0, d_{5/2}^{-1} : \frac{5}{2} \right\rangle + 0.9088 \left| 2, d_{5/2}^{-1} : \frac{5}{2} \right\rangle$$

The reduced transition probability B(E2) for an E2transition is related to the transition energy $E_{\gamma}(\text{MeV})$ and the mean life $\tau(E2)$ by

$$B(E2) = [8/\tau(E2)E_{\gamma^5}] \times 10^{-10} e^2 F^4.$$
 (5)

TABLE I. M1 and E2 reduced transition probabilities for the levels in Al²⁷. See the text for the explanation of columns (i) and (ii).

Initial	Final	$B(E2)/e^2F^4$		
state	state	(i) `	(ii)	b(M1)
1/2	52	67.225	78.955	98.1111.1112.200 AUG
32	52	41.341	45.197	0.668
32	1	3.535	6.062	2.489
7	5	65.059	58.916	0.358
	32	1.112	3.905	
<u>5</u> *	5	17.164	17.529	0.157
<u>5</u> *	1	0.685	0.008	
- 	32	18.642	14.644	2.025
<u>5</u> *	7	3.960	8.706	4.379
붕	5	58.232	62.378	
홍	- 73	2.607	0.238	1.178
\$	<u>-</u> - -	7.111	4.233	

¹⁴ The asterisk denotes the second level of a given spin.
¹⁵ L. Ciuffolotti and F. DeMichelis, Nucl. Phys. 39, 252 (1962).
¹⁶ D. Winterhalter, Nucl. Phys. 39, 535 (1962).

This gives for the 1.77-MeV 2⁺ to 0⁺ transition in Si²⁸ the result

$$B(E2: 2^+ \to 0^+) \approx 65 \ e^2 \ F^4.$$
 (6)

The ground-state quadrupole moment and the reduced transition probabilities for Al²⁷ are calculated using this value. The calculated value of the ground-state quadrupole moment is +0.167 b which is to be compared with the experimental value¹⁷ of +0.152 b. The calculated reduced transition probabilities are listed in Table I, column 3.

If we use the free-nucleon value for the gyromagnetic ratio of the odd proton, viz., $g_p = 1.9162$, the groundstate magnetic moment is predicted to be 4.578 nm, where the gyromagnetic ratio for the core is taken to be $g_c = Z/A = 0.5$. This is considerably larger than the observed ground-state magnetic moment¹⁷ of 3.63 nm. An exact agreement with the observed moment can be obtained by empirically reducing the proton gyromagnetic ratio to the value 1.5108 (i.e., by a factor of ~ 0.8). The M1 transition probabilities are calculated using this reduced gyromagnetic ratio. We define the quantity b(M1) by

$$b(M1) = (4\pi/3\mu_0^2)B(M1), \qquad (7)$$

where, B(M1) is the M1 reduced transition probability⁵ and μ_0 is the nuclear magneton. The radiative width, $\Gamma(M1)$, for an M1 transition of energy $E_{\gamma}(\text{MeV})$ is then given by

$$\Gamma(M1) = 4.26\hbar \times 10^{12} (E_{\gamma})^3 b(M1)$$

= 2.804×10⁻³ (E_{\gamma})³b(M1) eV. (8)

The calculated values of b(M1) for the various transitions in Al²⁷ are listed in the last column of Table I.

In Table II, we compare the available experimental information on the transition probabilities in Al²⁷ with the theoretical values. $\Gamma(I_i \rightarrow I_f)$ represents the sum of the E2 and M1 radiative widths for a transition from an initial state I_i to a final state I_f , while $\Gamma(I)$ is the total width of the level with spin I. δ denotes the E2/M1amplitude mixing ratio. The experimental values of the energies, shown in Fig. 1, are used in these calculations except for the $\frac{5}{2}$ * level which is assumed to be at 1.9 MeV. It is seen that the agreement between theory and experiment is good for the E2 transitions and branching ratios, but M1 transitions are not in such good agreement. Leaving aside the $\frac{5}{2}$ * level, the main discrepancy is in the transition $\frac{3}{2} \rightarrow \frac{5}{2}$. This might be due to the influence of the $\frac{3}{2}$ * level at 2.98 MeV, which is not accounted for in the present calculations.

The serious discrepancy of the model is, however, in the prediction of the $\frac{5}{2}$ * level at 1.9 MeV instead of at 2.73 MeV. One of two explanations may be offered for this. The first is that there is indeed a level at about 1.9 MeV as has been observed by Ciuffolotti and

¹⁷ Nuclear Data Sheets, compiled by K. Way et al. (Printing and Publishing Office, National Academy of Sciences—National Re-search Council, Washington, D. C.).

	The			
Quantity	(i)	(ii)	Experiment	Ref.
$\tau(E2:\frac{1}{2}\rightarrow \frac{5}{2})$	2.81 ×10 ⁻¹¹ sec	2.39 ×10 ⁻¹¹ sec	$(3.2 \pm 1.0) \times 10^{-11}$ sec	a
$\tau(E2:\frac{3}{2}\rightarrow\frac{5}{2})$	$1.81 \times 10^{-11} \text{ sec}$	$1.69 \times 10^{-11} \text{ sec}$	$(1.3\pm0.4)\times10^{-11}$ sec	b
$\tau(E2:rac{7}{2} \rightarrow rac{5}{2})$	$2.34 \times 10^{-13} \text{ sec}$	$2.59 \times 10^{-13} \text{ sec}$	$(2.33\pm0.36)\times10^{-13}$ sec	с
$\tau(E2:\frac{5}{2}*\longrightarrow\frac{5}{2})$	$1.68 \times 10^{-12} \text{ sec}$	$3.01 \times 10^{-13} \text{ sec}$	$(2.7_{-0.9}^{+2.6}) \times 10^{-13} \text{ sec}$	d
$\tau(E2:\frac{9}{2}\rightarrow\frac{5}{2})$	5.65 $\times 10^{-14}$ sec	$5.28 \times 10^{-14} \text{ sec}$	$(6.35\pm0.7)\times10^{-14}$ sec	d
$\Gamma(M1: \frac{3}{2} \rightarrow \frac{5}{2})$	0.195×10 ^{−2} eV	0.184×10 ⁻² eV	$(0.36\pm0.15)\times10^{-3}$ eV	b
$\Gamma(M1: \frac{7}{2} \rightarrow \frac{5}{2})$	1.081×10 ⁻² eV	1.034×10 ⁻² eV	$(1.22\pm0.12)\times10^{-2} \text{ eV}$	с
$\Gamma(M1: \frac{5}{2}* \rightarrow \frac{5}{2})$	0.302×10 ⁻² eV	0.864×10 ⁻² eV	(0.3 to 3.0)×10 ⁻² eV	b
$\delta(\frac{3}{2} \rightarrow \frac{5}{2})$	-0.135	-0.145	-0.29 ± 0.04	e
$\delta(\frac{3}{2} \rightarrow \frac{1}{2})$	0.003	0.046	0 to 0.16 or	f
			-2.3 to -1.2	
$\delta(\frac{7}{2} \rightarrow \frac{5}{2})$	0.510	0.496	-0.46 ± 0.04	b
			0.37 to 0.50	c, d
$\delta(\frac{5}{2}* \rightarrow \frac{5}{2})$	-0.341	-0.503	-0.038 ± 0.055	b
$\delta(\frac{5}{2}* \rightarrow \frac{3}{2})$	0.046	0.079	-0.226 ± 0.064	b
$\delta(\frac{9}{2} \rightarrow \frac{7}{2})$	0.020	0.006	-0.03 ± 0.03	g
$\Gamma(\frac{3}{2} \rightarrow \frac{1}{2})/\Gamma(\frac{3}{2})$	1.73%	1.82%	$(2.4\pm0.3)\%$	f
$\Gamma(\frac{7}{2} \rightarrow \frac{5}{2})/\Gamma(\frac{7}{2})$	98.97%	99.94%	≥98%	b, c
$\Gamma(\frac{5}{2}*\rightarrow\frac{3}{2})/\Gamma(\frac{5}{2}*)$	54.12%	71.17%	$(80\pm 5)\%$	b
			70%	h
$\Gamma(\frac{9}{2} \rightarrow \frac{7}{2})/\Gamma(\frac{9}{2})$	12.34%	11.63%	$(20\pm10)\%$	g

TABLE II. Comparison of the calculated and the experimental values for quantities related to the electromagnetic properties of the levels in Al²⁷. Columns (i) and (ii) and the symbols in column (1) are explained in the text.

^a See Ref. 9. ^b See Ref. 11. ^o V. J. Vanhuyse and G. J. Vanpraet, Nucl. Phys. **45**, 602 (1963). ^d See Ref. 21.

^d See Ref. 21.
^e G. McCallum, Phys. Rev. 123, 568 (1961); T. R. Ophel and B. T. Lawergren, Nucl. Phys. 30, 215 (1962).
^f E. Almqvist *et al.* Nucl. Phys. 19, 1 (1960).
^g B. T. Lawergren, Nucl. Phys. 53, 417 (1964).
^h R. D. Bent and W. W. Eidson, Phys. Rev. 122, 1514 (1961).

DeMichelis¹⁵ and Winterhalter.¹⁶ The levels at 2.73 and 2.98 MeV, as well as the probable level¹⁵ at 1.65 MeV, will then be explained as due to the coupling of the proton configuration $(d_{5/2})^{-2}s_{1/2}$ to the levels of Si²⁸. This would require the spacing between the $1d_{5/2}$ and $2s_{1/2}$ subshells to be smaller than that indicated by (p,2p) reactions, and even then it is doubtful that a quantitative fit with the observed levels of Al²⁷ could be obtained. Moreover, this explanation will not be consistent with the fact¹¹ that the 2.98-MeV level decays almost entirely to the ground state. It should also be mentioned here that a search by Ophel and Lawergren¹⁸ for the two levels reported in Ref. 15 had failed to detect them.

The second, and more probable, explanation is that the core-particle interaction is not adequately represented by Eq. (2) and therefore the more general Eq. (1) has to be used. Leaving out the r=0 term, which causes a shift in the excited states of the core,⁴ there will be five parameters in this case, which we define as

$$\epsilon_{r} = f_{r} \langle 2 \| \mathbf{T}_{c}^{(r)} \| 2 \rangle \langle d_{5/2}^{-1} \| \mathbf{t}_{p}^{(r)} \| d_{5/2}^{-1} \rangle, \quad r = 1 \text{ to } 4;$$

$$\zeta = f_{2} \langle 0 \| \mathbf{T}_{c}^{(2)} \| 2 \rangle \langle d_{5/2}^{-1} \| \mathbf{t}_{p}^{(r)} \| d_{5/2}^{-1} \rangle.$$
(9)

Since there are only five energy-level spacings to be fitted, an exact fit can be obtained, the required values of the parameters being

$$\epsilon_{1} = -6.3390; \quad \epsilon_{3} = -2.5299; \\ \epsilon_{2} = 1.4275; \quad \epsilon_{4} = -3.0033; \\ \epsilon_{5} = 5.5721.$$
(10)

The mode of level splittings in this case is shown in Fig. 1(b). The wave functions of the $\frac{5}{2}$ and $\frac{5}{2}$ * states are

$$\begin{split} \Psi(\frac{5}{2}) &= 0.9130 \left| 0, d_{5/2}^{-1} : \frac{5}{2} \right\rangle + 0.4081 \left| 2, d_{5/2}^{-1} : \frac{5}{2} \right\rangle, \\ \Psi(\frac{5}{2}^{*}) &= -0.4081 \left| 0, d_{5/2}^{-1} : \frac{5}{2} \right\rangle + 0.9130 \left| 2, d_{5/2}^{-1} : \frac{5}{2} \right\rangle. \end{split}$$
(4b)

If we assume that the r=1 and the r=2 terms in Eq. (1) can still be represented by Eq. (2), we would obtain

and
$$\xi = -0.160 \text{ MeV}, \quad \chi_1 = 0.711 \text{ MeV } \text{F}^{-2},$$

 $\chi_2 = 0.182 \text{ MeV } \text{F}^{-2}.$ (3b)

The transition probabilities can be then calculated as before and the results are shown in Table I, column 4 and Table II, column 3. The calculated value of the ground-state quadrupole moment is 0.163 b which is a little nearer to the observed value of 0.152 b than in the previous case. The transition probabilities are not appreciably different from the previous values. This is to be expected as the wave functions are nearly the

¹⁸ T. R. Ophel and B. T. Lawergren, Phys. Letters 6, 230 (1963).

same in both cases. The disagreement with regard to the M1 component of the transition $\frac{3}{2} \rightarrow \frac{5}{2}$ continues. Otherwise, the major disagreement with experiment concerns the E2/M1 amplitude mixing ratio for the decay of the 2.73-MeV level. This is rather disturbing as the decay properties of this level would be crucial in identifying it as a member of the core multiplet. Since, however, one cannot be too confident of the predictions of the excited-core model for M1 transitions, it would be desirable to have more accurate measurements on the electric transition probabilities of this level.

We can calculate the quadrupole moment of the 2^+ state of the core (Si²⁸) using the B(E2) value for the transition $2^+ \rightarrow 0^+$ and the values of the parameters χ_1 and χ_2 (see Ref. 5). The result, using the values given by Eqs. (6) and (3b), is $Q(2^+)=0.035$ b. The level structure of the Si²⁸ nucleus does not fit with the predictions of any of the simple collective models. However, the asymmetric rotational model of Davydov and Filippov¹⁹ might be a good approximation, even though this model would predict a 2⁺ level at about 4.5 MeV which has not as yet been observed. Assuming that this model is valid for Si²⁸, we can calculate the value of the asymmetry parameter γ from the following relations:

$$B(E2: 2^{+} \rightarrow 0^{+}) = (e^{2}Q_{0}^{2}/32\pi) [1 + (3 - 2\sin^{2}3\gamma)/(9 - 8\sin^{2}3\gamma)^{1/2}], \quad (11)$$
$$|Q(2^{+})| = 6|Q_{0}| \cos 3\gamma/7 (9 - 8\sin^{2}3\gamma)^{1/2}, \quad (12)$$

where Q_0 is the intrinsic quadrupole moment which is related to the deformation parameter β , the atomic number Z, and the radius of the nuclear charge distribution R_0 by²⁰

$$Q_0 \approx [3/(5\pi)^{1/2}] Z R_0^2 \beta \approx 0.0109 Z A^{2/3} \beta b$$
 (13)

if we take $R_0 = 1.2A^{1/3}$ F. We obtain $\gamma \approx 28.5^{\circ}$, $|Q_0|$ =0.533b, and $|\beta| \approx 0.38$. The value of γ obtained from the ratio of the excitation energies of the levels in Si²⁸ is $\gamma \gtrsim 24^\circ$.

The previous attempts at explaining the properties of Al²⁷ have been mostly based on the Nilsson model. For an account of these, the reader is referred to the works of Lombard²¹ and Bhatt.²²

III. DISCUSSION

It then appears that the excited-core model would give a fairly good description of the low-lying levels of Al²⁷, but the core-particle interaction should contain multipoles of order higher than two. A possible explanation of this interaction is that it is the multipole expansion of the usual two-body interaction used in nuclear-structure calculations. The interaction between the *i*th nucleon in the core and the extra-core nucleon can be written as (Ref. 12, Chap. 21)

$$V_{ip} = V_0(\mathbf{r}_{ip}) + V_1(\mathbf{r}_{ip})(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_p) = \sum_k \left[v_{k0}(\mathbf{r}_i, \mathbf{r}_p) + v_{k1}(\mathbf{r}_i, \mathbf{r}_p)(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_p) \right]$$
(14a)
$$\times (\mathbf{C}_i^{(k)} \cdot \mathbf{C}_n^{(k)}),$$

where $\mathbf{C}^{(k)} = [4\pi/(2k+1)]^{1/2}\mathbf{Y}_k$ and $\boldsymbol{\sigma}$ is the intrinsic spin operator. If we assume that the radial dependence of the interaction can be represented by that of the multipole force used in collective model calculations,^{23,24} we have $v_{ks}(\mathbf{r}_i,\mathbf{r}_p) \alpha r_i^k r_p^k$, and

$$V_{ip} = \sum_{k} \left[f_{k0}(\mathbf{Q}_{i}^{(k)} \cdot \mathbf{Q}_{p}^{(k)}) + f_{k1}(-1)^{k+1} \sum_{r} (-1)^{r} (\mathbf{U}_{i}^{(r)k} \cdot \mathbf{U}_{p}^{(r)k}) \right], \quad (14b)$$

 $\mathbf{Q}_{\kappa}^{(k)} = r^k \mathbf{Y}_{k\kappa}$

where

$$\mathbf{U}_{\rho}^{(r)k} = \left[\boldsymbol{\sigma}^{(1)} \times \mathbf{Q}^{(k)} \right]_{\rho}^{(r)} = \sum_{\mu,\kappa} (1\mu k\kappa | r\rho) \boldsymbol{\sigma}_{\mu} \mathbf{Q}_{\kappa}^{(k)}.$$

The Greek subscripts denote the components of the tensors and $(j_1m_1j_2m_2|jm)$ represents a Clebsch-Gordan coefficient. The interaction between the core and the particle is given by

$$H_{\rm int} = \sum_{i} V_{ip}. \tag{15}$$

Equation (15) would be quite consistent with Eq. (1), but not, in general, with our assumption that the dipole and the quadrupole parts of the interaction be represented by Eq. (2). Since this assumption is important for the calculation of the gamma-ray transition probabilities, it might be more appropriate from the point of view of the excited-core model to introduce the following phenomenological core-particle interaction, in analogy with Eqs. (2) and (14b):

$$H_{\text{int}} = -\sum_{k} f_{k} (\mathbf{Q}_{c}^{(k)} \cdot \mathbf{Q}_{p}^{(k)}) -\sum_{q} f_{q} (\mathbf{M}_{c}^{(q)} \cdot \mathbf{M}_{p}^{(q)}). \quad (16)$$

The operator $\mathbf{M}^{(q)}$ for a single particle is defined as

$$\mathbf{M}_{\boldsymbol{\nu}}^{(q)} = [\mathbf{j}^{(1)} \times \mathbf{Q}^{(q-1)}]_{\boldsymbol{\nu}}^{(q)}$$

= [q(2q+1)]^{-1/2}[$\mathbf{j}^{(1)} \cdot \operatorname{grad}(r^{q}Y_{q\boldsymbol{\nu}})$]. (17)

The parity of the interaction is thus $(-1)^k = (-1)^{q+1}$. The values of the parameters f_k may depend on the particle state as well as on the core state.

The reduced matrix elements of $\mathbf{Q}_{p}^{(k)}$ and $\mathbf{M}_{p}^{(q)}$ can be calculated using the relations (see, for example, Ref. 12, Chap. 15)

$$\langle nlj \| \mathbf{Q}^{(k)} \| n'l'j' \rangle = (-1)^{3/2+j+k} \langle nl | r^k | n'l' \rangle \{ (2j+1)(2j'+1)/4\pi \}^{1/2} \times (j\frac{1}{2}j'-\frac{1}{2}|k0\rangle \times \frac{1}{2} [1+(-1)^{l+l'+k}]$$
(18a)

²³ R. M. Dreizler, Phys. Rev. 132, 1166 (1963).
 ²⁴ A. M. Lane, *Nuclear Theory* (W. A. Benjamin, Inc., New York, 1964), Part II.

 ¹⁹ A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958).
 ²⁰ A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 27, No. 16 (1953).
 ²¹ R. Lombard, Ph.D. thesis, University of Paris, 1964

⁽unpublished). ²² K. H. Bhatt, Nucl. Phys. **39**, 375 (1962).

and

$$\langle nlj \| \mathbf{M}^{(a)} \| n'l'j' \rangle = (2q+1)^{1/2} W (1j(q-1)j': jq) \{ j(j+1)(2j+1) \}^{1/2} \times \langle nlj \| \mathbf{Q}^{(q-1)} \| n'l'j' \rangle.$$
(18b)

Here, W(abcd: ef) is a Racah coefficient. Equations (9) and (10) then yield (in proper units)

$$f_1\langle 2 \| \mathbf{M}_c{}^{(1)} \| 2 \rangle = -3.101; \quad f_2\langle 2 \| \mathbf{Q}_c{}^{(2)} \| 2 \rangle = 0.182; \\ f_3\langle 2 \| \mathbf{M}_c{}^{(3)} \| 2 \rangle = -0.160; \quad f_4\langle 2 \| \mathbf{Q}_c{}^{(4)} \| 2 \rangle = 0.033.$$

This would imply nonvanishing values of magnetic octupole and electric hexadecapole moments for the 2+ state in Si²⁸. Since experimental data on the static moments of excited states in nuclei are scarce, this fact may not be useful in testing the validity of Eq. (16).

A systematic study of a number of nuclei could be helpful in this direction by providing information on the consistency of the values of the parameters.

We would like to say, in conclusion, that the remarks made in this section concerning the nature of the coreparticle interaction are of a speculative nature and would require further investigation in order to establish the validity or otherwise of Eq. (16). We have tried to show that Eq. (16) would not be unreasonable from the point of view of the core-particle interactions that have been used previously as well as from the point of view of the results for Al²⁷ discussed in this paper.

ACKNOWLEDGMENTS

The author is thankful to Professor D. W. Miller for the hospitality of the Physics Department at the Indiana University.

PHYSICAL REVIEW

VOLUME 141, NUMBER 3

JANUARY 1966

Lithium-Lithium Scattering*

L. L. PINSONNEAULT[†] AND J. M. BLAIR School of Physics, University of Minnesota, Minneapolis, Minnesota (Received 3 September 1965)

Elastic-scattering experiments have been performed with Li⁶ on Li⁶ from 3.2 to 7.0 MeV and with Li⁷ on Li⁷ from 4.0 to 6.5 MeV. In the lower portion of this energy range the observations follow Mott's scattering formula but at higher energies fall below these predictions. An analysis of the data in terms of the roundedcutoff Blair model resulted in a set of parameters which was not sharply defined and probably not unique but which gave curves which reproduced satisfactorily the fluctuations of cross section with angle. An analysis in terms of one parameter, the interaction distance, gave values of $r_0 = (1.38 \pm 0.03) \times 10^{-3}$ cm for Li⁶ and $r_0 = (1.52 \pm 0.03) \times 10^{-13}$ cm for Li⁷.

INTRODUCTION

NE of the most productive sources of information concerning the characteristics of nuclei has been elastic-scattering experiments. In this category the scattering of moderately heavy identical nuclei, for example: C^{12} by C^{12} , and O^{16} by O^{16} by Bromley, Kuehner, and Almqvist¹ and N^{14} by N^{14} by Reynolds and Zucker,² have brought out a number of interesting features, due to the complex structure of the particles, which do not appear in the scattering of simpler nuclei. As a part of our program for the investigation of the reactions produced by lithium ions we have studied the scattering of Li⁶ by Li⁶ over the energy range from 3.2 to 7.0 MeV and the scattering of Li⁷ by Li⁷ from 4.0 to 6.5 MeV.

Because of the identity of the target and incident nuclei one would expect the scattering cross sections to follow the well-known Mott equation³ in the absence of nuclear effects. In the carbon, oxygen, and nitrogen scattering experiments referred to above the departures from the predictions of the Mott equation have been interpreted in terms of the sharp-cutoff model discussed by J. S. Blair and others.^{4,5} The results of these analyses have been the determination of radii within which nuclear effects become important. We anticipated that measurements of this type performed with lithium would provide some insight into the structure and interactions of these light and relatively simple nuclei.

EQUIPMENT AND PROCEDURE

Lithium ions having energies up to 7 MeV were obtained from the Minnesota Van de Graaff machine,

^{*} Supported in part by the U. S. Office of Naval Research.

[†] Now at the Esso Production Research Company, Houston,

¹ D. A. Bromley, J. A. Kuehner, and E. Almqvist, in *Reactions Between Complex Nuclei*, edited by A. Zucker, F. Howard, and E. Halbert (John Wiley & Sons, Inc., New York, 1960), p. 151.
² H. L. Reynolds and A. Zucker, Phys. Rev. 102, 1378 (1956).

 ³ N. F. Mott and H. S. W. Massey, *Theory of Atomic Collisions* (Oxford University Press, New York, 1949), 2nd ed., p. 19.
 ⁴ J. S. Blair, Phys. Rev. 95, 1218 (1954).
 ⁵ J. A. McIntyre, K. H. Wang, and L. C. Becker, Phys. Rev. 117, 1327 (1960).

^{117, 1337 (1960).}