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Competition between Neutron and Gamma Emission from Nuclear States with High Spin*
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The effect of the high spin of the compound nuclei on the ratio of the gamma width to the neutron width
is studied. It is shown that this ratio increases with the increase of the spin of the compound nucleus. This
is attributed to both model-independent and model-dependent factors.

I. INTRODUCTION
' 'X heavy-ion bombardment, states with high spin are
- - populated. The various decay modes of these states
can be made to reveal some of the state properties when
experimental and theoretical data are compared.

The states excited in heavy-ion bombardment decay
predominantly by neutron emission followed by gamma
emission. In this paper it is shown that the ratio of the
gamma width of I'~ to neutron width I.' increases with
the increase of the spin of the compound nucleus. The
importance of this ratio is twofold. First, from this
ratio information about the model describing these
states can be extracted. Second, the knowledge of this
ratio is essential for the study of more complicated
mixed decays.

It was recognized that the ratio of the gamma width
to the neutron width depends on the spin of the com-
pound nucleus. Furthermore, previous information indi-
cates' ' that this ratio increases with an increase of the
spin of the compound system. Grover, 4 in a pioneering
work, estimated the competition between neutron and
gamma emission from nuclear states with high spin.
Grover's calculation assumes that gamma emission is
allowed in the last step of a long cascade.

It is shown that the relative probability of gamma
emission increases with the increase of the spin of the
compound nucleus.

Both deformation-dependent and deformation-inde-
pendent factors contribute to the gamma-ray emission
enhancement. The deformation independent factors are
mainly due to statistical considerations. Both neutron
and gamma emission depend on the density of final
states and on the energy range of these states. Both
neutron and gamma emission from states with high spin
are reduced. However, neutron emission is more in-
hibited as the following argument shows. Both neutrons
and gamma rays emerge with low spin so that if the
initial state has a high spin the 6nal state will also be
left with a high spin. However, in neutron emission the
final state is at an excitation at which the density of
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final states with high spin is very low. This low density
of final states inhibits neutron emission considerably.
As a matter of fact the final state may be in a region
where there are no states with high spin, eliminating the
possibility of neutron emission. On the other hand, in
gamma emission, for which there is no binding energy
restriction, the final state may be one of considerable
excitation. In particular, this state may be in an energy
region where the density of states with high spin is
appreciable. Furthermore, the relative decrease of the
range of available final states for gamma emission is
considerably smaller than for neutron emission. There-
fore, gamma emission from states with high spin is less
inhibited than neutron emission from the same states.

The deformation-dependent enhancement is due to
the corresponding increase in the nuclear matrix element
with deformation. This factor is model-dependent since
the deformation is model-dependent. For high spin
values the collective rotation can be very well approxi-
mated by the rotation of the nucleus as a whole, ' ' and
the liquid drop model appears to be very appropriate
for the description of such rotating states.

In the present calculation no parameters are adjusted
to 6t experimental data. The calculation proceeds from
first principles. Nuclear matrix elements for electro-
magnetic decay from nuclear states with high spin
according to the liquid drop model' are used. Densities
of levels as suggested by Lang and LeCouteur" are used.

D(E,J)=S(E,J=0)/S(E,J) . (2)
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II. THEORY

The relative increase of gamma emission as a function
of the spin of the compound nucleus is most easily
recognized by means of the function D(E,J) to be de-
fined below. Let S(E,J) be the ratio so that

S(E,J)= r, (E,J)/r „(E,J) .

This ratio is then compared with a similar ratio for zero
spin S(E,J=O) by means of a function D(E,J) such
that
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The function D(E,J), for high spin values, exhibits more
explicitly the e6ects of this high spin.

Now an equation for the function D(E,J) is derived.
First the ratio S(E,J) of I' to I'„ is calculated. Let
I'~(E;,J,) and I'„(E;,J;) be the gamma and neutron
width, respectively, of an initial state at an excitation
E; and with a high spin J;.Then

I' (E;,J,) =K(E;,J;)Q
JJ' p

T„(E,,J,; Er,jg)de, (3a)

I' (E;,J;)=K(E;,J~)Q
Jy p

T~(E,,J;;Er,jt)dEg. (3b)

In Eq. (3), K(E;,J;) is a proportionality constant de-
pending only on the population of states with E; and
spin J;.The transition probabilities T„and T~ are dis-
cussed later. Finally, 8 is the neutron binding energy,
and E; is the maximum energy available to the gamma
rays where Ji;—8 is the maximum energy available to
the neutrons. The ratio S(E,,J,) becomes

T~(E;,J, ; Et,jr)dEr
I'r(E, ,J,) zy p

S(E;,J;)=
r„(E,,j,) Ei—B

T„(E;J,; EtJy)dEy

The effect of the high spin will be recognized by studying
the ratio D(E;,J;) of S(E;,J,=O) to S(E;,J;). Now the
function S(E;,J;) for high spin values is evaluated.
First the neutron width for states with high spin is
calculated. The probability for neutron emission has
been discussed extensively. Here an approach to deter-
mine the probability similar to the one used by
Thomas, ""of neutron emission from states with high
spin is adopted. Accordingly, the rate for neutron
emission R„(E,,J;;Ey) may be writtten as

and t is the thermodynamic nuclear temperature. In
Eq. (5), c is related to the moment of inertia 8 by

c=8/h'

and the function e(jr) is de6ned by

e(jt)=1, Jr&J~
e(jt) =0, Jt) J~.

Here J~ is defined by

It'J,~'/28 =E.

(9a)

(»)

(10)

The necessity of the inclusion of the term e(j~) follows
from the fact that for every value of the spin there is an
energy value below which there are no levels with that
spin or higher spin. Grover4 and Sperber" " have
shown that the lowest energy E of a nucleus with a
spin J~ is given by Eq. (10).

The integration over E~ in Eq. (3a) and Eq. (3b) has
been carried out numerically. It is convenient to break
the integrand R„(E,,J;;E~) into two parts. The erst
part consists of

&!R(&/(r")"')p(Er);

the second part consists of

— (Jr+!)'-
P(2j,y1).(j,) exp-
Jy 2cr J&

JJ+~s Ji+S
X Q Q T)(E;—8—Er) .

8-t Jy—kl &=l Ji—Sl

rJ is the nuclear spin-dependent temperature defined by

1/r =d lnp(E, J)/dE = (a/E) 'I' —
2 [1/(2E+t)j,

1 1 t'(J+-,')' 3) d lnr

r~ r k 2cr 2) dE

R„(E,,J;;Er)

=P T„(E;J,; Erjt)

It

p(Ef)E(2jf+1) exp
R (r~&)'I'

Ji+S

——(j.+-', )'-
~(jr)

2cr JJ'

The first part of the integrand was calculated in a
straightforward way. The second part was calculated
in two different ways. First an approximate formula for
this second factor was obtained. For simplicity this
approximation is now derived neglecting its intrinsic
spin dependence. The inclusion of spin causes only small
alterations. In the numerical calculation, spin-dependent
factors were included. Let

~=l Jy—sl ~=l Ji—~l
T((E, 8—Er) . (5)—
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Here v is the average neutron velocity in the nucleus,
and R is the nuclear radius. In Eq. (5), p(Ey) is the
spin-independent part of the density of levels so that

p(E) =C(E+t) "'exp(2aE)'j',

iV= Q(2jr+1) exp
(j+-')'

2cr J&

J;+Jy
~(jr)

t=l Ji—Jql
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and H. E. Conzett, (University of California Press, Berkeley,
1963), p. 379.
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In the approximate formula for E, the values of the by a similar approximation F becomes
base on the sharp cut-off approximation were used so
that (Ji+-,' —l)'

(12 )
F3——Ti(E)(2cr s) exp-

(12b)

Tl=i, l&L

Tl=0, l&L.
2crJf

(Ji+-'+l)'
Here —exp

2crJfL=

rod�

"'(2mE/h') "'. (13)

First the summation over Js in Eq. (11) was performed Now the summation over l has to be performed:
for a particular value of /. I.et

L

(21)

F(J;,JM, l) =P(2Js+1)e(Js) exp
(J +-')'

2cr Jf

1V= Q F(J;,JM, l).
l=o

(22)

Here four different cases have to be considered. First

Three cases have to be distinguished. First

J~&J;—l.
In this case whenever e differs from zero T vanishes and
whenever T differs from zero e vanishes so that

J~&J;—L.
In this case Eq. (22) reduces to

L

1Vg
——Q Fg(J;,JM, l) =0

l=O

(23)

(24)

Second
Fg(J;,JM, l) =0. (16) Second,

J,—L&J~&J;. (25)

Fg(J;,JM,l)+ Q Fm(J;,JM, l)(J +-')'JM l=o
F2(J;,JM,l) = P (2Js+1) exp Ti. (18)

2cr Jf (JM—l'+2)'L—Js+JM

l'-oThe summation in Eq. (18) can be approximated by
integration so that

F2(J;,JM, l) = Ti(E) (2cr~s)

(J'—l+l)'

2cr Jf

(JM+ )

2cr J&

~ (19) Since for the case of interestexp
2c7 Jf 2cr J~

(17& In this case Eq. (22) reduces to
In this case e for values of Jf larger than J~ vanishes,
so that

(26)

Finally, for
J;+l&JM,

l2/2cr ss«1, (27)

(20) the sum in Eq. (26) may very well be approximated by

Third,

1V2= (2cr~s) exp
(JM+-,')' 1—exp[2(JM+-,')(L—J;+JM+1)/2cr s]—(L—J'+JM+1)

2cr~s 1-exp[2(JM+-', )/2cr~s]

Ji&JM &Ji+L ~

(28)

(29)

In this case, using a similar approximation to the previous one, we get

1Vg= g Fq(J;,JM,l)+ g F~(J;,JM, l) = (2cr~s) exp
l=O

(J~+k)'

2crJf

(exp[(2J;+1)(JM—J;+1)/2cr s]}—1 (exp[—(2J;+1)(JM ;J+1) 2/rcs]s}—1—
X

(exp[(2J';+1)/2cr s]}—1 (exp[—(2J;+1)/2cr ~s]}—1

+ (2cr~s) exp
2c7 Jf {exp[2 (2J,—JM+ 2)/2cr ~s]}—1

(2J,—JM+2)' {exp[2(2J;—JM+2)(L—JM+J,+1)/2cr s]}—1

(L, JM+J;+1)exp ——— '
(JM+2)'

2c7 Jf (30)
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Finally,
J;+L(Jer. (31)

In this case using an approximation similar to those for the two previous cases

L
E4= P Fs(J;,Jer, l) = (2cr») exp

l=o

(J'+l)'
2cv JJ'

{exp[(2J~+1)(L+1)/2cr I]}—1 1—{exp[—(2J;+1)(L+1)/2cr»]}
X (32)

{exp[(2J;+1)/2cr»] }—1 1—{exp[ —(2Jr+1)/2cr ~&]}

In the previous equations L is determined by Eq. (11),where E is the energy of the outgoing neutron and Jee is
determined by

JM= (1/h) [2(E —E)8)'"= (1/h) [2(E,—8—E)y]'~'. (33)

Here E„ is the maximum energy available to a neutron. Depending on the relation between J;, J~, and 1. the
appropriate form for S was chosen. Using the function N integrals of the type

Ei—B p

p(Er)X(J;, Jer, Er, L(E, 8 Er)—)dE—g
g (r»)3/2

(34)

were evaluated numerically.
To justify the use of the approximate form for 1V in Eqs. (22), (28), (30), and (32) an exact numerical calculation

was performed for a few cases. The transmission coe%cients for this calculation were taken from the work of
Auerbach and Percy. "Auerbach and Percy calculated transmission coeKcients using an optical model with the
inclusion of spin orbit interactions. Their transmission coefficients are limited to neutron energies of up to 5 MeV.
A comparison of results using the approximate formula and optical model calculation indicates that for higher
neutron energies the present approximation is sufhcient. Therefore, for higher neutron energies only the approxi-
mation formula was used.

Second, the gamma width for emission from nuclear states with high spin is evaluated. First the transition
probability is broken into a sum of transition probabilities of definite multipolarity so that the sum over J~ in
Eq. (3b) may be rewritten as

Ji+Jy
Z T.(E',J'; Lr,Jr) =2
Jf' Jy l=l Ji—Jpl

T,'(E;,J;;Er,Jr) . (35)

1 1 87r(I+1) /E, Er~ r&+r—
T,~(E,,J,; E,J,)= — — p(Er) I(r»)'~' $ [(2)+1)!!]' ~ »~ J

(2Jr+1)
(2J;+1)

——(Jr+-')'
x exp 2 I(J'~'IQ. 'I Jr~a)l' (36)

2C~Jf — ~i~f~

In Eq. (35) the T~ (E;,J;;E~,Jr) are the transition probabilities of electric radiation of order /, which can be
written as

(Q '(J))= pzY '(r)d'r. (37)

'7 E. H. Auerbach and F. G. J. Percy, Brookhaven National
Laboratory Report, 765 (T-286), 1962 (unpublished).

Here v& is the velocity of light.
Now the deformation dependent factor is calculated.

This factor is attributed to the increase of the nuclear
matrix element with deformation The nuclear matrix
element is calculated according to the liquid drop model.
In this case the nuclear matrix element in Eq. (36) has
to be replaced by Q ', where

In Eq. (37), pz(r) is the charge density and F '(r) are
the solid spherical harmonics of order 2.

According to the liquid drop model, nuclei with high
spin have been very well approximated by spheroidal
shapes. " " Obviously these spheroidal shapes have
vanishing dipole moment, but a nonvanishing quad-

' R. Beringer and %. N. Knox, Phys. Rev. 121, 1195 (1961).
'9 B. C. Carlson and Pao Lu, in Prooeediegs of the Ru1herford

Jubilee International Conference Z9Z, edited by J. B. Birks (Aca-
demic Press Inc. , New York, 1961).' S. Cohen, F. Plasil and W. J. Swiatecki, in Proceedings of
the Third Conference on Reactions Between Complex Nuclei, edited
by A. Ghiorso, R. M. Diamond, and H. K. Conzett {University
of California Press, Berkeley, 1963), p. 325.
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TABLE I. The function D(E,J) for a nucleus of A =200 with a =20 MeV ' and the
neutron binding energy equalling 7 MeV.

E=8 E= 10 E= 12 E= 14 E= 16 E= 18 E=20 E=22 E=24 E=26 E=28 E=30
J= 15 0.0000 0.6651 0.8323 0.9231 0.9481 0.9627 0.9717 0.9778J=30 0.0000 0.0000 0.2988 0.6014 0.7407 0.8182 0.8654 0.8965J=45 0.0000 0.0000 0.0000 0.0000 0.0000 0.3630 0.5679 0.6771

0.9821 0.9853
0.9176 0.9335
0.7529 0.7903

0.9878 0.9895
0.9445 0.9532
0.8421 0.8698

&Q+i') = (Q+s') =o,
and for the second type of conhguration

(38b)

(Q ') = '(5/7r)'-I' ,'ZeR, '(-1/q'I')(rf' 1), —(39a)

(39b)

(Q~ ') =—'(15/ 2'"-,'ZeR '(1/rf4t')(if' —1) . (39c)

&n Eqs. (38) and (39) the s axis has been chosen as the
axis of rotation and p is the ratio of the minor to major
axis. The previous equations for the gamma F~ and for
the neutron width F„allow one to calculate the ratio
5(E,J) defined in Eq. (1).To obtain the function D(E,J)
the knowledge of 5(E, J=O) is required. However, it
should be borne in mind that the previous approxima-
tions for the neutron width are valid only for high spin
values. Therefore, other approximations are required
for the evaluation of S(E,J) for low spin values. For
this purpose the existing standard" forms for the
neutron width were used.

Now the effect of the deformation on the ratio
S(E,Ji) to 5(E,Js) for two high spin values is calculated.
This result is limited to high spin values since rotational
states with low spin values cannot be described by the
liquid drop model. Let 5„(E,J) and Sd(E,J) be the
values of the function 5(E,J) excluding and including
the effect of spin-dependent deformation, respectively.
Then

Sd(E,Ji)/5&(E, Js) =n(Ji, Js)5~(E)Ji)/S„(E,J,) . (40)

Using Eqs. (36) and (37), the correction function
n(Ji, Js) becomes

rupole moment. Such rotating liquid drops mainly emit
E2 radiation. Beringer and Knox" calculated the shapes
of spheroidal nuclei with high spin. For spins lower than
a critical value of the spin, they find that the equilibrium
shapes are oblate spheroids with this axis of rotation
coinciding with the axis of cylindrical symmetry. How-
ever, for nuclei with spins exceeding this critical value
the shapes of equilibrium are prolate spheroids rotating
around one of their minor axes. A simple calculation
shows' that for the Grst type of shapes the components
of the quadrupole tensor are

(Q ') = '(5/vr)'I's —ZeRs'(2/ri'") (rl' 1), (3—8a)

D (E,J)

1.0 " —J-15~ J-30
&-J-~S

0.5

III. DISCUSSION

First the function D(E,J), defined in Eq. (1) of Sec.
II, was calculated disregarding model dependent factors.
In other words, the change of the nuclear matrix element
with deformation is neglected. A sample calculation
was performed for a nucleus with A=200, a neutron
binding energy of 7 MeV, a value of the parameter
a=20 MeV ', a rigid body moment of inertia, for
J=15, 30, and 45, and for energies of the compound
nucleus ranging from 0 to 30 MeV. The results of this
calculation are summarized in Table I. The following
conclusions may be drawn from inspection of Table I
and Fig. 1: (a) the relative probability for gamma
emission increases with the increase of the spin of the
compound nucleus [note that D(E,J) is proportional to
the reciprocal of this probability]; (b) the relative in-
crease of gamma emission is less marked and disappears
with very high energy; (c) the energy at which the effect
disappears increases with the spin. [For a spin of 15,
D(13,15)&0.9 at 13 MeV; but for a spin of 30 this value
of 0.9 is reached at 23 MeV; and for a spin of 45, even
at 30 MeV, D(E,J) is still less than 0.9.)

The vanishing values of D(F,J) for low energies (see
Table I) can be attributed to the fact that from states
with high spin and low energy, neutron emission is not
possible. This is due to the lack of availability of
appropriate final states.

Second, the effect of deformation on the probability
of gamma emission from nuclear states with high spin

12 16 20 28
I

32

' For example, see J.M. Blatt, and V. F. Weisskopf, Theoretical
Egclear Physics (John Wiley K Sons, Inc. , New York, 1952),
p. 367.

FIG. 1. The function D(E,J) for a nucleus of 3 =200 with
a=20 MeV 1 and the neutron binding energy 7 MeV. The
energy E is in MeV.
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&(J,J ~ 30)2 TABLE II. The correction function ~ (J&,J2 ——30) for Cu".

150-
J1 30 40 50 60 70 80

u (J1)J2 =30) 1.00 4.93 17.17 46.81 70.85 129.77

100

50

30 40 50 60 70 80

Fro. 2. The function o;(Jq,J2l for Cu".

was calculated. The calculation is based on the liquid
drop model.

The correction function a(Jt,J2), which is defined in
Eq. (40), was calculated for Cu" with J&——30 and

30&J~&80. For this region of spins in Cu", Beringer
and Knox" calculated the dependence of q on J. This
dependence was used to calculate tr(Jt, J2 ——30) for
Cu". This correction function is shown in Table II and
in Fig. 2. The rapid increase of n(Jt, J,=30) with J2
indicates the enhanced relative probability of gamma
emission from states with high spin due to spin-de-
pendent nuclear deformations.

Therefore, a slow experimentally measured increase
in the ratio S(E,Jt)/S(E, J2) indicates that the nuclear
matrix element does not increase with the nuclear spin
and the transition can be described by a single particle
type of transition. For single particle decay the nuclear
matrix element changes only slightly with the nuclear
spin. Therefore, the expected increase in S(E,Jt)/S(E, J~)
will be almost the same as the one predicted by
S~(E,Jt)/S~(E, J2). On the other hand, a, detected,
much faster, increase in this ratio indicates the increase
of the nuclear matrix element with deformation. Such
an increase in the nuclear matrix element attributes the
origin of radiation to the nucleus as a whole.


