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Rotational Magnetic Moments of Alkali-Halide Molecules
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The rotational magnetic moments of a number of alkali-halide molecules have been measured by the
molecular-beam magnetic-resonance technique. The gyromagnetic ratios in units of nuclear magnetons are:

Lj7F19 (+)0.07367+0.00050 K39F19 (—)0.0364+0.0012
L17Cl3 (+)0.0848&0.0032 Rb85F19 (—)0.0441&0.0028
Li'Cl35 (+)0.1042&0.0033 Rb"CP5 (—)0.0183&0.0018
Ll Bl (+)0.0911&0.0089 Cs'"F" (—)0.0621&0.0055
Ne 93I127 (+)0.0268&0.0047 Csl33CP5 (—)0.0212+0.0011.

Only the absolute values were determined experimentally. However, the absolute values are reasonably con-
sistent with the theoretical ones, so signs from the theory are listed above in parentheses. It is shown that for
weak Gelds the molecular rotational magnetic moments do not correspond directly to the peaks of the
reasonance curves. A statistical analysis has been carried out to determine the rotational g values from the
peaks oi the observed resonances. Since the correction is large (up to 50%), the above results would be wrong
by an amount beyond the indicated experimental error if the interpretation of the correction is not valid.
No such uncertainty arises in the LiF measurements or in other rotational-moment measurements where
the correction does not need to be made. The measured values determined in accordance with the above
analysis are found to be in good agreement with the predictions from a theory of Foley. The spin-rotational
interaction constant of F"in Cs'~F" has been measured by a new method to be 13.5+2.5 kc/sec.

I. INTRODUCTION'

'HE rotational gyromagnetic ratios of most dia-
tomic molecules are so small that their measure-

ments by the molecular-beam magnetic-resonance
method were originally believed to be impossible. If only
single quantum transitions occur in the radiofrequency
(rf) region, the deflections that the molecules undergo
at the detector will be so small that the transitions will
not be observable. What was, until recently, overlooked
in rotational magnetic moment measurements was the
possibility of using multiple quantum transitions. At
high source temperatures the most probable angular
momenta of these molecules are so large that the rota-
tional magnetic moments are of the same order of mag-
nitude as the nuclear magnetic moments, despite the
small gyromagnetic ratios. Therefore, if the angular
momentum is rotated through a large angle about an
axis perpendicular to the quantization axis, the change
in the component of the angular momentum along the
quantization axis will be su@ciently large to be easily
detectable, as discussed by I.awrence e( gl. , and Pinker-
ton, ' Cederberg et al. ,

' and Brooks et al.'
If the energy levels are equally spaced, and if the

molecule is still in the radiofrequency region after it has
made its 6rst transition, the molecule will undergo a
second transition. If we give the molecule enough time
in the rf region, it will make many transitions. C1assi-
cally, this can be pictured as a reversal of the direction
of the angular momentum by rotation about an axis

' T. R. Lawrence, C. H. Anderson, and ¹ F. Ramsey, Phys.
Rev. 130, 1865 (1963); J. N. Pinkerton, Ph.D. thesis, Harvard
University, 1961 (unpublished).' J. %. Cederberg and N. F. Ramsey, Phys Rev. 135, A39
(1964).' R. A. Brooks, C. H. Anderson, and N. F. Ramsey, Phys. Rev.
136, A62 (1964).

perpendicular to the axis of the external magnetic Geld.
One way to cause the angular momentum to undergo a
large rotation is to increase the rate of rotation of the
angular momentum by increasing the rf Geld.

The theory of multiple quantum transitions and the
formulas for optimum transitions have been worked
out by Pinkerton, ' and by Cederberg and Ramsey. '

The Grst rotational moments measured by the
multiple transition technique were those of the mole-
cules which had no internal interactions. ' Subsequently,
several molecules were studied which had nonzero but
small interactions, so that a strong Geld approximation
was applicable. ' In the case of most of the alkali-halide
molecules, the quadrupole interaction energy of at least
one nucleus is so large that the strong field approxima-
tion is impossible with any attainable external Geld. The
angular momentum of at least one nuc/eus remains
coupled to the rotational angular momentum. As a
result, in such cases the peak of the observed. resonance
does not correspond to the rotational g factor.

As is shown in the following sections, the peak of the
resonance curve corresponds to a g factor which is a
combination of the rotational g factor and a function
of the nuclear g factor. An analysis has been carried out
to determine the rotational g factor from the peak of the
observed resonance.

The molecular-beam machine used in our experiments
is the one built by Kolsky, Phipps, Ramsey, and Silsbee4
and modified by others. "The various features of the
machine have recently been described. '

4 H. G. Kolsky, T. E. Phipps, N. F. Ramsey, and H. B. Silsbee,
Phys. Rev. 87, 395 (1952).

5 W. E.Quinn, A. Pery, J.M. Baker, H. R. Lewis, N. F.Ramsey,
and J. T. LaTourrette, Rev. Sci. Instr. 29, 935 (1958).

'R. J. Kolenkow, Ph.D. thesis, Harvard University, 1959
(unpublished); T.R. Lawrence, Ph.D. thesis, Harvard University,
1961 (unpublished).
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II. STATISTICAL ANALYSIS

1. The Ha~~ltonian

( vQ)
$3(I,~ J)'+-,'(I, J)—IisJ'$

2Ii(2I,—1)(2J+3)(2J—1)
(mQ)s

t 3(I, J)'+-,'(I, J)—I,'J'j. (1)
2Is(2Is —1)(2J+3)(2J—1)

The orientation-dependent part of the Hamiltonian for a 'Z heteronuclear diatomic molecule in an external
magnetic 6eld is~

II=—[1—o'i(J)jgiprrIi H—[1—os(J)jgsp&Is H —gJp&J H—cihIi. J—cshIs ~ J
8

Both the direct and the electron coupled nuclear spin-
spin interactions and the diamagnetic interaction are
omitted since they are negligible to the present accuracy
for alkali-halide molecules.

Ii, Is, and J are "good" quantum numbers throughout
our discussions. Therefore, the substitutions

Ii'= Ii(Ii+1), ls'= Is(Is+1),

values of J for our molecules range between 20 and 70.J, the most probable J, is

J„=(k1'I)'is/h.

This value of J maximizes the Soltzmann distribution
function

P(J)= (h/kTI) Je (J'h'/2k 2'—I) . (3)

and Because J is large, we can approximate J(J+1) by J'
and (2J'+3)(2J—1) by 4J' in Eq. (1). The factors o.

and c,~~,I; are negligible.
in Eq. (1) will be made. Making the above adjustments and omitting the

J is a large quantum number. The most probable negligible terms, Eq. (1) will read

giprrli —H gsprrIs —8 gqp~J H— crrhIrr J—((erfQ)i/—8Ii(2Ii 1)J')t 3(Ii J)s+s(Ii'J) —Ii(Ii+1)J'7
—((eqQ)s/SIs(2I, —1)J')[3(Is J) +-'(I, J)—I (I,+1)J'], (4)

where c~ is the spin-rotation constant of the halide
nucleus.

2. The Choice of Representation

In order to obtain the energy levels from Eq. (4), a
suitable representation must be chosen. Depending on
the relative strengths of the internal interactions and
the interactions with the external field, four cases arise:

(a) Both nuclei primarily coupled to the external
Geld (strong Geld approximation).

In this case, the external field is so large that both Ii
and Is are decoupled from J and Ii, I„and J precess
independently about H. For this case, the most ap-
propriate choice of representation is the one which utilizes
the basis vectors

~
mi, ms, mJ) since mi, ms, and mJ are

"almost good" quantum numbers in this case. The re-
quired six quantum numbers will then be IJ, I2, J,
f8' m2 m J

(b) One nucleus primarily coupled to the rotational
angular momentum, while the other is primarily coupled
to the external 6eld.

Suppose nucleus j. is the one which is experiencing a
strong Geld, and nucleus 2 is the one which is coupled

r N. F. Ranisey, 3folecllar Beorss (Oxford University press,
Oxford, England, 1956).

to J.Then Ii and K (=Is+J) will precess independently
about H. In this case, therefore, the "almost good"
quantum numbers will be m&, mz, and E. These and
the "good" quantum numbers IJ, I2, J, will form the
six required quantum numbers.

(c) Both nuclei in a weak 6eld, but one with a
stronger quadrupole interaction than the other.

In this case the Geld is so weak that it is unable to
decouple either of the nuclear angular momenta from
the rotational angular momentum. If the coupling of
Is to J is much stronger than the coupling of Ii to J,
then Is and Jwill precess about their resultant, K=Is+J,
and K and Ii will precess their results, F=K+Ii, and
and &nally F will precess about H with the magnetic
quantum number nz. Hence, the three "almost good"
quantum numbers are E, P, and m.

(d) Any situation other than the previous three.
In this case no simple representation is good, but any

one of them can be used, provided the secular equation
is solved.

3. The Energy Leve1s

After choosing a representation, the matrix elements
of the Hamiltonian in that representation can be calcu-
lated. The total magnetic quantum number m, i.e., the
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projection of the total angular momentum along the
field axis, is a perfectly "good" quantum number in any
representation. This simplifies the calculation of the
matrix elements. The huge complete matrix is composed
of submatrices of relatively small dimensions, each of
them corresponding to a given value of m. In solving
the secular equation for case (d), one must diagonalize
each of these submatrices separately. In cases (a), (b),
and (c), however, we only need to find the energy levels
corresponding to a single m value and then treat m as a
parameter to Gnd all of the energy levels.

Most of the spectra in the present work can be ana-
lyzed by the coupling scheme (b). The molecules in this
catagory are: LiC1, LiBr, LiI, NaI, KF, RbF, RbC1,
CsC1. LiF and CsF can be treated by coupling scheme

(a). The schemes (c) and (d) were not used in the
analyses.

4. Energy Levels of KF

theory should be used to determine the energy levels,

because the zeroth-order energy values E'K J+g/8, y„,

and E'~ J—$/2 g are equal while the matrix element

connecting them,

(K=I+l, m~lHIK=I l —m~)

does not vanish. Linear combinations of the two eigen-

states lK=J+ ,', m~& -and lK=J——,', m~& must be

chosen:

I+&=~IK= 1+8,m, &+b IK=I—8, m, &,

l
—)= blK=—I+ 2m')+blK= I——',, mx&,

and u and b should be determined by the condition:

(+ l Xl —)=0, and the normalization condition.
The two new states are already orthogonal to each

other and to lK= 1+88, mq) and lK=I—8, m4&. From

these conditions a and 5 are found to be

We begin by analyzing the spectrum of K"F".This
is the simplest molecule that can be treated by the
coupling scheme (b). Fluorine has spin xs and, therefore,
has no quadrupole moment. It is in a strong Geld.

Potassium in K"F" has a quadrupole interaction of
—7.932 Mc/sec and the nuclear g factor is small

(0.26097), so the fields used in the experiment are
"weak. " (The nuclear interaction with the field. is of the
order of 0.2 Mc/sec. ) and

The energy submatrix for a given m has a dimension of

(1+K)1/2

1
b =—(1—K)'/',

K= s/(4 —3s')

s=m/J.

(2IP+1)(2IK+1)=2X4=8. Using this new set of basis vectors, the energy levels to
second order with respect to the quadrupole interaction

In all cases where the nucleus which is strongly coupled and external Geld interactions and to Grst order with

to J has half-integral spin, degenerate perturbation respect to the spin-rotational interaction are

(eqQ)K
E(J—2, %8)—:Ei 8= &sgF/4~H — ——mgg/4~H+ 8gK(1—8)s—

3gK'/4/7H(1 —8)'(1—s') cphm

(eqQ)

(eqQ) K
E(J+8) %8)=E8 4= &8gp/lpjH mg j/4NH sgK(1 t)s

8

3gK'/4/7H(1 —8)'(1—s') cphm

(eqQ) K
(6)

(eqQ) K 3gK'/4/7H'(1 —8)'(1—s') cphm

E( , % 8)—=E8 8
——&—8g r/4+H+ mg&/4&H+ gK(1 c)(1———,'s') '/'+-

( Q) 2

(eqQ) K 3gK'/4/7H'(1 —8)'(1—s') cphm

E( ) W8) =E7,8= &sgFpNH+ mg J/4TH gK(1 8)(1—4s')' '+
8 (eqQ) K 2

where

g~/g18 ~

S. Transition Frequencies of KF

In all of our low-frequency experiments the transi-

tions follow the selection rules
Hereafter, the first four energy levels in Eq. (6) will be

called the "nondegenerate" levels, and the last four

levels will be referred to as the "degenerate" levels.

Am= &1, AK =0, &m4 ——0. '(7)
Using these selection rules, the frequencies of transition
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corresponding to the energy levels Eq. (6) are

gJpNH 3gxpgH(1 —e)

Neglecting the spin-rotational term for a moment, we
notice two distinct frequencies in Eq. (8),

ggP—~H 3gKIJ~H(1 —&)

&I,II
2Jh

(9)

6 gK'p~' H'(1 —e)2s cp

J(eqQ) Kh 2

gzpw H 3gzpxH(1 —e)
&3,4= ——

6g K'p~' H'(1 —c)'s cp

J(eVQ)Kh

g gIJ~H 3grrp~H(1 e)s-
&5,6= ——

h 4Jh(1 ——,'s')'"

6gK'p~'H'(1 —e)'s c3'

2'J(eqQ)Kh

~7,S=—gyp' 3g]gk~H(1 —e)s

4Jh(1——,'s') 'I'

6 gxp~' H'(1 —e)'s cp

2J(eqQ) Kh

Looking at the flrst-order terms in Eq. (8) we notice
that the "degenerate" levels have a large 2 dependence,
so large that multiple quantum transitions are not
possible for these levels in our apparatus. The fre-
quencies corresponding to these transitions will not be
observable in our machine. There remain the "non-
degenerate" levels 1—4 which do not have any s de-
pendence in the Qrst order of approximation. The large
J dependence of these levels gives rise to the structure
of the resonance curves. The second and higher order
terms in these levels, which are s-dependent, only
slightly change the width of the curves. As long as the
width caused by different m's for a given J is within the
coil width, these terms will not be important. For all of
our molecules the second-order terms in Eq. (8) are
completely negligible.

6. The DeQectability Weighting Factor

The intensity function of v, I(v), is a product of three
functions:

1. the Boltzmann distribution function of J given

by Eq. (3),
2. the density of the transitions ~dJ/dv~

~dJ/dv~ =constant J', (10)

3. the deflectability weighting factor D(J) which
will presently be defined and developed.

Cederberg and Ramsey' have shown that in the
classical limit of high J, the fraction of the molecules
which undergo a change in nz (per unit of angular
momentum) between dm/J and Am/J+d(hen/J) is

P(hue/J)d(hm/J), where E(hm/J) is given by

The flrst term on the right-hand side of Eq. (9) is the
rotational term, and the second is the nuclear term. For
the most probable value of J, these two terms are ap-
proximately of the same order of magnitude. Depending
on the sign of gJ, one of the two frequencies in Zq. (9)
is much larger than the other one. Since the deflection
of the beam at the detector after transition is linearly
proportional to the effective g factor, only one of the
two frequencies in Zq. (9) will be observable. The
quantitative description of the deflectability factor in
the next section will justify the above qualitative
argument.

The e6ect of the spin-rotational terms &~c» in
Eq. (8) is simply to widen the resonance and possibly
(for large enough values of c~) split the resonance into
two branches, as was observed in the CsF spectrum.
Therefore, for simplifying the analysis, we omit the c»
factor now, remembering that for the correct determi-
nation of the theoretical natural widths of the reso-
nances, the c» constant must be added to the width
obtained from the J-dependent nuclear term.

(Dm 1

E J (4 sin-,'8/
for

=0
Am

for ——)2)sin-,'8(,
E

(gp~H/2h) sin((m Zc/v) [(v—(gp~H/h) j'+(gp~H'/2h)' ju')
sin~o=

lL~ (gf ~H/h) j'+(gl ~H—'/2h) 1"'
(12)
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FIG. 1. The deQectability weighting
factor for potassium fluoride.
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II' is the magnitude of the radiofrequency magnetic
field, and v is the velocity of the molecule in the beam.
For an "infinitely" long coil, at resonance Eq. (12)
reduces to

sin-',8= sin((m Lg/p) (gii~&/2h)) . (13)

The deflection S of the beam at the detector position,
after transition, is~

S=(~p/m v~)(aa/as)t (t,+ ;t,), -(14)

where d p is the change in the component of the magnetic
moment along the external field, aHii/aZ is the gradient
of the 8 field —26 000 G cm ', /~ is the length of the
8 magnet —38.2 cm, and t4 is the distance from the
8 magnet to the detector —66 cm. The change hp is
given by

1 mil (the normal beam width). The undeflected shape
function is, therefore

I(x)= (2s-)—"'e l*', (19)

Iundeflected =
(2s.)'I'

(21)

and the intensity after deflection is

where x is the horizontal distance in mils from the center
of the detector. The displaced shape function (assuming
that the shape is not distorted after deRection) is

I(x,S)= (2s.) '~'e —,(z—s) (2o)

From these equations and for a detector of width wz= 1

mil, the total intensity detected before deflection is

ay= Jgl ~Iong I
.

Making this substitution, Eq. (]4) reads

s=siJgI am/JI,
where S~ is

(15)
~deflected = ~

——',(x—S)&g~

(2n.)'I'
(22)

(16)
The fraction of molecules deflected will, therefore, be

sl. (pÃ/MMv )(aa,/az) t'ai (t4+ 2 tii) (17).
D(S)=1— ~

—~s(a—S)2' e '* 'dx. (23)
If we use the most probable velocity in the beam,
1.22+=1.22(2kT/m~)'", for v and also substitute the This function is approximately
rest of the constants in Eq. (17), Si will turn out to be

D(S)—1—(1+0.04S'+ )e &s'. (24)
410

mils (1 mi1= 0.001 in. ) . Multiplying this function by the Cederberg and Ramsey
function, Eq. (13), and integrating over Am/t will give
the deQectability weighting factor as a function of J:

Therefore,
S= (410/'T) Jg I am/J

I
. (18) 2 Sin)8

The beam shape at the detector is trapezoidal. ~ For D(J) D(S)dI, (25)

the sake of mathematical simplicity we approximate the
beam shape function by a Gaussian function of width where S is given by Eq. (18) as a function of J and
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6778/J. Carrying out the integration, D(J) will become

D(J)—1—0.00153(T/g~ sinl0) erf(580gq sin-,'0/T) . (26)

To a very good approximation, for all of our molecules
this function is linear in J. This linear approximation
will be used in the determination of the width of the
resonances. For determination of the peak. of the reso-
nances, which are of primary interest to us, Eq. (26)
itself will be used to give slightly more accurate results.

Figure 1 is a plot of the function D(J) versus J for the
molecule KF. The two branches of Fig. 1 correspond to
the two frequencies given by Eq. (9). It can be seen
from these curves that the deQectability factor is approx-
imately linear in J.

V. The Intensity Function

The total intensity function, a product of the Boltz-
mann distribution function, Eq. (3), the transition
density function, Eq. (10), and the deflectability weight-
ing function, Eq. (26), can now be plotted against J
and J be determined. In doing this, we erst use the
value of gz as given by the ionic model (see Sec. III).
The value of J determined in this way and the p

corresponding to the peak of the experimental resonance
curve can then be used in Eq. (9) and gJ be calculated.

This determined value of gJ- can then be used in
Eq. (26) and the above procedure repeated to give a

better value of gg. Repeating this trial and error pro-
cedure a few times determines the value of gJ. Once

gz is known, Eq. (9) may be solved for J as a function
of v, and the intensity versus v may be plotted. Figure 2
shows this plot for KF and Fig. 3 shows the plot of the
observed experimental KF resonance. The spin-rota-
tional interaction has been omitted in this theoretical
plot. This omission merely causes the two curves to look
narrower, but would not shift the centers of them. This
figure shows that the ratio of strength of the two
branches is about three to one. This ratio is even higher
for the other molecules since the rf current used was
close ta optimum for the big branch and, therefore, off

optimum for the small branch.
This result shows that we are justiled in assuming

that the observed resonance is I(l 7). The other branch,
I(vll), dies out in the noise.

The foregoing analysis can be used for other molecules
obeying the coupling scheme (b), once their energy
levels have been determined.

8. Analysis of Rb"F" Syectrum

Rubidium 85 has spin 88. This gives rise to (2X-,'+1)
)((2)(—,'+1)=12 distinct energy levels for a given 778.

Using the same procedure as for KF with slight modi6. —

cations, the energy levels of this molecule (to the same
order of approximation as for KF) are:

E(J 8, %8)—=Zl, s=&—8gppNH—
(eqQ)Rb

(eqQ) Rb 2

Sm 25 g bR'p N' H'(1 —8)'(1—s') 7llcph

mg AH+ pN g—abH(1 e) ———
2J 3

(eqQ)Rb
E(J——,', W-,')—=E8,4——&,'gpIJNH+-

40

3m 55 gRb pN H'(1 —e)'(1—s') 77lcph—mg JPH+ PNgRbH(1 —
E)——

2J (eqQ)Rb 2

(eqQ)»
E(+, W-,')=E8 8

——&,'gppNH+ yg-ggpH—
10

(eqQ)Rb

(eqQ)Rb
+( ~s)=+7,8 +2gpIJNH+

10

8 '" 80 g Rpb'NH'(1 —e)'(1—s') mcph
+sIJNgRbH(1 e) 1—-s' +—

9 3 2
(27)

2

8 '~' 80 g Rpb'NH'(1 —8)'(1—s') 7llcph—-',pNgRbH(1 —e) 1——s' +
9 3 (eqQ) Rb

(eqQ)» 2

(eqQ)Rb 3778 55 gR pb'N'H(1 —8)'(1—s') mcph
&(J+8, ~8)=&8,l8= ~2gF~NH+ 77lg~~H wgabH(1 —e—)———

40 2J 3

(eqQ) Rb 5m 25 gab'pN'H'(1 —e) '(1—s) ' 77lcph

E(J+8, %8)=E11,18—sgpIJNH —778gJPNH IJNgabH—(1 &)

8 2J ( qQ)- 2
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The frequencies corresponding to these energy levels are:

V1,2

3(cqQ) RbJh

g jijNH 5 gnbIJNH(1 —
&) cp 50 gRb PN (1 &) H s+- &—+-

2J h 2 3

g jijNH 4 gab(1 —~)sljNH cp 160 gab'pN'(1 —~)'H'
ps, 6= —— +- &—+

h 3J h(1 —(8/9)s')'I' 2 3J (eqQ)Rbh

g jfjNH 4 gab(1 6)sIJNH CF 160 gab'pN'(1 —e)'H
&V,s= + +—+

h 3J h(1 —(8/9) s') ' I' 2 3J (eqQ) Rbh

g jpNH 3 gRb(1 —e)HpN cF 110gab'(1 —c) spN H'
&9,10=—— %—+

h 2J h 2 3 (eqQ) RbJh

g jIJNH 5 gRbpNH(1 E) cF 50 gRb (1 f) AN H
&11,12 &—+-

h 2J h 2 3 (cqQ) RbJh

g jpNH 3 gabpNH(1 e) —cp 110gab pN'H (1 e)'s-
Ps 4= —— +— +—+

h 2J h 2 3 (egQ)Jh

(28)

With reference to the arguments given for KF, the following observations can be made.
1. Frequencies v9—I 12 are not important due to small effective g's.
2. Frequencies v5—vs are not important because of the large 2; dependence which rules out the possibility of

multiple transitions.
3. Frequencies vq—p4 are important, and the peak of the resonance corresponds to the average of these terms, i.e.,

gjpNH 2gRbpNH(1 &) CF
&Rbp + )

h Jh 2' (29)

again omitting the small second-order quadrupole terms.
The peak of the experimental resonance curve corresponds to v. Using Eq. (29) together with the analysis of

the previous section, we get the gg value of Rb"F".

9. Analysis of Li C1, Li Cl, LiBr, LiI, NaI, RbC1, and CSC1 Spectra

Consider, Grst, the Li Cl molecule. Both nuclei in this molecule possess quadrupole moments. However, the
quadrupole interaction of the lithium nucleus (nucleus 1) is so small that it is effectively in a strong external field,
whereas the chlorine nucleus (nucleus 2) is in a weak Geld because of its large quadrupole interaction. This molecule
can, therefore, be treated by the coupling case (b), too. Using the Harniltonian of Eq. (2), the energy levels can be
calculated. In this calculation the matrix element

(mq, K,mx)3(Iq J)2+s(Iq J)—Iq J ~mq', K,mx')

must be found. This has been done by Pinkerton':

(mq, K,mx(3(Iq J)'+2(Iq J)—IPJ'~rlq', K,re')=C(KJ I2)(mq K es ~3(jIc~ K)'+$(Iq K)—IQKs~rNq', K,mx'),
'

where

1 E(E+1)+J(J+1)—Im(I2+1)
C(K,J,I2)= 3

E'(2E —1) - 2(K+1)

(K+1—I,+J)(K+1+I, J)(Is+J+2+K)(I2+J—K—)
3

4(E+1)'(2K+3)
—J(J+1)

For large J C(K J I&)—1.The determination of the above matrix element was not required for the previous cases
(KF and RbF), since in those cases one nucleus had no quadrupole moment.
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TAnLE f. The coefficients of Eqs. (30) and (31).

J
J
J
J
J
J

3
2

+-
2

+2
3
2

+2
3
2

+-

3
2
1
2
1
2

+'f

1
2
I
2
3
2
3
2

+1
—1

+1
—1

+1

+1
—1

—1
—1

+1
+1
+1
+1
—1
—1

+1
+1

—1

+1
+1

+1
+1
+1
+1
—1

—1
—1

+1
—1
+1

+1
—1

+1
—1

—1
—1

+1
+1
+1
+1
—1
—1

(9/128) s —(21/128)s'
(9/128) s —(21/128)s'
(27/128) s' —(15/128)s
(27/128) s' —(15/128)s
(15/128) s —(27/128) s'
(15/128) s —(27/128)»'
(21/128)s' —(9/128) s
(21/128)s' —(9/128) s

The "nondegenerate" energy levels are

3 (eNQ)L (1—s')
, (30)

(e~Q)ci gLipN+g Light+

(«Q)« (e&Q)L'+(I7741) erg L iPNH 'B4g JPNH+ rr22 gc 1PNH(1 —6)s+ as (3s'—1)
8 16

4gci'pN'H'(1 —6)'(1—s') 3 (egQ) z„'s'(1—s)'
+84 +416

64 512

where a&, ., a5 are given by Table I. The corresponding frequencies are

fJpNH 3 gcl(1 6)pNH 3 (ei7Q) r..s &gci'pN'H'(1 —6)'s (eqQ) L'
i (E',4721) = — +bz — +b2 +—— +bs

h 2J h 8 Jh J(eqQ) cih gz„pNH Jh
(31)

where b~, b2, b3 are given by Table I.
The "degenerate" levels which are not given here will not undergo transition. The second-order terms in Eq. (31)

are negligible. The Grst-order Lir-quadrupole term, although not negligible, will not cause a shift in the center of
. the resonance. The Grst-order CI»-nuclear term, however, will cause such a shift, and its effect is completely similar

to that in KF. Therefore, the analysis of the previous section is entirely applicable to this molecule and to Li Cl,
LiBr, and CsC1. Equation (9) can be used for all these molecules. With regard to LiI, Nal, and RbC1 where the
"nucleus in the weak Geld" has spin 2, Eq. (29) must be used instead of Eq. (9) to give the average effective
frequency.

10. Analysis of LiF and CsF Spectra

For these molecules, where both nuclei are effectively in strong Gelds, coupling scheme (a) gives the following

energy levels:

+(772F ~2& 772L' 2)=+1,2 +2gFPNH+2gL PNH 772Jf P JH'~N( e )2h7F72 J

3 (eVQ)L"—:.( ~Q)'(3"-1)+ (1+6"-7"),
512 gLipN+

E(W2', ——',)—=Es 4=+21gFPNH+ zsgL;PNH 7NJgJPNH&(2cF)h—272J

(eVQ) L'
+1', (eqQ) z, (3s —1)+—— (1—10s'+9s')

512 gLip~H

(32)
E(%2 y +2) =26 6= +2gFPNH sgLiPNH 774JgJPNH+(2CF)h772J'

3 (eVQ)L+—,', (eg Q) L;(3s'—1)— (1—10s'+9s'),
512 gLip~H

E(+2 y +2) =+7,8 +sgFPNH 2gLiPNH 774Jg JPNH+(2CF)h77$ j
3 (egQ)z„'——,'6 (eqQ) z„(3s'—1)— (1+6s'—724),

512 gLip~Q
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FIG. 2. Theoretical shape of KF rota-
tional resonance (excluding spin-rota-
tional interaction). H—800 G, (iVI),i—700 ampere-turns, T—1030'K.

16—

12-

I- 10—0

Vi

4Ji- 8—

H~ 800 Gauss

(Nl)rf =700 AmPere-turns

T~l030 K

PgJ

R 35,
FRENBO (kc)

and the corresponding frequencies are:

gJPrr xH 3 s (eqQ)z„cp 3 (eqQ)z„'(3s —7s')

h 8 J h 2 128 gL;p,~HJh

gglrrrH 3 s (eqQ)z„cp 3 (eqQ)z, s(5z—9s'
vs, 4= — +———

)
h 8 J h 2 128 gz. ;ljrrH Jh

gzwrH 3 z (eqQ) z„cp 3 (eqQ) z,P(3s' —7s'
vs s= — +—— +—+

h 8 J h 2 128 gripxHJh

gzIJrrH 3 z (eqQ)z„cp 3 (eqQ)z„'(3z' 7zs)—

h 8 J h 2 128 gL p~HJh

(33)

Selection rules Amp ——&1 and Amz ——Dms ——0 have been
used in finding these frequencies.

As can be seen from Eq. (33), the central frequency
corresponds to the rotational g value. The other terms
ony a ecl ff t the natural width of the resonance curves.
For CsF, the ratio of the cesium first-order quadrupo e
term to the cesium nuclear term in Eq. (32) is abou 4.
Therefore, coupling case (a) does not give the exact
answer, since there might be some mixture of coupling
scheme (b), and a larger error is associated with the
CsF g value. Table II is a tabulation of the g„,i, va ues

nances as given by Eqs. (9) and (29) and the calculate

g~ values. For LiF and CsF the two values are, of course,
the same.

TABLE II. Effective and rotational g values.

11. The Natural Width of the Resonance Curves

The approximate form of the intensity unction for
coupling case (b) is

I(v) = constant J4(v) exp( —sJ'(v)/J ') . (34)

This is the product of the three previously discussed
functions (Sec. II.7), except that instead of the deflect-
ability weighting factor, Eq. (26), a linear function o J
(i.e., constant &(J) has been substituted. (See the remark
at the end of Sec. 6.)

In the intensity function Eq. (34)

I occurs at J=2J
I~, cocurs at J=1.236J .

Therefore, for spin s,

Molecule

Li7F"
Lj7Cl35
Lj6CP5
Li78r7'
Li7I 27

Na23I127
K39F19
Rb"F'
Rb"CI35
CS 33F
Cs133cl35

gexp pezLIs

0.07367 &0.00050
0.10097 &0.00017
0.1208 ~0.0011
0.13768 %0.00082
0.15121 ~0.00089
0.05015 ~0.00052
0.04245 &0.00023
0.05789 &0.00090
0.027191&0.000072
0.06207 &0.00034
0.026698~0.000071

gJ (corrected)

0.07367~0.00050
0.0848 &0.0032
0.1042 ~0.0033
0.0911 ~0.0039
0.1068 ~0.0089
0.0268 ~0.0047
0.0364 &0.0012
0.0441 ~0.0028
0.0183 &0.0018
0.0621 ~0.0055
0.0212 ~0.0011

gglzNH 1.5g~IzrrH(1 e)—
ggprrH 1.5g zrrrH(1 c)—

1.236J h

(35)

0

where g„ is the nuclear g factor of the nucleus m the
weak Geld. The natural line breadth is given by thrice

lus thethe difference of the two equations in Kq. 3 p u
spin-rotational constant of the nucleus in the strong
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6eld C,. TABLE III. Theoretical and experimental linewidths.

0.93g„psrH(1 —e)
(+v)natura1 =

&maxy =
2J h

Pasmax1

g girder H 1.5g„fr~H(1 —«)

1.236J h

gqp~H 2.5g„lj,AH(1 e)—
&maxg =—

2J h

»,max2=
gJijrrH 2.5groftNH(1 e)

1.236J h

For spin s cases, Eqs. (28) and (34) give

ggp~H 1.5gm phrH(1 —e)

(36)

(37)

Field
Molecule (gauss)

LiF 1315

LiCl 883
LiCl 943
LiCl 1330
LiBr 682
LiI 682
NaI 1375
NaI 1800
KF 799
KF 883
KF 1270
KF 1830
KF 2070
RbF 681
RbF 1495
RbCl 1330
CsF 799
CsCl 1330

(+v) theory

23.6 (from magnetic resonance)
35.1 (from electric resonance)

16.5
17.3
22.1
27.2
37.4
37.2
49.7
16.8
17.4
17.6
22.6
24.0
24.2
39.1
16.9
13.0
8.5

24.0
14.4
14.6
18.9
50.6
52.5
41.0
46.5
18.7
19.4
18.7
25.0
24.0
21.0
38.5
18.2
13.0
7.0

The total full width at half-height is

~Vnaturat = (Vmsxt Vfmsxt)+ (Vmsxs Vmsxt)

+(v .„,—v; ...)+c, . (38)

Using Eq. (38), Eq. (37) reduces to

1.74g„fr~H(1 e)—
~Pnatural = +c.. (39)

~&natural =&F ~ (40)

The natural width should be combined with the width
due to rf coil. Assuming a Gaussian shape function for
the molecule and the coil, one can arrive at the following
relationship

(theoretical width) = (natural width)

+s (coil width) && (coil width)/(natural width) .

Table III shows a good agreement between tbe theo-
retical and the observed widths in most cases. This is a
con6.rmation of the validity of the assumptions used in
deriving the total intensity function. If both branches
of Fig. 1 were of the same strength, the resonance curves
would have been much wider. Tbe observed width can
be explained only if we consider one of the two branches
of Fig. 2 and not both.

For the spin-rotational constant of the fluorine nucleus
in LiF, the electric and the magnetic resonance methods
give two different values. ' Note, in Table III, that the
observed width in the present experiment agrees more
with the width calculated from the magnetic resonance
value of the spin-rotational constant than from the
electric resonance value, although the latter is usually
considered to be more reliable.

8 W. A. Nierenberg and N. F. Ramsey, Phys. Rev. 72, 1075
(1947); R Braunstein and J. W. Trischka, ibid. , 90, 348 (1953).

For coupling case (a), Eqs. (33) shows that the width
is simply given by

13. Discussion of Errors

The peak of the experimental curve was determined
by taking the average of the peaks of several resonances.
The error involved in this determination is the usual
rms error and is mainly due to tbe shifts in the peaks
of the curves caused by the noise. This error is of the
order of 1'Pq.

Tbe next step is to determine v,tt„t;„as defined by
Eq. (9) from the experimental curves. If tbe theory
given is absolutely correct, the peak of the experimenta, l

curve is v,tt„t; e. However, because of the restrictive
assumptions made in arriving at the theory, a relatively
large error is involved in identifying the peak of the
experimental curve as v~«t, v,. For instance, there are
the following sources for this error.

There may be deviations from the Boltzmann func-
tion because of the possibility of some of the deflected
molecules being cut off by magnetic pole tips or other
parts of the apparatus. This effect which may be large
for extremely large values of J will not be too large for
the effective values of J since for these the deQections
are so small that the probability of molecules hitting
the pole faces and disappearing from the beam is small.
Another effect is due to the lack of symmetry in the
theoretical curve. Because of this asymmetry, the
broadening factors such as the coil width and quad-
rupole interactions will tend to displace the top of the
curve. This effect is estimated to be of the order of 5'%%u~.

There are also the following facts which were neglected
in deriving tbe theory: The shape of the beam will be
distorted upon deflection. The beam-shape function is
not Gaussian. The Cederberg and Ramsey theory is not
exactly applicable due to tbe second-order m-dependent
effects. Considering all these effects and allowing for
possible other unknown effects, the uncertainty in the
correction value (i.e., gv„h —g~) is estimated to be about
20/~. Since the correction is large, the uncertainty adds
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greatly to the 6nal estimated error. The large magnitude
of the correction also opens the possibility for an even
larger error if the interpretation of the result is wrong.
This possibility does not exist in the case of LiF and
other molecules with small quadrupole interactions for
which such large corrections are not required.

The partial but incomplete agreement between the
theoretical and experimental widths of the resonances
con6rms in part the use of the theory but also indicates
the limitations.

Once g,g„t, , is determined, gg can be calculated from
Eq. (9). There is a relatively small error of the order of
one percent introduced in this calculation due to the
uncertainty in J.

2pp
g =—E.

IJ.gI
I (~ II-.a

I o) 1

+0
(42)

where pp is the Bohr magneton, p~ is the nuclear mag-
neton, I is the moment of inertia, J,A is the electronic
angular momentum of the valence electrons about their
respective nuclei along the axis of rotation, Ep and E„
are the electronic energies in the ground and the excited
states, and the prime on the summation sign indicates
that e/0.

The value of the high-frequency term may be deter-
mined by a straightforward calculation of Eq. (42). How-

O I ~ ~ ~ t I \ ~ t ~ \ ~ i t ~ ~ \ t
$ ~ ~ ~ ~ i I I I t I i I

$ ~2

15-

I: 10-
ct)

Ld

10 20 25 50 aS 40
FREQUENCY (kc/s)

45

Fro. 3. Experimental KF resonance. H=800 G, (NI), i=700
ampere-turns, T—j.030'K.

' G. C. Wick, Z. Physik 85, 25 (1933);Nuovo Cimento 10, 118
(1933).

III. DISCUSSION OF RESULTS

1. The Rotational Magnetic Moment

The ionic model of the alkali-halide molecules gives
a rotational g factor

gi„;,= 1/M+ —1/M,
where HEI+ and 3E are the masses of the alkali and the
halogen ions expressed in atomic units.

To the ionic g value must be added the contribution
due to the valence electrons. This contribution, the
so-called high-frequency term, is given by'

l5-

L- IO-
0-

CO
Z:
ttj

5-

'0 IO 20 40 50 60
FREQUENCY (kc/s )

70

Fzo. 4. Experimenta1 CsF resonance. H—800 0, T—913'K.

ever, this calculation is very cumbersome if the excited
state wave functions are known and impossible if they
are not known. Several attempts have been Inade to
estimate this term by simpler approximate methods. '~"
In the next section we discuss Foley's method which is
in closest agreement with the experimental results.

White" suggests an evaluations of Eq. (42) from the
measured value of the spin-rotational constant. This
procedure, however, does not lead to good agreement
with the experimental values.

2. Theoretical Evaluation of the High-
Frequency Term

(electric dipole moment)
. (43)

(electron charge) )& (internuclear distance)

Neglecting the contributions from the ionic fraction,
the motion of the bonding p electron (the valence elec-
tron) of the halogen atom will account for the contribu-
tion to Eq. (42).

Following the pure precession hypothesis of Van
Vleck, '4 we can think of the valence p electron as having
a fixed angular momentum te precessing around the
internuclear axis with zero projection on this axis for
the ground state.

Using this approximation, we can calculate the matrix
element (p,II I

L,
l p,Z), which is the only nonvanishing

"R.L. White, Rev. Mod. Phys. 27, 276 (1955)."H. M. Foley, Phys. Rev. 72, 504 (1947).
ie G. C. Wick, Phys. Rev. 73, 51 (1948)."L.Pauling, Nature of the Chemical Bond (Cornell University

Press, Ithaca, New York, 1940)."J.H. Van Vleck, Phys. Rev. BB, 469 (1929).

Foley" proposes the following method for the calcu-
lation of Eq. (42).

First, we observe that the measured va, lues of the
electric dipole moments of the alkali-halide molecules
are lower than the product of their internuclear dis-
tances by the electronic charge. This indicates, accord-
ing to Pauling, that there may be some contribution to
the ground states of these molecules from neutral
atoms. "A measure of this partially nonionic character
is, therefore given by
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TABLE IV. Comparison of Foley's electronic contribution with the experimental value
(exp value of g, = (ionic value of g~—measured value of gz ~).

Molecule

LiF
Li'Cl
Li'Cl
LiBr
LiI
NaI
KF
RbF
Rbcl
CsF
CsCI

Dipole moment
(in Debye)

6.28446&0.00100'
5.9 ~1.3b
5.9 +1.3b
6 19 ~0 15c
6.25 ~0.20'

8.60 &0.09d
8 80 ~0 10e

7.875 ~0.006'
10.42 0.02f

0.163
0.392
0.392
0.407
0.456

0.174
0.189

0.300
0.252

Dissociation
energy (in Ergs)s

~&10 55X10 ~
8.18
8.18
7.22
5.62
5.07

~& 9.47
8.66

&~ 6.35
8.98
6.84

ge, Foley

~& 0.01497
0.0244
0.0278
0.0227
0.0261

~&0.00373
0.00333

0.00447
0.000193

ge, exp

0.0165~0.0005
0.0295~0.0032
0.0339+0.0033
0.0392~0.0039
0.0282+0.0089
0.0088~0.0047
0.0094~0.0012
0.0032~0.0028
0.0015~0.0018
0.0170&0.0055
0.0002~0.0011

ss L. Wharton, W. Klemperer, L. P. Gold, R. Strauch, J.J. Gallagher, and V. E. Derr, J. Chem, Phys. 38, 1203 (1963).
b D. T. F. Marple and J. W. Trischka, Phys. Rev. 103, 597 (1956).
e A. Honig, M. Mandel, M. L. Stitch, and C. H. Townes, Phys. Rev. 96, 629 (1954).
& G. W. Green and H. Lew, Can. J. Phys. 38, 482 (1960).
e H. Lew, D. Morris, F. E. Geiger, and J. Eisinger, Can. J. Phys. 36, 171 (1958).
& J. W. TriscMa, J. Chem. Phys. 25, 784 (1956).
I G. Herzberg, Spectra of Diatomic Moleclles (D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1950).

For the denominator Zn Ex in Eq. (42—), we can use a
suitable average value, which will not be much larger
than the excitation energy of the lowest II-state. 12 The
spectroscopic evidence indicates" that the energy curve
as a function of the internuclear distance for the lowest
excited II state is almost horizontal for alkali halides.
Therefore, the dissociation energy D, can be used for
~II ~Z

Taking all these observations into account, Eq. (42)
reduces to

g., Foiev——2 03)(10-"I'/IXD. ,

where I is in g-cm' and D, in ergs.
The dipole moment I', the dissociation energy

ge, Foley~ and ge, exp are listed in Table IV.
The dipole moments of RbC1 and NaI have not been

measured. From the measured value of the rotational
moment, using Foley's approximation, the dipole mo-

TABLE V. Experimental and theoretical gz-values.

Molecule Ionic gz White's gs Foley's gz Experimental gz geo icy/ge*p

LiF
Li&C1
Li6C1
LiBr
Lir
NaI
KF
RbF
RbC1
CsF
CsC1

0.0902
0.1143
0.1381
0.1302
0.1350
0.0356
0.0270
0.0409
0.0171
0.0451
0.0211

+0.0509
+0.0942
+0.1167

-0.0392—0.0534

—0.0606

+0.0753
+0.0899
+0.1103
+0.1076
+0.1089

—0.307—0.0442

—0.0496—0.0213

0.07367
0.0848
0.1042
0.0911
0.1068
0.0268
0.0364
0.0441
0.0183
0.0621
0.0212

&0.00050
~0.0032
&0.0033
&0.0039
&0.0089
%0.0047
+0.0012
&0.0028
&0.0018
&0.0055
&0.0011

(1.02
1.06
1.06
1.18
1.02

& 0.843
1.00

0.80
1.00

&5 Q.. S. Mulliken, Phys. Rev. 51, 310 (1937).

matrix element involved in the sum of Eq. (42).

(p,IIIL I
p»= l(p» II++I-

I p,»
=-,'p(p —Z)(p+Zy1)g»'= 1/v2.

Therefore,

ments of RbCl and NaI can be calculated to be

dipole moment of RbCl&11.4 Debye,

dipole moment of NaI—6.2 Debye.

In Table V the experimental total rotational g factor
is compared with Foley, White, and ionic predictions.

Note that Foley's electronic correction is added to the
total ionic value and not to (1—I") times the ionic value.
The latter alternative was tried and did not yield close
agreement with the measured values.

3. Signs of the Rotational Moments

The ionic approximation, Eq. (41), gives the signs as
well as the magnitudes of the rotationa1 g factors. The
electronic correction, being due to the rotation of nega-
tive charges, is always negative. In the theoretical
determination carried out in the previous sections, both
of these facts were taken into account. Since the calcu-
lated values are in close agreement with the experi-
mental results, the correct signs should be those given
by the ionic approximation.

4. The Fluorine Spin-Rotational
Constant in CsF

A byproduct of these experiments was the unexpected
appearance of the Ruorine spin-rotational constant in
the rotational spectrum of CsF. Figure 4 is the CsF
rotational resonance. The diGerence of the two peaks
gives the spin-rotational interaction of F. The value
determined in this way would be quite accurate if the
central minimum goes to zero. Otherwise, there would
be a slight attraction of the two maxima toward each
other by the contributions of the central portion. This
causes an error of &2.5 kc/sec, and the Cs value is

Cp,.„„——13.5&2.5 kc/sec.


