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sum over i3. Hence the final spin and isospin factor is sum we do explicitly. For the spin factors we get

L(2Z+1)(2Z'+1)(2r+1)(2r'+1)g'leg (tzzr tz rz; ZZ')

+~(l l —:—: -')18——:I~el ) I' (Il4)
m1mmm3o o'

(-', —,
'

I
Zo-,'mt)(Zo

I
—,'ms-', ms)

X (-,' —', I
Z'o'-,'mt)(Z'o'

I

—',ms-', ms)ms, (86)
The other factors are obtained in corresponding ways.

For the calculation of the Gamow-Teller matrix ele-
ment one requires a different set of factors. Consider,
for example, the 8-matrix element shown in Fig. (7c).
The isospin part gives
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which is not conveniently further reduced, but which

where the factor of m3 comes from the matrix element of
r, . This sum can be converted to a sum over Clebsch-
Gordan coefficients by making use of the identity

ms= (rs/2) ((zms I 1ozms))

we get for the spin sum (86)

[(2Z+1)(2Z'+1)g'i'W(1Z-', -', ;Z'-', )W(1-', Z'-', tzZ) . (88)

The other sums for the Gamow-Teller element are done
in a similar way.
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Approximate expressions for the optical-model potential U,~t in terms of the nucleon-nucleon interaction
are discussed. The identity of all the A+1 nucleons of the scattering problem is approximately taken into
account in our final formulas. The imaginary part of V,p& is calculated for the case of "C and the incident-
nucleon energy of 20 MeV. The spherical-model random-phase-approximation (RPA) eigenvalues and
eigenvectors are assumed for the complete set of intermediate nuclear states involved. The results are rather
insensitive to the exchange-force mixture assumed for our zero-range nucleon-nucleon potential. The anti-
symmetrization of our V-matrix elements is extremely important as it reduces our ImUopt by a factor of
2—3.For a reasonable set of our RPA intermediate eigenvalues and eigenvectors we obtain a semiquantitative
agreement with the best phenomenological Imv, ~t available for our case. The most important contribution
to Imv, pt corresponds to the erst excited T=0, 2+ state in' C.

I. INTRODUCTION

A GREAT variety of attempts have been under-
taken to calculate the optical-model potential

from basic two-body forces. Several independent defini-
tions of the optical potential have been employed which
are not exactly equivalent. One common fundamental
difficulty of a microscopic derivation of the potential is
the exact antisymmetry in the (A+1)-particle system,
i.e., the Pauli exclusion principle. It leads to many
pitfalls. In fact, most early attempts to incorporate the
Pauli exclusion principle in the derivation turned out to
be failures. ' In the following we shall not review these

' J. S. Bell, in Lectures on the Many-Body Problem, edited by
K. R. Caianiello (Academic Press Inc. , New York, 1962), p. 91; in
this reference the following papers are criticized: (a) F. Coester
and H. Kummel, Nucl. Phys. 9, 225 (1958); (b) H. Rollnik,
Z. Naturforsch. 13a, 59 (1958); (c) L. M. Frantz and R. L. Mills,

attempts, nor shall we discuss all the different ap-
proaches to the general problem of the microscopic
theory of 'U.pt Only a few treatments related more
closely to our calculations will be mentioned.

One of these is the Watson multiple-scattering formal-
ism. The corresponding solution constructed for 'U„~
is a rather complicated infinite series of terms, and only
partly considers the indistinguishability of the projectile
("0")from the target nucleons. ' This approach employs
the concept of the two-nucleon t matrix, which we shall
refer to in our treatment. Most applications and

Nucl. Phys. 15, 16 (1960); (d) L. M. Frantz, R. L. Mills,
R. G. Newton, and A. M. Sessler, Phys. Rev. Letters 1, 340 (1959).

s K. M. Watson, Phys. Rev. 89, 575 (1955); (a) N. C. Francis
and K. M. Watson, ibid. 92, 291 (1953); (b) G. Takeda and K. M.
Watson, ibid. 97, 1336 (1955); K. M. Watson, ibid. 105, 1388
(1957).
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elaborations of the Watson theory refer to inhnite
nuclear matter. ' The Watson formula is particularly
useful in the high-energy region, where it reduces to the
impulse approximation. '4

Another approach is based on the unified theory of
nuclear reactions of Feshbach. ' This method is based on
a solution of the coupled-channel Schrodinger equation.
Here the formula for U,p& does not incorporate the
Pauli principle for the projectile relative to the target
nucleons. Extensions of this treatment' so as to in-
clude complete antisymmetry in the corresponding 'U.pp

quite generally appear to be unsatisfactory.
The method of Green's functions has the obvious

advantage of automatically securing the identity of all
the particles and the Pauli principle, due to the use of
second quantization with the fermion operators in the
Heisenberg representation, i.e., with the total Hamil-
tonian H '

In this method the optical potential is given essen-
tially by the continuum part of the spectrum of the
Dyson "mass operator" (or "self-energy operator")
Z. Such a definition of l3„& has been discussed by Bell
and Squires' who, however, work with the interaction
representation of fermion operators. A practical cal-
culation of the self-energy operator follows rather the
methods of Martin and Schwinger" and Puff" (cf. also,
e.g. , Reiner" and Koltun and Wilets"). The conver-
gence of this method is closely related to the goodness
of the independent-pair approximation (IPA) (cf., e.g. ,
Brenig'4).

In our work we are interested in finite light and
medium-heavy nuclei, and especially in seeing how
various single-particle and collective levels contribute,
particularly to the imaginary part of 'U„&. For this
reason, we choose the complete set of intermediate states
in our formula to be model states given by products of
plane waves and the target excited states given by the
Tamm-Dancoff (TD) or the random-phase approxima-

3 See, e.g. , K. A. Brueckner, R. J. Eden, and ¹ C. Francis,
Phys. Rev. 100, 891 (1955); K. A. Brueckner, ibid 103, 172.
(1956);L. deerlet and J. Gavoret, Nuovo Cimento 10, 505 (1958);
J. Dabrowski and J. Sawicki, Nucl. Phys. 13, 621 (1959);
I. Sawicki and S. A. Moszkowski, ibid 21, 456 (1960.); I. Sawicki,
Nuovo Cimento 15, 504 (1960); J. Dabrowski and J. Sawicki,
Nucl. Phys. 22, 318 (1961);G. L. Shaw, Ann. Phys. (N. Y.) 8, 509
(1959); C. B. Duke, Phys. Rev. 136, B59 (1964).

4W. B. Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157
(1956).

5 H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49 (1958); Ann. Phys.
(N. Y.) 5, 357 (1958); 19, 287 (1962).

6 R. Lipperheide, Ann. Phys. (N. Y.) 17, 114 (1962).
R. H. Lemmer and C. M. Shakin, Ann. Phys. (N. Y.) 27, 13

(1964).
Just the use of second quantization alone does not guarantee

a correct construction of U,p&, as one may deal with states which
correspond to unphysical initial conditions; this was the case in
the work of Coester and Kiimmel LRef. 1(a)g and Lipperheide
(Ref. 6).

J. S. Bell and E. J. $quires, Phys. Rev. Letters 3, 96 (1959).' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959)."R.D. Pu6, Ann. Phys. (N. Y.) 13, 317 (1961).' A. S. Reiner, Phys. Rev. 129, 889 (1963); 133, B1105 (1964)."D.S. Koltun and L. Wilets, Phys. Rev. 129, 880 (1963).
W. Brenig, Nucl. Phys. 13, 333 (1959).

tion (RPA). The eigenvectors of such models do indeed
form complete and orthogonal sets. The TD or RPA
eigenstates are well known to be rather successful in
explaining the properties of low-lying states of even-even
light nuclei which contribute the most to U p$.

Higher order terms contain higher order correlation
corrections and some "target exchange terms" (cf.,
Appendix I).

Physically Z corresponds to the sum of all the "proper"
(irreducible) diagrams (cf., Refs. 1 and 2). A chain of
successive approximations for Z can be obtained from
Eq. (1) by appropriate iterative solutions for the re-
spective functions G~ and 62.

One such procedure outlined in Appendix I leads
simply to a certain T-matrix approximation:

z(0,0') = —i(01
~

T
~

o'1')G, (1',1),
where

(2)

(o1 i
Tio'1'&= v(o, i)b(i —1)(oii neo'1'& (3)

(01~ 0~01&=(8(0—0)b(1—1)—ex)
—iGt(0,0")Gr(1,2) V(0",2)(20"

~
0

~
01) . (4)

V(0,1) is a (local) two-particle potential, and "ex"
stands for exchange terms. This gives a complicated
nonlinear integral equation for Z; in fact, our matrices
of Eqs. (3) and (4) are "exact" and involve Z via the
function G~.

In practice one has to apply either some model
assumption which eliminates this nonlinearity or some
iteration procedure which possibly leads to a self-
consistent determination of Z. We note that the matrix
0 is antisymmetrized. In Appendix I, we discuss also
several correction terms, some of which contain con-
tributions of the "target exchange" type (in the
terminology of Takeda and Watson' and of one of us").
The "target exchange" terms are shown in Ref. 16 to be
only very small corrections at incident energies coo&50
MeV.

"G. Baym and L. P. Kadanoft, Phys. Rev. 124, 287 (1961)."J. Sawicki, Nuovo Cimento 15, 606 (1960); the evaluation of
the "target exchange" corrections as to the scattering amplitude
for an infinite matter with correlation is correct but the construc-
tion of U,p& cited in this paper is that of Rollnik criticized in
Ref. 1.

II. DISCUSSION OF GENERAL FORMULAS

If one applies the Martin-Schwinger Green's-function
forma'ism, " " one can develop useful approximate
formulas for the optical-model potential. The exact ex-
pression for the self-energy operator Z is (cf., e.g. ,
Baym and Kadanoff")

Z(0,0') = —iV(0, 1)Gs(01,01+)(Gr(0 0')$ ' (1)

where

G,(01—,01+)=lim G, (0, xt, fr —A; 0, xr, 4+6).
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The T matrix of Eqs. (2)—(4) resembles essentially
that of the Brueckner theory with the propagator con-
taining "exact" single-particle energies to be deter-
mined self-consistently. It is a formulation obviously
appropriate to finite nuclei as well as to infinite nuclear
matter. It is much easier in practice to work with a T
matrix which would correspond to replacing the (~ Q~ )
on the right-hand side of Eq (9.) by the corresponding
delta-function and exchange terms'r; let us call it t(+ .

We choose now a zero-order single-particle (shell-
model) Hamiltonian hp(0). The energy denominator of
each Gi contains the operator h(0,0', @p) =hp(0)8(0 —0')
+Z(0,0'; opp), where (op =o&p+p in which p, is the chemi-
cal potential; and we work now with the time Fourier
transforms of all our quantities. We can now apply the
usual convolution formula to the G~G~ propagator in
the equation for our t(+) (cf., e.g., Refs. 10-13 and
Klein and Prange"); Galitskii" performs the integra-
tion over the fourth component of the four-momentum
of the relative motion in the case of infinite matter.
The Anal propagator is

A(01,0'I'; E)= LE—h(0, O'; E—(pi')
—h(1,1'; (pi')+ isj-' (3)

where E is the total "exact" energy of the interacting
pair (0,1). With this we can write our i(+) as

(0'1'
i

t(+) (E) i 01)= V(0,1)B(0—0')B(1—1')

+ V(0', I')A(01,0'I'; E)V(0,1), (6)

(here the repeated variables are not integrated over)
where

V(0,1)= V(0,1)(1—Ppr),

the antisymmetrized V operator.
We can go over to the representation in which h and

Gi are diagonal with the eigenvalues {e„((p)).In this
representation the single-particle density matrix is
diagonal: p(1)(+oyBO ) ~npnp'p(1) (Bo)+0).'

If we neglect the imaginary part of Z (of h) in h., we
we can apply the usual methods, " "and we Qnd for a
(kp kp ) Fourier component of our Z of Eq. (2)

Z(kp, kp,' (pp)=g(kp, ep
~

f + (E)
~
kp, sp)

Xp(r)(mo, ep) =Tr(i(+)p(r)), (7)

where E=o&p+E„„E„pis the moth root of the equation
(pr ——s.(ai), and J'dl'h(l, l', ur)l| (I',ppr) = s„((pr)lt (1,(pr);
P„(l,ppr) is the corresponding eigenfunction. In terms of
V, we rewrite Eq. (7) as

(kp, tip
~
V(0 1 ) ~

k,n)(k, e
~
V(0,1)

~
kp )'sp)

Z(ko, ko'; (po)=Z(ko', +o
~
V(0,1)

~
ko,+o)p(r)(&'so, eo)+g P p(r)(&so, +o) ~ (8)

np np k, n 8 Es E„+i—8—
In the zero-order representation in which ho is diagonal, we can write

Z(kp, kp,' (pp) —P P(kp v
~

V(0 1)
~
kpv)p(r) (vv )p(r)(ep n )

np vu'

(kp'v'i Vi &('p, ')p(s) " "'(&(p,&('p')(s&((i Vikpv)p(i) "o'(vv')&o(r)(lp, mp)+ZZ Z (9)
eo ke S V'gg' 8 Es E+io——

(kp'v
i
T("((op+(pt)

i kpv) = (kp'v
i Vi kpv)

»(s)'"'"'(&) &'& ')—= ("& 'I&)'s)(&~~&&).
(kp'v

i
V

i ((p)(sp i
T(')((op+@i) ikpv)

+Z (11)
(ps+91 E,(" E„(')+2Is+i8—

Our shell-model potential u(0) contained in hp(0)
has to be added on to Z to give the total optical potential
(cf., Bell' and Bell and Squires' )

This can be brought to a form similar to that of Eqs.
(8) and (9).

One unfortunate feature of the T matrix of Eq. (3)
is that it does not automatically exclude from the inter-
mediate states (k,m) in Eq. (8) those occupied by the
remaining A —1 nucleons in the ground state. In order
to secure this exclusion one has to modify the T matrix
by introducing an appropriate projection operator.
The eGect of the difference between such a new matrix
T' and T should be then estimated together with the
other higher order nonlinear terms.

Another approach to the problem in which one cal-
culates 'U, ~& directly zeitholt employing the concept of
the proper self-energy operator Z is that of Takeda and

'U.v, (0,0'; (pp) =—N(0) B(0—0')+Z(0,0'; (pp) . (10)

A formula closely related to our Eq. (9) is obtained by
the usual Martin-Schwinger-Puff approximation. ""
In this case, one uses simply 0( ) and T( &, which in-
volve Gi('&, in the place of Gi in Fqs. (3) and (4). If Gi("
of 0") corresponds to the Hamiltonian ho for a finite
system with the single-particle energies {E„()), we

This is rather close to the approximate T matrix with the
functions GI replaced by 61& ), called T&') (cf., Appendix I).

'8 R. Prange and A. Klein, Phys. Rev. 112, 1008 (1958).
9 V. M. Galitskii, Zh. Eksperim. i Teor. Fix. 34, 151 (1958)

LEnglish trsnsl. : Soviet Phys. —JETP 7, 104 (1958)g.

where &o(r)("p)(vv')—= (v~)sp)(np~v'), and a Fourier corn- obtain
ponent of the two-particle density matrix is
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Watson. ' In particular, their construction, although
approximate, is free from the last complication men-
tioned above. If one expresses 'U, ~~ in terms of
V=+;=i" V(0,i) and retains in it all such terms only
up to second order, one finds'

'Uovt(ko ko'; too)=(ko'po [ p V(0,i)
~
kit'o)

(ko'ltoI& V(O, s) Ilts-)O'-IZ V(0,i) Iko, lto)

ohio eg, h—E —+i B

(12)

Here fo represents the ground state of the A system of
energy E,. The model states g&„}refer to the (A+1)
system (particles 0,1,2, ,A); the state of the particle
"0" labeled "k" has the unperturbed single-particle
energy el„while the label "e"refers to the excitation of
the remaining A system (1,2, ,A) relative to its
ground state lf o, the states fo and po must be orthogo-
nal; the excitation energy hE =E„—Eo does not in-
volve any "extra" rearrangement energy. In addition
(Pi,„}is a complete set excluding the fo component.

Equation (12) is also a Feshbach-type formulas (of
the coupled-channel reaction theory). " One essential
difference is the presence of the pair-antisymmetrization
operator (1—Pot) in the V-matrix elements. Note that,
in contrast to Eq. (12), only one of the two V-matrix
elements in the Po„ term in Eq. (8) was antisym-
metrized. This antisymmetrization is only part of the
effect of the Pauli principle. Unfortunately, the "target-
exchange" terms as incorporated in an extension of the
Feshbach formula by Coester and Kummel LRef. 1(a)$
or by Lipperheide' are not correct, nor does the version
given by Lemmer and Shakin' appear to be satisfactory.

If the energy eI, of the particle "0"is indeed "free,"
our Eq. (12) represents essentially the ordinary second-
order perturbation theory (a difference remains only in
the restrictions on k, n)

In the following we shall employ a model for g&„}
which excludes fo automatically. We choose it to be
products of plane waves X„,(oo)r)„,(ro) exp(ik ro) for
the particle "0"with TD or RPA eigenvectors

~
iP„) (of a

shell-model configuration mixing) corresponding to the
excitations of the A system (target) given by
hE„—=El,„—e~. Through the EI,„and the above choice

"In principle, the single-particle state k of the particle "0"
should lie above all the single-particle states occupied in "n" of
the A system [single-particle state ordering in the double sum of
Eq. (12)g. This is not exactly so in our subsequent model approxi-
mation; what we actually calculate numerically below is essen-
tially the second-order Pin V= Z; ia V(O, i)jperturbation theory.

2' The formula for v,~& given by Feshbach (Ref. 5) for the non-
antisymmetrized case is

govt(&) = (go I V+VQo(& —&o—QoVQo+») 'QoV lfo),
where Qp is the projector excluding the ground state
V = ~; 1" V(0,i), and H0 ——kinetic energy of the particle "0"plus
Hg, the total Hamiltonian of the target.

where (X„(vv')rn&ap"&} are components of the eigen-
vector of the arith TD (RPA) state. In the TD case ~Po)
is replaced by

~ po) the ground state of the ho model (no
correlations; a Slater determinant of ho eigenfunctions)
and so no components of the "backward-going graphs"
appear. It should be pointed out that the complete set of
eigenstates of RPA contains also the unphysical states
of negative excitation energies (—~

AE„~ ); these we shall
leave out somewhat arbitrarily as if we were working
with the TD case throughout.

It is just the purpose of this paper to examine how
various eigenstates e of different spins, parities, and
isobaric spins contribute to 'U„&. We have chosen just
TD or RPA eigenstates as affording a quite succesful
version of the shell-model configuration mixing in ex-
plaining properties of low-lying, especially collective,
states of light and medium-heavy nuclei. "

Particularly interesting is the imaginary part of
'U, v, . With Eq. (13) we can write the second term of the
right-hand side of Eq. (12) as

X *(vv')(ko'v
~
V

~

kv')X„(1i1i')(kii'
~

V
~
kop)

(14)
kn VV', Pftt' &oo

—ei, DE„+i8—
From Eq. (14) we find the imaginary part as

Im'U. „=ImZ(ko, ko', ioo) = —or 2 8(coo—E~e)

X P X.*(vv')(ko'v[V~kv')X-(i1')(ki'~V~ko~). (15)
VV q PP'

Our present notation is appropriate rather to de-
formed nuclei; for spherical nuclei one has to go through
the Racah algebra; the corresponding final formulas are
given in Sec. III.

In Appendix II, we also give the corresponding form-
ulas for the case of the infinite nucleus (nuclear
matter).

2' Cf., e.g. , (a) V. Gillet, esthis, University of Paris, 1962
(unpublished); (b) N. Vinh Mau, thesis, University of Paris,
1963 (unpublished); V. Gillet and N. Vinh Mau, Nucl. Phys. 54,
321 (1964); V. Gillet and E. A. Sanderson, ibid. 54, 472 (1964);
J. Sawicki and T. Soda, ibid. 28, 270 (1961); S. G. Nilsson,
J.Sawicki, and N. K. Glendenning, ibid. 33, 239 (1962);R.Arvieu,
E. Baranger, M. Veneroni, M. Baranger, and V. Gillet, Phys.
Letters 4, 119 (1963).

of {lt&„}we have destroyed the symmetry (equivalence)
of the particle "0"relative to the other 3 particles.

In the language of second quantization we would

keep, in calculating (ko'lt o
~

V
~
lt t„), the fermion operators

relative to the particle "0" as fixed (uncontractable
with any others). In this sense, we consider V as a one-
particle operator, and, consequently, we can write in
the place of our (p&„~p, i" V(O, i) ~kolfo) of Eq. (12)

P (kv'~ V
~
kov)(P„D P"

)
C„.tC,

~ &o)
vA v'

= P (kv'i Vi kov)X. (vv') 'n " (13)
v& v'
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One further point discussed, e.g., in Refs. 1 and 6 is
the problem of the origin of the system of reference.
Indeed, our coordinates refer to some rather arbi-
trarily fixed origin in the laboratory frame. In our case,
we think of the center of mass of the target nucleus as if
it were infinitely heavy. Thereby, we would completely
neglect the recoil of this nucleus in a calculation of the
scattering amplitude with our 'U,„~. This general am-
biguity is dangerous also for the convergence of our
successive-approximation series. ' On the other hand, a
formulation of the problem in terms of physical co-
ordinates (including the recoil effect) with the elimina-
tion of the center-of-mass coordinate of the entire
(2+1) system is possible, although complicated. Such
a construction is given in Ref. 6 Lalthough some of the
formulas corresponding to these of Ref. 11 are subject
to the criticism of Ref. 1; cf., e.g. , the "equivalent
potentials" of Eq. (2.3.37) of Ref. 6$. On the other
hand, Eq. (2.3.37) of Ref. 6 reduces in the case of
A))1 to Eq. (2.3.38) of the same, which essentially cor-
responds to our (%z „ l Vl %z„). Unfortunately, our
numerical example involves a nucleus not suSciently
heavy. However, we believe that the inclusion of the
recoil corrections should not destroy the essential fea-
tures of our only semiquantitative conclusions, even in
the case of lighter nuclei. This question is also raised in
Refs. 23 and 24.

III. CALCULATION OF OPTICAL POTENTIAL
FOR SPHERICAL NUCLEI AND THE

TD OR RPA APPROXIMATIONS

Before going to the calculation of our optical poten-
tial, the zero-order single-particle Hamiltonian ho(0) has
to be specified. We are dealing with spherical nuclei and
we are using the TD or RPA nuclear wave functions

Then hp(0) is the isotropic harmonic-oscillator
Hamiltonian, whose basis wave functions are well
known and easy to use.

In this section, we should like to obtain the final
formulas for 'U, ~&, the optical potential, step by step. We
will start by considering only the nonantisymmetrized
optical potential, from which the antisymmetrized one
will be deduced very simply at the end of this section.
Furthermore, in the first step we consider the unrealistic
case of a pure Wigner force: V(0,1)=V(lro —ril)
= V(roi) In a sec.ond step we will include the Bartlett,
Majorana, and Heisenberg exchange forces; then in a
last one we will introduce the antisymmetrization
operator Po~.

Nevertheless, to render the introduction of anti-
symmetrization easy, one has to assume that Vo~ is a
zero-range potential. Since this approximation is neces-
sary only at that stage, we start wit& the most general
Wigner force.

"A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys.
(N. Y.) 8, 551 (1959).

24 D. J. Thouless, Rept. Progr. Phys. 27, 53 (1964); also the
general method of applying the propagators to the study of U,p& is
outlined in this reference.

We assume that

(A) Wigner Force

(2)
2m

S
«Oz'arroz" roz' roz" (rozroz

dko"

X(ko'lt ol 2 V(«~) lko'V. )

X(ko"P.
l P V(ro;) l kogo)(&. ' &o'—"+is) ' -(1.7)

/ / / / // // D // //
Ooo'p, 707p, 00 00, Tp 7p 00 Oo and 7'0 7'0 ale, re-
spectively, the spins and isospins of initial, final, and
intermediate nucleons. S means the average over spin
and isospin of the initial nucleon; Z„o=ho' —2MAE„/h',
since we consider the approximation where o~ is simply
the kinetic energy, neglecting in the denominator
operator the interaction term between nucleon 0 and
nucleons of the nucleus. This approximation is consis-
tent with our choice of %i,„as a simple product of a 0
wave function and a nucleus wave function.

For now' only the imaginary part of 'Uo will be cal-
culated and 'Uo&'& can be left out since it contributes
only to the real part of 'Uo.

We assume that the 0 nucleon is represented by a
plane wave

l
ko)=—e'"'ox„,(o o) z)„,(ro)

and the intermediate nuclear-state wave functions are
those of, "Approximation I", (the TD approximation)
or "Approximation II" (the RPA approximation) of
the hole-particle model. Then

(koVol Z V(ro') lko'V. )=(2~) ' 2 X-*(a,b)
a, b

x P z)(a,b)(j jb, zrz. zrzbl J M—)
r/LQ y fSb z TZ g TbZ

X(——,r, rb, l

T' 0)(ko'b
l
V—(roi) l

ko"a) (Ig 1)

where a and b represent all quantum numbers of par-
ticle and hole states. In Approximation I, a is an un-
occupied state and b an occupied state of the shell-
model ground state. In Approximation II, a and b are
respectively either unoccupied and occupied states
(corresponding to the "forward-going graphs") or
occupied and unoccupied states (corresponding to the
"backward-going graphs"). X„(ab) are the eigenvectors,
e.g. , of Ref. 22(b). zz(ab) is the phase defined in the same
reference. J, M„, and T„are the quantum numbers of
the zzth nuclear state.

Voi= V(l«-ril) = v(r»).
I et us call the corresponding optical potential Up.

We can separate 'Uo into two parts:

g —g (i)+go(&)
where

A

"Uo"'=(ko Al 2 V(ro') lko'4'o)
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Similarly one writes the second matrix element

&ko"O'
I p V(ro;) I

ko4'o& = (2pr) p p )b (bb,P)

&( Q b)(a,p)(j jp, m m—pl J M )
m, mp, Tgggg TpZ

x&-; —;...,—., I r„o&&ko"Pl v(.») Ik«& (» 2)

The operator V(rpb) acts only on space variables and
the spin and isospin parts of (18.1) and (18.2) can be
performed immediately. Going over from j-j coupling
to L-S coupling through the usual transformation, we
obtain

g (p) —Q gp (p)gr

~ (—1)'b+'p")~ *(~t)&-(~ P)J.~bi ~pJ '
(2m)'k' ~b~p

XM (b 2 jg b& $p

.J 0 J„. .J„

1 ja

0 J„.

A, b p(ko")dko"

Z„' kp"—'+ih
F(ko")ko'"dko", (19)

where

~...,(k,")=—p( —1)bb™b+b~-p(t.t„m.—m,
l
~.ss.&( .tt pm. m, I

~„—~.)
R .4(rx)R»bb(r&)Yb. (bob)Yg "b(bp)pvb(lrobl)e"~"' ~ 'p')dpr dor b

R,l (rb')R pbp(rb') Yb *(bob') Ybp p(p)b')v(l rob'I )p'&~p ~p") 'p'drp'drb' (20)

and d=—(2a+1)'I'.
In the case of a Wigner force, the summation over intermediate nuclear states is restricted to T =0 states.
Both the double integrals of Fq (20) c.an be factorized into an integral over ro r~ (o—r ro' r)'), —which is the

Fourier transform of the potential, and an integral over r) (or r)'). Then A, b p is obtained as

( 1)lb mb+bp —mpQ—
ma, m tb, m n, tnt

where

e.b.p (t.tb, m.———mb le.m. &&t.tp, m. —m, Iz.m.&v(q) v(q') R„, (r,)R„„,(r,) Y,."-(~,}Y„"*(~,)

&(e'~""' "")'"dr) R„b (rq')R»bp(rb') Y& *(cob') Ybp p(p)b')e'~~p ""')'"'dr)', (21)

where q=k,"—kp, q'=kp' —kp", U(q) =Je*''"V(p')dy'.
Both integrals, over rq and r~', involve kp" and the

last integration over kp" is cumbersome. Thus we
should like to transform (21) in such a way that the
dependence on kp" could be put in only one integral. The
most convenient way of doing it is to replace r1 and r»'

by y and R (a Talmi transformation)

with a similar transformation for the (b,P) pair. The

&ntcVI. )X I
nJ,n~t„X&'s

are the Moshinsky-Brody "brackets. "
An A t, p can be expressed now as a product of two

integrals, Ig and I,
e= (r~—r~')/v2=—(p,~)
R= (rg+rg')/v2—= (R,Q) . (22) IIb= dRe'K' R~r,(R)R~ g. (R)Yg (Q)Yz ~'(Q))

The Yalmi transformation of harmonic-oscillator
wave functions has been given by Moshinsky and
Brody" in the form

(rb)R..b.(~1 ) Yl (ppl) Yl (p)1 )

A~"'R-b(~)R" v (~)YE"(~)Yb "'(~)

(24)

= p (l,l, m, —m Ixw)&tLm~l~u&R b(P)R~~(R)
nlNL

Xp,mM
x Yb (pp) Yz,~(Q)&novi, ,x I

n, t n t, x& (23)
25 T. A. Brody and M. Moshinsky, Tables of Trarlsformation

I3rackets (Monografias del Instituto de Fisica, Mexico, 1960).

with

K= (kp —kp')/v2,

Q'= Q—v2k, "= (k,+k, ')/v2 —@2k,".
(24'1)

The radial wave function of a particle in an harmonic-
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oscillator well is given by
n

I(.'„((r)=n~(e "'/"b"'(r/bo)' P a'" '+'/"(r/bp)" (n=o 1 )
s=p

n~/ ——[2m!/r(/o+l+ —,')j'/',

r(~+ t+-,'). 1
a, (o, , (+1/2) ( 1)i

i! r(n —i+1)I'(i+l+-,')

(25)

Expanding the exponentials of the formulas (24) in partial waves and going through the standard Racah algebra,
we obtain A, b q in the form

A.b.e= V(q) V(q')b~„, o(—1)"+'oJ.' P (—i)~+~'(22+1)(2Z'+1)
M. 'll'LL'

Z 2'nlV n'N'

)l l' 2'~ )L L' Z~
xii'LL'R'R"(BlxL)'AIrb, l.e l fx)(e' ilv' L')YIr/blbr/pip, v)I

&0 o oi ko o oi
l L X ) l. lb

2 /() I J~
xp -'I

I I

l' L' )' ' l lp I 'I (E)I (Q'), (26)
Eo 0 Ol 0 0 Ol gg Ic,'ARK

where
¹

(If) n n, P Q a (/r, L+1/2)a (N', L'+1/2)

'=p ~=p

+g )2+ /

(x
2

1 2+L+L'+2i+2j+3) 2+L+L'+2i+2j+3.
r IiFi ~ g+ p,

2r(z+-;) 2 r2 E'bp')
(27)

and a similar expression for I@ (Q').
V, e are now left with a last integral over kp" before obtaining 'U, . A.b e depends on kp" through Iz.(Q') and both

Fourier transforms of the potential.
For fixed large ko", and for large Q', the function I~ (Q') behaves as Q'"e &'/'b' and goes to zero very rapidly. The

integration over kp will be in fact an integration from zero to a certain finite value k, . We make the assumption
that between 0 and k, - the Fourier transforms V(q) and V(q') can be replaced by their average values V, ((I).
The integration, over angles is now easy since only I@ (Q') depends on kp". Expanding the hypergeometric function
in series one gets

dip
7rsl2 n n' 00 2

sin(/o"deo"Ig (Q') = n„/n„ / P g a;(" '+'/')a ("' '+'/') Q (—1)~
v2Qkp"bp' 2'+2m+2 x!

r(-', (z'+l+l'+2i+ 2j+3)yx)
X [(-,'(Qbo+V2ko"bo)) z'+'~+' —(-'(Qb() —V2ko"bo))~'+'*+' j=Jg. (Q,ko") . (2—8)r(z'+ x+-;)

Collecting the previous results, 'Up„('& can be written schematically

(2)
F(k()") k"'k"

o Z~' —ko"'+ib

F(kp") was defined in (19) and is given by (26), (27), and (28).

F(k()")
ko"'dko" —oio(IZ IF(IZ I)

Z„2—kp"'
(29)

where E denotes the principal value.
We are interested only in the imaginary part of the optical potential, which is easier to calculate than the real
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part:
Im'Up ——W&"= —-,'pr P br„,pW &'&,

n, b En(mo

where the sum over e states is strictly limited to those states with excitation energies 0E below the energy of the
incident nucleon, Mp.

m Ib gb 2 ~p Jp
V,(~) IZ„I 2 x„*(~b)x„(~)

(2pr) '/'i' ~&~p j. /, I j /

X g (22+ 1)(22'+ 1)/l'XL'R'R" (—i)~+~'(n//t/'L, X
~
e,/,I /, X)(e' /'E'L', X'

~

Ip/pep/Ii, X')
SZ'll, '

LL'nNn'N'
I, X 'l lb J

/ /' 2' L L' 2 2' 2 z
/. 4 J. 1&(@VS(g,fz„i), (3o)

&o o oiko o oi ~ o o oiko o oi
X

where Ig(E) is given by (27) and J~ (Q, ~Z„~) by (28).

B. Exchange Forces

In this section we look for the imaginary part of the optical potential when the Bartlett, Majorana, and
Heisenberg exchange forces are included in Vp~. Let us consider

Vpl Liip+ii +p'iri+~i 'zp'+1+~ (op'+1)(pp'&1)]V(apl) ~ (31)

In the calculation oi the matrix element (18) there appear now four diferent terms corresponding to the four
terms of Vpy. Then, when 'Up &" is calculated, one has 16 terms. It is easy to see that any "cross term" with one
spin- (or isotopic-spin-) independent part of Vpi in one matrix element and one spin- (or isotopic-spin-) dependent
part of Ppz in the second matrix element gives no contribution to 'Up "'. Consequently, we are left with only four
types of terms to calculate, one of which has been calculated in the first section and corresponds to up V(r»).

I.et us consider first the term corresponding to a,~p ~iV(rpi), which contains the product

(kp %p( V(rpi)cp si(kp f )(kp P„)V(rpi)sp ei(kp@p) .

The isotopic-spin part can be factorized and calculated independently of the spin and space part. . After sum-
mation and averages over isospin, the contribution of this term is found as

where 'Up„&'& has been calculated in Sec. 1.
Let us dehne

Z &r„,iUp. '", (32)

2m

&O
I

PO
fl tTQZeTQZz f z

I II
TOz pTOz

„(kp'4'pI V(&pi)&p'+i~kp 4' )(kp |/'
~
V(rpi)ep'0'itkpt/p)

dkp"-
Z ' /pp"'+i/i— (33)

For the calculation of 'U, ", the same method is used as in Sec. 1. Its contribution to the imagina~ part of th
optical potential is obtained

where

Im'U. =W& &= p br pW„& &

n, AEn(oiQ

~a g pa la 1
2 J+

(34)

W„& i= — V,~(q)'~Z„~ Q x„*(ab)x„(np)( 1)»+~w&+tp+t—pf, j,y 'ys pgp, /, i j,„/ x

(2z.)P/iP epap A

1 J. 4 1 J„
X P (—i) + '~%"(2&+1)(2Z'+1)/7'XX, '(ND'L, y~n. /.&./. ,y)(„/ g L y ~„,/,„,/, ~1)

XX'll'LL'2 2'
nNn'N'

(/ /' 2') fL L' g) (g' 2 „~h
lZ "I

I
/' /' L' &' '/- /z & 1~(lt-)S~(g, ~Z„[). (35)

ko o o Eo o o ~ Eo o o o o o
g
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Im'U„= W &"=
n, b, &n&~p

(36)

The fourth term of interaction with (&r&'&ry)(cp'cy)

X V(ro&) gives the following contribution
calculate if we replace Vpy by

Vog(1 —Pop) = Vo&(1—P'P')
Vo[AO+A 0'0' a'y+A go' g&

+A (0'p ' +'&) (&0 ' 'tl) j&&(ro r—&), (39)

Collecting the previous results, the nonantisym-
metrized imaginary optical potential obtained from the
interaction (31) is

W(ko~ko) P [(ao W~&0&pa~ W~&.&)

n, DErz&cap

where
Ao= 4(ao a—~),

A.=-,'(5a.—ao),

A, = ——,'(ao+3a.),
A.,= --,'(ap-a. ).

(40)

+ (a, 'W. &'&+ a.,'W. &'&)8r„,&j, (37)

where W &" and W.„& ' are given, respectively, by
formulas (30) and (35).

C. Antisymmetrization

The optical potential has been calculated replac-
ing Vo~ by Vo~. In this section, we should like to cal-
culate the antisymmetrized optical potential using
Vo&.= Vo&(1—Po&) instead of Vox. The Poi antisym-
metrization operator is

&ox——~"& ~'
I'", I', I"being, respectively, the exchange operator of
space, spin, and isospin variables; I"and P' can be ex-
pressed in terms of 0'p'0'y and zo ~&, respectively, and
the introduction of such operators will not change the
structure of the results. But the introduction of I'", the
operator which exchanges space variables, will compli-
cate calculations. %e avoid these difficulties by working
now with a zero-range potential. VVith this type of po-
tential, I'"does not aGect our determination of the opti-
cal potential.

From now on we work with the potential

V01 VO(ao+ a &ro &rI) &&(ro rl) (3g)

It is important to note that our choice of the
0-nucleon-1-nucleon interaction must be the same as the
nucleon-nucleon interaction involved in the determina-
tion of nuclear wave functions. Now it has been shown
that a zero-range interaction can be determined such as
to reproduce the same nuclear properties as a Rosenfeld
mixture force. If we take for the parameters Vo, co, and
a, the values which were deduced in this way, we do not
destroy the coherence of our treatment, and will ob-
tain the optical potential to a good approximation.
Furthermore, such a potential has a Fourier transform
equal to —Vo, and the previous expressions for 5'„( ~

and W & & are still valid, when we replace V, (g)' by
V02. The imaginary part of the nonantisymmetrized
optical potential should be

W= Q (a02W &"+a.'W &~&)5r o.
~,~&n&eap

The antisymmetrized optical potential is now easy to

This operator has the same structure as the most,
general Vo& given by (31) and we write directly the cor-
responding imaginary part of the antisymmetrized
optical potential

W(ko, kp')= Q [(A02W &0&+A 'W & &)br„,o
n, AE~&c»p

+(A, 'W "'+A„'W„'&)&&r„,gi, (41)

where Ao, A„A„and A., are related to the parameters
of the force by Eq. (40), and where W„&'& and W„&'&

are given by Eqs. (31) and (35) with

V, (q)'= Vo'.

IV. NUMERICAL RESULTS AND DISCUSSI05

We have calculated the imaginary part of the optical
potential as its Fourier component W(ko, ko') from Eq.
(41) for the case of "C and for several choices of the
TD and RPA eigenvector sets and several mixtures of
exchange forces. For the incident nucleon energy we
choose coo= 20 MeV. At this energy the target-exchange-
type terms and other higher order corrections to our
approximation to the antisymmetrization should still
be rather small, while the TD and RPA approximations
are valid for most of the nuclear levels involved. For
higher incident energies coo, modes involving heavy
weights of two-particle —two-hole components should be
quite important for many nuclear levels involved, and
treatments of them are not available in the literature.
In addition, the number of levels involved increases
greatly with increasing coo, thus rendering computations
extremely tedious. All our numerical analyses were per-
formed on the Univac computer of the Faculte des
Sciences at Orsay.

The RPA eigenvectors of all but one of the nuclear
levels involved have been taken from Vinh Mau b as
corresponding to the nucleon-nucleon potential of the
Gaussian radial dependence: —Voe &""~»' with U0=40
MeV, p, = 1.7 F, and the exchange force mixture
5'=0.37, m=0.38, b= —0.15, k=0.40. Unfortunately,
the lowest lying level with T=0, the 2+ state observed
at 4.43 MeV, could not be reproduced well by the above
calculation, probably because it should involve an
appreciable admixture of two-particle-two-hole com-
ponents ignored in the simple TD or RPA (the lowest



922 VAN —GIAI, SA WI CKI, AN D VI NH MAU

TAnrz I. Values of the parameters ap and a, for the zero-range nucleon-nucleon potential Vo&= V05(ro&) (ao+a, o'p' o'y),
and corresponding values of the 2 parameters, defined in Eq. (40), for difierent exchange-force mixtures.

Forces

Gillet (a)
Vinh-Mau (b)
Soper (c)
Rosenfeld (d)
Ferrell-Visscher (e)
Serber (f)

Cp

0.9
0.862
0.865
0.9
0.9085
1

0.1
0.125
0.135
0.1
0.0915
0

Ap

0.6
0.553
0.5475
0.6
0.613
0.75

—0.1—0.059—0.0475—0.1—0.113—0.25

—0.3—0.309—0.3175—0.3—0.296—0.25

—0.2—0.184—0.1825—0.2—0.204—0.25

TD T=O 2+ state obtained with the above nuclear
force lies at 9.16 MeV, while the corresponding RPA
eigenvalue turns out to be imaginary). The harmonic-
oscillator wave-function parameter bo is fixed so that
Iz/bs 1.02.——The (most important) 12 RPA levels in-
volved taken from Ref. 22(b) are

T=O 1—,4.62 MeV; 1, 10.4 MeV; 1+, 13.2 MeV;
2, 14.0 MeV; 2, 15.2 MeV; 2+, 16.7 MeV;
2+, 16.1 MeV; 1+, 17.4 MeV; 1, 18.1 MeV;
2—,18.6 MeV; 3, 18.8 MeV; 2, 19.8 MeV.

"The objection to the TD (RPA) 21+ state as calculated in
Ref. 22b, may be applied to these~models„'as well (and to some other
even-parity states). However, we may view the TD (RPA) con-
figuration mixing of these other models corresponding to a good
21+ state energy as "reasonably adjusted. "

'7 A. Goswami and M. K. Pal, Nucl. Phys. 35, 544 (1962).
~ A. Goswami and M. K.. Pal, Nucl. Phys. 44, 294 (1963).

For the most important first T=O, 2+ state, we have
considered three other theoretical models available. "
The one most consistent with the above is that of
Gillet" which corresponds to the same radial well

shape as the one above, the same Iz/bs ratio, w=m=h
=0.4, and b= —0.2. The energy of this level is then
found"' at 4.80 MeV. Goswami and Pal'~ have assumed
for this level its experimental value of 4.43 MeV and
found the corresponding TD eigenvector on adjusting
the most important radial matrix elements of the U in-
volved. In the third model considered in our calculations
the same authors" found the 4.43-MeV-state RPA
eigenvector for the nucleon-nucleon potential with the
Yukawa radial well shape —Vse "~ /(r/n) Vs=37
MeV, rr= 1.36 F, and the exchange-force parameters of
Soper: m=0.3, ns=0.43, b=0.27, and h=0.

In general, our RPA is to be interpreted as an im-

proved TD in the sense that we obviously throw away
the unphysical negative-energy RPA states as dis-
cussed above. On the other hand, the ground-state cor-
relations involved in the RPA and the at least partial
elimination of the center-of-mass spuriousness by the
same method render it generally much superior rela-
tive to TD.

In calculating W(ks, ks') of Eq. (51) with our zero-
range force, me have considered several exchange-force
mixtures:

(a) Gillet'" as mentioned above: w=m=h=0. 4,
b= —0.2;

(b) Vinh Mau"b as mentioned above: w =0.37,
m =0.38, b = —0.15, h =0;

(c) Soper as mentioned above'r: w=0.3, m=0.43,
b=0.27, h=0.

(d) Rosenfeld: w = —0.13, tv= 0.93, b =0.46, h
= —0.26;

(e) Ferrell and Visscher": w=0.317, m=0.5, b=O,
h=0.183; and

(f) Serber: w=m=0. 5, b=h=0

It is remarkable that our parameters Ao, 3,3„and
A, of Eq. (40) differ very little among themselves in
spite of large differences in the corresponding param-
eters w, m„b, and h. These constants of Eq. (40) are
found for the mentioned cases in Table I.

In view of this insensitivity of our W(kp, kp) to
exchange-force mixtures" we may confine ourselves to
the cases (a) and (b) (the latter case is practically
equivalent to that of the Soper mixture (c)j.

In Table II we present our results for the imaginary
part of the optical-model potential W(ks, ks') of Eq.
(51) for ~s ——20 MeV; the zero-range nucleon-nucleon
potential with Vs/(4rrb, ') = —10.2 MeV, bp= 1.61 F;
the exchange-force mixtures (a) and (b); and the ener-
gies and wave functions (RPA eigenvalues and eigen-
vectors) corresponding to Ref. 22(b), with the excep-
tion of the lowest lying T=O, 2&+ level, for which we
T=O, 2~+ level, for which we take the results of Ref.
22(a) or Ref. 28.

In order to exhibit the effect of antisymmetrization,
we have also calculated our W(ks, ks') with nonanti-
symmetrized U-matrix elements.

We observe that the differences between the cases
corresponding to the 2r+ state chosen as in Ref. 22(a)
and in Ref. 28, for the same exchange-force mixture, are
quite small, and that these two cases are practically
equivalent. The respective differences in W(ks, ks') be-
tween the exchange-force mixtures (a) and (b) for the
same model of the 2j+ state are at most of the order of
15 MeV F'.

If we had chosen the RPA 2r+-state eigenvector of
Ref. 22(b) and replaced its imaginary eigenvalue by the
experimental energy of 4.43 MeV, we would have found,

"R. A. Ferrell and~Vi7. M. Visscher, Phys. Rev. 102, 450 (1956).
'0 It should be noted, however, that this property, valid for our

zero-range nucleon-nucleon potential, may be invalid for Gnite-
range potentials.
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TARLE II. The imaginary part of the optical W(ko, ka') for different choices of force mixtures and wave functions
(in units MeV F'), and for neo= 20 MeV.

Force
mixture

%ave
function 18' 36' 540 72' 90' 108' 126' 162 180'

IV

V

(a)
(nonanti-

symmetrized)
(a)

(b)

(a)

(b)

State 21+
of Ref. 22a

State 21+
of Ref. 22a

State 21+
of Ref . 22a

State 21+
of Ref . 28

State 21+
of Ref . 28

—167.8 —166.3 —162.6 —155.7 —144.1 —126.6 —102.7 —28.2 —0.2

—70.0 —69.4 —68.0 —65.2 —60.5 —53.3 —43.3 —11.6 —0.1
—57.3 —56.8 —55.7 —53.4 —49.6 —43.7 —35.5 —9.5 —0.1
—7 1.5 —71.2 —70.0 —67.3 —62.3 —54.5 —44.0 —11.5 +0.1
—58.0 —57.8 —56.9 —54.8 —50.7 —44.5 —35.9 —9.4 +0,1

for the Soper exchange-force mixture, W(ks, ks') at
8= 18', the value of the order of —200 MeV F', which
is much too large; the TD 2~+-state eigenvector of Ref .
27 would have given 4.43 MeV for this state; the same
exchange-force mixture and (7 yields W(kp ks ) of the
order —17.0 MeV F' which is much too little as com-
pared with our results of Table II.

From the results of the erst line of Table II, we see
that the use of nonantisymmetrized V-matrix elements
(which would have followed from a direct application of
the Feshbach' formula) leads to values of W(kp kp')

that are much too large (by a factor of 2—3).
In order to understand the relative importance of the

contributions of the various types of nuclear states in-
volved, we have analyzed them, as an example, for the
case of the second line in Table II. For this case, we And

the total net contribution of all the T= 1 states very
small (+4.5 MeV F' at 0= 18'). All the T=O states ex-
cluding the 2)+ state (4.43 MeV) contribute +66.4
MeV F' at the same 8= 18'. The most important pre-
dominant contribution of a negative sign comes then
from the 2t+ state (it is equal to —141.0 MeV F' for
(7=18'). The f) angular dependence of all these respec-
tive contributions is like that of their sum [W(ks, ks )].

In Fig. 1, we compare our W(ks, ko') of the second and
the third lines of Table II, with several phenomenological
potentials appropriate to "C and to our energy coo.

Of the available phenomenological imaginary poten-
tials we have chosen the following ones

20- e' (k„k', )
in Mev ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~« ~ ~ ~ ~ « ~ ~

1a
« «««« ~ ~ ~ ~ ~ ~ ~ ~

e
n degrees

-20-

with (a) W)=23.2 MeV, 8=1.252'~' F, a=().49 F,
(b) Wt ——12.4 MeV, E= 1.203'~' F, a=().53 F

(3) the "volume plus surface" absorption of the Saxon-
Woods well"

Wf(r) —4~Wt(df—/dr), f(r) =

[1+exp(�

(r—p)/a)] —'

with 8'= 20 MeV, 8'~ =20 7 MeV, E= 1.203 '~' F,
a= 0.53 F;

(4) the nonlocal form of Percy and Buck's

W(r, r') = —H(
t
r—r'

~ )U(P r+ r'
[ ),

where
H(x) = s '~'P—' exp( —x'/P'),

P(y) —WD g 4e—(&—R) IaD[1+e(v—R) IaD] )—
with P=1.0 F, Wr)= 7.0 MeV, 8=1.253'I' F, an=0. 65
F. Of these, the potentials (1)—(3) are appropriate to
&os ——19.4 MeV and to "C; the nonlocal potential (4)
is appropriate rather to higher elements, and at lower

(1) the "surface absorption" Gaussian:

—Wt exp[—(r—R) '/y']

of Nodvik ef al" with (a) Wt —23 2 MeV g
F, &=0.25 F and (b) Wt=12.4 MeV, ~=1.202'» F
y= 0.5 F;

(2) the "surface absorption" of the form of the deriva-
tive of a Saxon-Woods welP'

—4aW&(d/dr)[1+exp((r —R)/a)] ',

-60-

«

~
r'

~ W
~ ««'

~r
~ or+

~~ ~ ~
~ ~~~ ~~ ~«~ ~ ~

~ «
~«

Fro 1. Im&„t—=W(ko, ko') (in MeV F') as a function of
~= 4 (&o,&o'), nucleon energy coo =20 MeV, for the following
cases: II: the exchange-force mixture of Gillet (Ref. 22a); III:the
exchange-force mixture of Vinh Mau (Ref. 22b); the particle-hole
eigenvectors are as from Vinh Mau (Ref. 22b) except for the state
2 I+ which is taken as from Gillet (Ref . 22a) ~ The corresponding
phenomenological Im v,p~ are: (1a) the "surface absorption"
Gaussian of Nodvick et al. (Ref. 31); (4) the nonlocal form of
Percy and Suck (Ref. 32)."J. S. Nodvik, C. S. Duke, and M. A. Melkano8, Phys. Rev.

125, 975 (1962). "F. Percy and B. Buck, Nucl. Phys. 32, 353 (l 962).
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energies for "C the corresponding well depth should be
considerably increased, according to Wilenzick e( ul. 33

In Fig. 1, we present the Fourier transforms (ko,ko')
of the phenomenological potentials (1a) and (4). In
fact, those of the potentials (lb)—(3) are rather quite
similar to that of the potential (1a). Our theoretical
W(ko, ko') are of approximately the same well depth in
the forward direction (8&20'), but are much flatter for
larger 0 than the Fourier transform of the phenomeno-
logical potential (1a). The 8 angular distribution for the
potential (4) is more similar to that of our W(ko ko ),
only the depth of the potential (4) appears somehow to
be too shallow, in agreement with Ref. 33.It appears that
a phenomenological local Im'U, ~t which could correspond
to our W(ko, ko') should have a volume absorption radial
shape of the Saxon-Woods type with a rather small
value of the parameter R.

The "flatness" of the 8 dependence of our W(k, ,k, ')
[the disagreement with the corresponding phenom-
enological W(ko, ko') at large 8 as in Fig. 1j is probably
due to the combined effect of the zero range of our

V(0,1) and the bad asymptotic (large r) behavior
of the radial wave functions of the harmonic-oscillator
potential.

Finally, we should like to remark that it would be ex-

tremely interesting to perform a similar calculation of
W(ko, ko') with a corresponding RPA set based on
Nilsson-type wave functions of "C, with a negative de-
formation (cf., e.g. , Nilsson et a/. " for the T=1, 1

states). Another basis of nuclear states which could be
considered would correspond to recent Hartree-Fock
calculations with deformed orbitals. "
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APPENDIX I
A. The Self-Energy Operator X(0,0') in the

Green's Function Formalism

We de6ne the e-particle Green's function as zero-

temperature (T=O) limits of grand canonical ensemble

averages (cf., e.g. , Ref. 13), and we use the definition:

G„(12" ~;1'2'" ~')—= (—z)-

&&POIT{lt(1) "P(~)P'(~')" P'(1')}ISO&, (Al)

where N is the total number of particles (=3+1 in our

"R. M. Wilenzick, K. K. Seth, P. R. Bevington, and H. W.
Lewis, Nucl. Phys. 62, 511 (1965).

'4D. Kurath and L. Picman, Nucl. Phys. 10, 313 (1959);
D. Koltun, Phys. Rev. 124, 1162 (1961) and thesis, Princeton
University, 1961 (unpublished); W. H. Bassichis (private
communication).

case),
~
Ã0) represents the T=O limit state of this sys-

tem (as a grand canonical ensemble).
For a particle "0"we can write the free one-particle

propagator in the form

(0 0')j '= [z&(8l8~o)—ho(&) jb(0—0'),
(A2)

&o(0)= (—h'/2zzz) V'oz.

The equation of motion of the (exact) function Gi can
be written in the form (in the absence of any external
forces)

[Gi"'(0,0)) 'Gi(0, 0')
= 8(0 0'—) i V—(0,1)Gz(01 ,0'—1+). (A3)

Generalization of the present formalism to nonlocal po-
tentials is immediate. If the self-energy operator
Z(0,0') is deflned by

[Gi(0 0')g '= [Gr&"(0 0')g '—Z(0,0'), (A4)

we easily obtain Eq. (1) of the main text.
The lowest order approximation to Z is usually chosen

to follow from the linearization of the equation of mo-
tion for G2, e.g. , from a factorization of the respective
three-particle Green's function G3. Following Martin
and Schwinger, "we can write

G,(01,0'1') = (Gr {0,0')Gi(1,1')
—ex)—iGi(0,0) V(0,2) (Go(012,0'1'2)
—[Gz(02,0'2)Gr(1, 1')—Gz(02, 1'2)Gr(1,0'))), {AS)

where "ex" stands for the exchange terms. One possible
aesats factorization of G3 is

Go(012,0'1'2)=Go(02,0'2)Gi(1,1')
—G, (02, 1'2)Gr(1,0')+G, (20,0'1')Gr(1,2)+6'. (A6)

The higher order terms 6' can be put in the form

6'=—G, (12,1'2)G,(0,0') —G, (12,0'2)G,(0,1 )
+Go(12&0 1 )Gr(0, 2) —Gz(01,0'1')Gr(2)2)jGz(01,0'2)Gi(2) 1')—Gz (01,1'2)Gi(2,0')

+other higher order corrections. (A7)

It is easy to see that in the noninteracting case 6 0.
On substituting Eq. (A6) into (AS) the flrst two

terms cancel out the square-bracket factor in Eq. (AS).
The third term on the right-hand side of Eq. (A6)

is the most important one for long-range slowly varying
forces and for short-range forces at sufficiently low
densities. For this term both the two-particle scattering
and correlation refer to the same pair in the final formula
for Z. If we drop 6' we have

Gz(01 0'1')=(Gr(0,0')Gi(1,1')—ex)
—zGr(0)0) Gi(1,2) U(0) 2)Gz(20,0'1'), {Ag)

where "ex" stands for the exchange terms. We can now
express the solution formally in terms of the Myller Q
matrix which is the Green s function of the Gz equation,
Eq. (4) of the main text.
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FIG. 2. A diagrammatic
representation of A &i&Z (0,0')
of Eq. (A10).

Fxo 3. A. diagrammatic
representation of it&4)Z (0,0')
of Eq. (A11).

Consequently,

Gs(01,0'1') = (01
i
Q

i 01)Gi(0,0')Gi(1,1') . (A9)

On substituting Eq. (A9) into (1) of the main text, we
finally obtain our Eqs. (2), (3) of the same.

The contribution to Z(0,0') of the first term of i5'

of Eq. (A7) can be put in the form

~(i)~(0 0 ) iV(0 +)~(i)Gs(0*,y*)LGi(y 0')3
= —(01

i
T

i
01)Gi(0,0")V(0",2)8(0"—0')

X (12
i
Q

i
1""2)G(1"",1)G (2,2) . (A10)

This contribution can be represented symbolically as
in Fig. 2. The pair correlation matrix 0 we denote by a
block diagram, a V interaction by a dot (point), and a
T interaction by a wiggly line. We see that w'e have here
a correlation of one pair connected to a V scattering of
another one which in turn is coupled to a T scattering of
one member of each pair with each other. This is a
rather typical term of this group. In the case when, e.g. ,
the lines 0", 0', 1, and 1""are rewritten as holes, and
2 and 2 as particles, the contribution has a "target ex-
change" character. Because of this triple "intercon-
nected" character such a A(i&Z(0, 0') of Eq. (A10) is a
rather small contribution —as are the usual "target
exchange" corrections. "However, we have not as yet
performed any numerical calculations of such correc-
tions for our model.

The contribution of the fourth term of Eq. (A/) is

~o (4)Z(0,0') = (01
~

T
~
01)Gi(0,0")V(0",2)

)&Gi(2, 2)(0"1
i
Q

i
0'1"")Gi(1'"',1) . (A11)

h(4&Z(0, 0') can be represented graphically as in Fig. 3.
This couM be the most significant correction term, as it
represents a T scattering and an Q correlation of the
same pair with an intermediate interaction of one mem-
ber of this pair with a third particle 2 in the Fermi sea.

The other terms of 6' give quite similar contributions.
All of them should naturally be expected to be small for
a system of not too high a density. An estimate of such
terms could be attempted by using a Jastrow-type cor-
relation function replacing the Q elements (cf., e.g. ,
Ref. 35).

"J.Da Providencia and C. M. Shakin, Nucl. Phys. 6S, 54
(1965); 65, 75 (1965).

Now

where

G~( )=G~(o) jG~(o) VG2(o) (A13)

Gs(0) = (Gi(0)Gi(0) ex)
iG (o)Gi(o) VG (o)=Q(o)Gi(o)Gi(o) (A14)

and VG, (o) —Z"(o)6,(o)6,(o)

whence

G (i) —G (0)(1 jT(0)G (o)G (o))

We define now T(') by the equation

T(i) = V(1 iGi(i)G (i)T(i))

(A15)

(A16)

Thus, on eliminating V,

T(i) T(o)~ iT(0)(Gi(i)Gi(i) Gi(0)G (o))T(i)

iT(0)(G (i)G (i) G (o)G (o))T(0)

T(0)(Gi(o) T(o)G, (o)G, (o&G (o)

+Gi(0)Gi(0)T(0)Gi(0)Gi(0))T(0) (A17)

Thus the lowest order correction is cubic in T( ) and
So 1S

AZ( ) =Z( ) —Z( ) = —i(ET)Gi.

One can see this result also from the diGerence
G, (i)G, (i& G, (o)G, (o)) in AGs ——G (i& G, (o) and which

one uses in

DZ('&=6(VGs) (Gi) '
= VQ(0)(AGs)Gi '= T(0&(BGs)Gi '.

B. Approximation for the 1' Matrix by Iterations
in Terms of T(0)

The system of Eqs. (2), (3), and (4) of the main text
is, in general, very dificult to solve because of its non-
linearity. It is customary to work rather with T("=—VO(')
where the matrix Q('& satisfies Eq. (9) with Gi replaced
by Gi&'&, the free (unperturbed) propagators.

One practical successive-approximation procedure for
the operator Z could be developed in the following way
(in the obvious shorthand notation)

Z( )=—iT(')Gi( ) T& &= V(1—iGi& &Gi&'&T& &). (A12)
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If we employ the formulas of Eqs. (15) and (89)—(91)
of Puff', "we obtain

AZ(1, 1')=Z(2, 2
(
T")

~

12)Gi(P) (1,1"")Gi(P)(2,2'"')

X{(1""2'
)
T"'

(
1"2")(2""1"'

[
T("

(

2"'1')

+ (1 &III2&
(

T(P)
[

1 &2&&)(21&&I1&I&

]
y(P)

)
2/&&1&1)}

XG) ("(2'",2')Gi"'(2",2)Gi"'(1",1"'). (A18)

This is just the result of Eq. (A17).
This expansion, with such complicated terms in-

volving products of three T(" operators as the lowest
order corrections, converges rapidly for sufficiently high
energies. Here again we have no numerical results. This
expansion in successive corrections to the mutual inter-
action of two particles (1,2)—one pair only —has ob-
viously nothing to do with the Watson multiple-
scattering formalism.

APPENDIX II

U p& for In6nite Nuclear Matter

Equations (2) and (11) are valid for the case of in-
finite nuclear matter in which the ground state of the 2
system is represented by a degenerate (or slightly cor-
related) Fermi sea of plane waves, and the excited states
by a complete set of the RPA states as constructed by
Sawada et al."for the case of the electron gas. We find

Z(k„kp'; ~p) =a V(0)S(kp —l,')—,' P V(kp' —~)

+Q P e„(1—m„.)a„(xx')V(x—x')n„-(1—rs„-.)
n

Xa.*(x"x'")
I V(kp —kp' —x+x')

——V(k() +x x x )j8(x kp —x +kp x +x)
X(E Z+—ibad ', (A19)

where V(0,1) has been taken as a simple Wigner force
and the spin and isospin included implicitly. Con-
sistently with the RPA model, E should be assumed in
the form

E =Ep+A(p„+h'kp"'/2m.

According to Sawada

a~(x, x'= x+q) =N, (")$6(p„((1)—p„.(P)+p„(P)j—' (A2O)

INp(")I '=( 2 —Z )
a &lrg

(&2)

X$&~.(q) —p. (')+ p„(')j', (A21)

p„"'= O'K'/2m.

"K. Sawada, Q. A. Bruecgner, N. Fukuga, and R.. Brout, n the present paper we present no numerical results
Phys. Rev. 108, 507 (1957). for this case.


