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Theory of the Triton Wave Function*

R. D. AMmo

Department of Physics, University of Pennsylvania, Phztazlelp/zia, Pennsyloanzat

GSd

Department of Physics, Unioersity of California, Los Angeles, California

(Received 8 September 1965)

The exact bound state of the three-nucleon system with separable interactions between pairs is studied.
The method for extracting the bound-state wave function from the equations for the scattering amplitude is
outlined. The wave function is used to study the proton- and neutron-body form factors of the triton.
S-wave spin-dependent forces between nucleon pairs are used and a parameter represents the effects of tensor
forces. Although this theory gives good answers for the binding energy of the triton and for low-energy
neutron-deuteron scattering, rms triton radii are slightly small and the form factors too large at large mo-
mentum transfers. This difhculty is due to the neglect of a short-range repulsion. The experimental splitting
of the proton and neutron form factors due to spin dependence of the forces is present. The percent of mixed-
symmetry S state is calculated.

I. INTRODUCTION
' 'N this paper we calculate the form factor of the three-
& - nucleon bound state. We use a wave function which
is the exact solution of the three-body problem with
separable interactions. This work is a continuation of
our investigations in the three-nucleon system with
these interactions. '—3 We use a simple two-body inter-
action which fits low-energy S-wave nucleon-nucleon
scattering and is spin-dependent. We have already
studied the triton binding energy, the neutron-deuteron
scattering lengths and neutron-deuteron scattering up
to 14 MeV—all with surprisingly good results, par-
ticularly when one parameter is introduced in the
nucleon-nucleon spin-triplet channel to account for the
relative reduction of the force in this channel due to the
tensor force and short-range repulsion. "We now ex-
tract from these calculations the three-body wave func-
tion. The properly symmetrized three-body wave func-
tion is a complex function of many variables which we
only know numerically. There is presumably little to be
learned by trying to list its values. Rather it should be
used to calculate some property of the bound state and
we use it here to calculate the proton and neutron body
form factors of the triton. Although our triton has nearly
the exact binding energy, and in spite of the previous
successes with the scattering data, the form factors do
not agree very well with experiment. ' In particular our
triton is too small; that is the form factor is too large.
On the other hand, our form factors do display qualita-
tively the splitting of the proton and neutron form fac-
tor which is characteristic of the experiment. We have
this splitting because of the spin dependence of our
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force. The reason our triton is small is the absence of
saturating effects in the force. The triton is collapsing
because there is no short-range repulsion to keep it
spread out in our theory. This effect is already known
from the deuteron where the Hulthen wave function
fitted to the binding energy gives too large a form fac-
tor. ' A short-range repulsion pushes the deuteron out
and cures this. Our force in fact gives a Hulthen deuteron
and hence is subject to just this difhculty.

Another feature of the three-particle wave function
which has received considerable attention recently is the
percentage of mixed-symmetry 5' state in the triton. '
The form-factor data seem to require a larger value for
this than is commensurate with the rate for thermal-
neutron capture in deuterium~ and the Gamow-Teller
matrix element for tritium decay. ' Although in a simple
theory, both these are strongly sensitive to the S'
probability, in fact meson effects cloud the issue to the
point where it is difficult to say anything. We get
(7&1)/o in our calculation for this probability. The
error arises from a rather crude momentum mesh in the
computer and the fact that the probability is propor-
tional to the second difference of rather large numbers.
This is a larger value for the probability than is nor-
mallv obtained, but the meson sects make such esti-
mates very difficult. '

Since we have begun our study of the three-body
problem by analyzing the scattering equations, the ex-
traction of the three-body wave function is not done by
a conventional solution of the Schrodinger equation.
In Sec. II we explain qualitatively how the wave func-
tion may be extracted from the scattering amplitude
and how the various terms in the form factor arise. A
proof that this extraction is equivalent to solving the
Schrodinger equation is given in Appendix I. The spin
and isotopic spin algebra is discussed in Appendix II.

' See, for example, J. A. McIntyre, Phys. Rev. 103, 1464 (1956).' A discussion of this problem and complete set of references
will be found in B. F. Gibson and L. I. Schi8, Phys. Rev. 138,
B26 (1965).
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In Sec. III the results for the form factors are presented.
In Sec. IV the syrrnnetry of the wave function is dis-
cussed and the method of extracting the 5' probability
presented. Some conclusions and some further problems
are discussed in Sec. V.

&klvl p &plvl»,
8+ 2

(3b)

where we have taken units such that Holp&=p'lp).
Now using the fact that e=II—IIO and that the state

I 8) is bounded so that we may integrate by parts, we

get

II. BOUND-STATE WAVE FUNCTION AND
FORM FACTORS

A straightforward approach to 6nding the bound-
state wave function of the three-nucleon system would
be to solve the Schrodinger equation. In fact it was in
this context that Mitra erst observed that the problem
was manageable with separable two-body interactions. '
However we have approached the three-body problem
through the integral equation for the scattering ampli-
tude in momentum space, "and we wish to extract the
bound-state wave function from that work. To get the
binding energy of the three-body bound state we used
the fact that the scattering amplitude has a pole when
the total energy is equal to the binding energy. To find
the wave function, we must study the residue at that
pole as a function of momentum. This can be done since
we are studying the scattering amplitude off the energy
shell so the momentum variables are not related to the
total energy.

To understand the relation of the residue and the
wave function, let us begin with the I.ippmann-
Schwinger" equation for the scattering of a single par-
ticle by a potential v. The scattering amplitude 3 may
be written

(klv IB)=—(k'+8)(kl8);
putting this into (3) we obtain

k'&k
I 8&+ &k I I p&&p I

8&d'p= —8&k
I 8& (3)

which is just the Schrodinger equation for the bound-
state wave function (k I 8), in momentum space.

In more complex problems, such as the three-body
problem, many of these results remain valid. It is still
possible from the equation analogous to (1) (this is the
Low equation") to show that the amplitude has a pole
at the bound state and that the residue at the pole is
separable. That is, it factors into a function of the initial
momenta times a function of the final momenta. These
functions are vertex functions for the bound state and
may be written in a form analogous to (4) to that they
may be interpreted in terms of Fourier transforms of the
bound-state wave function. In the three-body problem
we study an equation analogous to (2) which when ex-
pressed in terms of the residues at the bound state pole
gives the homogeneous vertex function equation analo-
gous to (3b).These connections between the bound-state
wave function and the residues in the three-particle
case are made explicitly in Appendix I. In the remainder
of this section we shall rest on the qualitative discussion
presented above and turn to the three-nucleon problem.

We begin by reviewing briefly our equations for the
scattering amplitude for nucleon-deuteron scattering'
in the doublet channel (the bound state has spin —',).
They are a set of coupled equations representing the
amplitude for nucleon-deuteron elastic scattering and
nucleon-deuteron goes to a nucleon plus a two nucleon
system in the singlet state (which we call q). The equa-
tions in the center-of-mass system are (k= 2M = 1)

t= v+vt 1/(E—H) jv
or

&klvl p&&plvl»&Blvlk'&
d'p (3a)8 p'——&k I

v l»(8 I
v lk') =

t =v+ vt 1/(E —Ho) jt, (2)

where H= Ho+v and Ho is the kinetic energy. E is the
total energy variable and need have no connection with
momenta. Equation (1) contains the exact Green's
function. If there is a bound state

I
8) of the system

satisfying Hl 8)= BIB), then from—(1) we see that t

will have a pole at E= Bwith residu—e v
I
8&(BIv. If

we take matrix elements of (2), let E approach 8,and-
equate residues, we obtain

&k,d I
t(E) lk', d& = s&k, ~l 8(E) Ik', d&+ — d'p&k, ~

I
8(E) I x,d»~(p', E)&p,d I t(E) Ik', d)

2(2or)'

(k,pit(E) Ik', d)=-,'(k,ylB(E) Ik', d)+
2(2or)'

d'p&k, d
I
8(E)

I PA &~4(p', E)&PA I «(E)
I
k', d) («)+

2(2v-)'

d'p&kA
I 8(E) I pA»~e(p' E)&uA I t(E) I

k' d&

3
+ d'p(k, &IB(E)ll,d»~(p', E)&p,dlt(E) Ik', d& (6b)

2(2or)'

A. N. Mitra, Nucl. Phys. 32, 529 (1962).' R. D. Amado, Phys. Rev. 132, 485 (1963).
n Q. A. Lipprnann and J. Schwinger, Phys. Rev. 79, 469 (1950).
n F. W. Low, Phys. Rev. 97, 1592 (1955).
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Here n and P stand for d or p. y is the coupling constant
of the two nucleons to the n pair state. f (k2) is the ver-
tex function of the pair state. The propagators are

P~(p', E)= (~+2)

2 d822 f 2(222)
- —1

(22r)' (e+222')'(o 222—')

(b)

+ 0 ~ ~

Vp
Pe(ps, E)= —1+

(22r)'

d'I f 2(222)

(8b)
0 2s

FIG. 1. (a) Coupled integral equations for neutron-deuteron
scattering. {b) Perturbative representation of the propagator. The
single line represents a nucleon, the double line a correlated pair
y or d. The small circle is the nucleon-nucleon vertex, the large
circle the amplitude for nd ~ nd, and the box the amplitude for
S6 ~ Sp.

The momentum labels the nucleon momentum and p
or d label which pair the nucleon is incident on. 8 is the
Born approximation representing the exchange of a
nucleon between the pairs and I' is the full propagator
in the intermediate state for an interacting pair and a
free particle. These equations, like most linear scatter-
ing equations, involve going off the energy shell, and E
is the total energy variable. It need have no connection
with any momentum appearing in the equations. The
Born term is given by

&k,nI 8(E)
I
k', P&

v-v f-((k'+k/2)')f ((k+k'/2)')
(7)

E—k2 —l2"—(k+k') '

where
0'= E sp

c is the deuteron binding energy, and Z is the wave-
function renormalization constant of the deuteron.
Further discussion of these equations is presented in
Ref. 3.They are exact three-body equations for nucleon-
deuteron scattering with separable interactions. The
role of Z is to reduce the triplet central nucleon-nucleon
force and give the correct triton energy and e-d scat-
tering lengths. The equations are represented graphically
in Fig. 1. The amplitudes have a pole at E=—8, the
three particle binding energy. The residue at this pole
is factorable according to

&k,dI I'I T)&T I
I'Ik', d& for Eq. (6a)

and

&kA Il'IT&&TII'Ik', d&, f» Eq (6b)

where I' is the vertex operator and
I T) is the triton.

Each of these vertex functions satisies an equation
exactly analogous to (3b), that is

2(22r) 2
d'p(k, d

I
&( » I p,d&P~(p', —»—&p,dl I'I »

+ d'P&»d I &( &) I Ir0&Pe(p', ——»&pA I
I'I T& (»)

2(22r)'

&kA I
I'I »= d'P(kA

I
If( » I

pA&P4(p' —»—(I2A I
I'I »

2(22r)'

3
+ d'p&kA I &(—&) II,d&P"(p', —»&p, dll'I T) (9b&

2(22r)2

which equations are represented graphically in Fig. 2.
These vertices are not then full wave functions, but
rather only the vertices for ending a nucleon and a two-

body singlet or triplet state. To get the full three par-
ticle vertex we must let each of the two particle cor-
related states propagate and disassociate. This is
accomplished by appending a propagator and a two-

particle vertex to each so that the three-particle vertex

is given by

(TIIIk„k„k,&
= &T I

I" Ikr d}P~(&1' —»V~f~(I:(ks —k2)/21')

+(T I

I" IkrA»P4(&1'& —»Vbf4(I:(k2 —ks)/2j') (Io)

This equation is represented graphically in Fig. 3. The
three-particle wave function, in momentum space is
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k)

kp

kp

k1

FxG. 3. The relation of the vertex T —+ 3n
to the two-particle vertices.

Fxe. 2. The coupled equations for the vertex functions T —+ nd
represented by the semicircle and T ~ n q by the triangle.

then given by

p'
l ki, k2, km)

analogously to Eq. (4). This wave function does not
possess the proper symmetry. We have also suppressed
spin and isospin indices. If we reintroduce them (call
them n), we can construct the properly antisymmetric
state of the triton as follows:

l
2 ) + (~l kiril)k2&2/k3&8)d ~1~ ~"~ ~8

Xp, t(k,)f„"(kg)f~,t(k8)
l 0) . (12)

Where the P t(k) is the nucleon Geld creationoperator
for momentum k and spin and isospin n and obeys the
usual anticommutation relation. The integral includes
a sum. over o..E is some normalization. Strictly we should
also include the component of the three-body wave
function corresponding to a nucleon and bare deuteron,
since we keep Z/0. We take the attitude, however,
that since the actual triton has no such component, we
should only take the form factor of the three-particle
component. We therefore normalize this component to
1.In any case the nucleon and bare-deuteron component
presumably has a very small probability.

We wish now to use (12) to calculate the body form
factors for protons or neutrons in the triton. These are
given by

pairings of the operators, and hence many different
terms in the expression for the form factors. These
various terms are most easily listed graphically. They
are so presented in Fig. 4. From the factor pairings one
Ands that the form factors contain one of each of the A
terms, two of the 8, four of the C, and two of the C'.
Each of the terms can be factored into a part containing
the spin and isospin information, and a part involving
scalar functions of momenta. The spin and isospin fac-
tors can be calculated, for example, by using standard
Clebsch-Gordan algebra. Our method for doing this is
outlined in Appendix II. This then leaves the diagrams
of Fig. 4, stripped of spin and isospin factors, to be cal-
culated. Putting in the spin and isospin factors and the
weights from the factor pairings we get for the proton
body form factor in the triton

~i (g )—3 4+a 4+ & 4&+S
—-', Cqq' +', Cgg' —Cp-g', (14)

and for the neutron

I „(g')=Ay+ ', A~+By+(5—/3)B~+Cgg C~g-
3Cg~+—', C~~+ 23C-pp' 2-Cpa', —(15)

where now the letters A, 8, C, C' stand for the func-
tions obtained for the diagrams without spin and iso-

where we have separated the spin and isospin indices on

P; and used + for proton, —for neutron, and m for the
ordinary spin,

l T,) means a state of the triton with
center-of-mass momentum y. To calculate the form
factors one now substitutes the expression for lT)
from (12) into (13) (with the appropriate center-of-mass
momentum), manipulates away the field operators to get
a series of delta functions, and integrates over all the
internal moments. There are many diGerent factor

a 3
I

Gyp

FIG. 4. The eleven terms entering the triton form factor. The wavy
line represents the virtual photon.
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spin. If we use the fact that at q'=0

(16)
C« ——C&&

——C«'

we get F,(0) =2F„(0),which reassures us that there are
two neutrons and one proton in the triton.

The remaining problem in calculating the form factors
is to obtain A, 8, C, and C' as functions of q'. To do
this we must obtain the wave function of Eq. (11)which
in turn requires the residue of the scattering amplitude
as a function of momentum. Rather than obtain this by
extrapolation, which can be treacherous on a digital
computer, we calculate it directly on the computer. To
do this we first convert the integrals of (6) to sums

using Gaussian quadratures. "This replaces the integral
equations by a set of simultaneous algebraic equations.
The position of the bound state is given by the value of
the energy which makes the determinant of the coeK-
cients in the equation zero. For the nonsingular case the
equations are inverted and the value of the determinant
is calculated using the IBM share routine MATxxv. We
have modified this routine so that when the magnitude
of the determinant is less than a prescribed amount, the
residue matrix is calculated, and hence we get the resi-
dues or the vertex for finding an e and d in the triton
or an e and p. These are each functions of the relative
m-d or e-&p momentum in the T rest frame. Call them
Ra(rt') and R„(rt') In te.rms of these residues, the terms
in the form factors are

fa2

Pa 2

8 =
(2x.)e

Pe+P
C~p'=

(2~)'

C p
——

(27r)'

d'pd'& R.(p')R.((y+-'q)')F-(p', —8)F.((y+aq)', 8)f-'(&—')

(8+-,'p+2X )t 8+-'(yy-', q) +2u j
dspds7 R (p2)R ((y+1q)2)P (p2 8)P ((p+lq)2 8)f ($2)f ((P+Lq)2)

(8+-'p2+2e2) L8y-e(yy-', q) ~+2(u+-'q)'$

d'p~'I R-(p')Rt (&')F-(p', 8)Fs—(p', —8)f.((k+2y+ aq)')ft ((y+ak —aq)')

$8+-',p'+2(k+-', y+-', q)'$L8+-,'k'+2(y+-,'k —-', q)']

d'pd'kRa(p')Rp(k')F~(p' —8)Fp(k —8)f (py —k+ 2q) ')fp((y ——'k+ —'q)')

L8+-'k'+ 2 (y —-,'k+-'q) ')$8+-'p'+ 2(-,'y —k+-'q) ')

(17a)

(17b)

(17c)

(17d)

where n and P stand for p or d. The rest of the quantities
are defined after Eq. (6). Equations (17a) to (17d) may
be obtained diagrammatically or by direct substitution.
In either case use is made of the translation invariance
of the vertex functions and in getting C an C' some
variable changes have been made. These are useful
since in doing the integrals of (17c) and (17d) as sums
we will need only the residues at the mesh points. In
(17a) and (17b) this does not happen and interpolation
is used to hand the residue between Inesh points.

For simple two-body vertex functions f, the d'k in-
tegral of A can be done analytically. All other integrals
are done on the computer using the same Gaussian
quadrature mesh as is the inversion for the momenta
and using a different Gaussian quadrature mesh for the
angular integrals. No sophisticated multiple-integral
methods were used, but rather the integrals were done
as sequential one-dimensional integrals. This is tedious
and with only 21 points for the Tnomentum mesh and 7
for the angular integrals, the entire calculation includ-
ing obtaining the residues took 26 min on the IBM 7094
at the UCLA Mathematical Sciences Computing
Center.

III. FORM-FACTOR RESULTS

To calculate the form-factor terms of Sec. II, we must
specify the quantities that enter. As in our previous

f-(V') = 1/(V'+P-') .

This form gives the deuteron a Hulthen wave function. "
In each two-body spin channel there are now two param-
eters, P and y which are essentially the range and
strength of the force. In the singlet channel we determine
these by 6tting to the scattering length and effective
range. These give

Pe=
2r. —

(19)

ve'= M~&e'a. l(a.Pe 2) . —

We use a, = —23.78 fermis and r, =2.67 fermis. "In the
triplet channel we fit the deuteron binding energy of
e= —2.226 MeV, and the scattering length up=5. 471

"See for example V. L Krylov, Approximate Catculatiort of
Integrals, translated by A. H. Stroud (The Macmillan Company,
New York, 1962).

'4L. Hulthen and M. Sugawara, in Ertcytopedia of Physics,
edited by S. Flugge {Springer-Verlag, Berlin, 1957), Vol. 39."M. J. Moravcsik, The Tm o-Nucleon Interaction (Oxford
University Press, New York, 1963).

calculation, ' we take a Hulthen form for the two-body
vertex both for the d and the q .
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FIG. 5. The terms entering the triton form factor as a function
of q-' in inverse fermis squared. (a) A„, B~. (b) As, Bs (c) Cqs, .
Cds'. (d) C«, C„„'and (e) Cs„, C~s, C„s' The term. s are correctly
normalized to use directly in Eqs. (14) and (15).

—.05

—.0 I 0

2(f2)
(e)

fermis, "according to

32rrrr sps (Qs+p s) ' (1 Z), —
(20)

where n~' ———', ~. We keep Z different from zero to repre-
sent the relative weakening of the triplet force in the
triton due to the tensor force, hard cores, etc. We take
Z from our previous work, Z= 0.0488.' This gives us the
correct doublet nucleon-deuteron scattering length.

With these parameters we find a triton binding energy
of —8.576 MeV. (The experimental value is 8.49 MeV. )
For this energy the determinant of the Eq. (6) is
—1.07&(10 . With the parameters so determined we
calculate the form factor terms of Fig. 4. The results
are shown in Fig. 5 and the combinations appropriate
to the proton and neutron body form factors of the
triton are shown in Fig. 6.They are compared there with
the experimental results from Stanford analyzed accord-
ing to Collard et u/. 4 The analysis assumes the charge
form factors of He' and H' can be simply related to
the charge form 'factors of the proton and neutron
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.03—

2 (F 2)

8

FIG. 6. The theoretical proton and neutron body form factors of
the triton as a function of g~ in inverse fermis squared, both
normalized to i. The experimental points F0 and FL, are from
Collard et al.4 and have been analyzed according to their pre-
scription. We should have F„=F0and Fr=Fr. .

F(q')=1—q'r'/6 (22)

for small q'. We get a proton radius of 1.45 F and a
neutron radius of 1.62 F. Experimentally the charge
radius of H' is j..70&0.05 F and of He' 1.87&0.05 F.4

We analyze these using Eq. (21) expanding for small q'
and using a proton charge radius of 0.80~0.01 F."For
the neutron we tak.e a radius of zero since the slope of
the three body form factors is determined experimen-
tally at values of q' above the very small q' for which the
neutron charge form factor slope is known to be im-
portant. We get 1.69&0.05 F for the rms radius of the
like nucleon distribution and 1.50~0.05 F for the odd
nucleon. Any contribution from a neutron radius would
increase these radii. They are slightly larger than our
theoretical values and give further evidence that our
triton is too compressed. Recently Dalitz and Thacher"

"E.B. Hughes, T. A. Gri6y, M. R. Yearian, and R. Hof-
stadter, Phys. Rev. D9, 8458 (1965)."Cf. R. R. Wilson and J, S. Levinger, Ann. Eev. Duel. Sci. 14,
135 (1964).' R. H. Dalitz and T. W. Thacher, Phys. Rev. Letters 15, 204
(1965).

and the body form factors of the odd nucleon, Po, and
the like pair, FI., in the three-body system by

F, h( He') =F,~(p)Fr+ ', F,h(e-)FD, (21a)

F,h(H') =F.h(p)Fp+2F, h(e)Fr, . (21b)

Forms for the neutron and proton form factors are taken
from Hughes et al."It is these odd- and like-pair body
form factors, all normalized to one, that are plotted in
Fig. 6. We should have Fo——F„and FJ.=F„.We do not.
Although our form factors reproduce the splitting
F„&F„,thev are too large. This means our triton is too
concentrated at its center.

We can also use our form factors to extract a mean-
square radius according to

have also analyzed the data and obtained rms proton
radii of 1.47&0.0'I F for H' and 1.66&0.07 F for He',
using slightly different parameters. These are in better
agreement with our values, but are still on the large side.

These results are at erst surprising and disappointing
in view of our excellent results for the binding energy,
scattering lengths, and e-d cross sections. It is probably
neither correct nor honest to blame the discrepancy on
the form factors taken from experiment. There is some
leeway in the method of extracting FI, and Fo from ex-
periment. There is, for example, the question of whether
the measured form factors can be expressed as the prod-
uct of nucleon form factors and body form factors.
There is also the question of relativistic corrections,
particularly since the object we calculate is entirely
nonrelativistic. However, our discrepancy is larger than
any reasonable latitude in this analysis.

We are thus forced to accept the discrepancy and
account for it. If we look at Fig. 5, we see that the rela-
tively large contributions at large q are coming from these
terms in which we "measure" the two-body correla-
tions. The A terms, for example, fall very rapidly with

q, and the C' and 8 terms fall least rapidly with the C
in between. In the 8 and C' we are taking the form factor
of the correlated pairs, and C is sort of the square root
of them. Unfortunately, because of the importance of
the exchange term C', we cannot simply factor the two-
body form factor out of these terms and take it from
experiment. Thus, we conclude that our two-body form
factor is too large at large q: that is, our pairs are getting
too close together. This is already seen in the Hulthen
deuteron which gives too large a form factor—that is,
too small a deuteron. 5 This difficulty is repaired by in-
troducing short-range repulsion in the two-body force.
This pushes the deuteron out a little and so reduces the
form factor to the experimental value. It is easy to see
in the two-body system that the effect of the short-
range repulsion will be to introduce oscillations in the
form factor and also to make it tend to zero more
rapidly at large momentum transfers. Consider the
definition of the form factor

F(q') = P(r) exp(iq. r/2)d'r, (23)

where/(r) is the internal two-body wave function. Then
we have

F(q')d'q P(0), (24)

assuming that we may interchange orders of integra-
tion. Thus, if P (0) is zero, F (q') must oscillate. Further,
if we expand F for large q' in inverse powers of q', we
6nd that the coefficient of the leading power of q

'" is
P'(0). Therefore, for large q' F will go to zero more
rapidly if P'(0) is zero. This is of course an asymptotic
result and we are not in the asymptotic region. In fact,
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for the two-particle case, the form factor will change
sign at a q of the order of ~/r„where r, is some core
radius, and we are interested in q well below this value.
But the fact that it must vanish in the repulsive case
clearly pushes the form factor below the case with no
repulsion, since it does not vanish. This pushing out
effect and concomitant reduction of the form factor
must also be present in the singlet pair, where, in fact,
the scattering evidence for repulsion at high momentum
is better than in the triplet state.

The effect of the nonvanishing wave-function nor-
malization constant for the deuteron on the form factor
is small and in the wrong direction. Although making Z
not zero is a way of weakening the attractive force, the
effect of Z on the form factor is to increase it rather than
decrease it.

Turning back to the triton, we may blame our failure
to account for its size on the absence of a short-range
repulsion, which acts to push the correlated particle
pairs apart. ' In more traditional nuclear physics
language, we may say our force does not saturate. Our
phenomenological artifice Z for weakening the effec-
tive triplet force has given us the correct binding

energy, but has not provided the dynamical repulsion
needed to give the correct wave function. "'

In a sense this result is both obvious and reassuring.
It is obvious because of the importance of saturation in
complex nuclei, of which the triton is the first, is well

known. It is reassuring because it shows that we may
learn something about the details of nuclear forces,
off-energy shell properties, three-body forces, etc. ,
from the three-body system. The previous results on
binding energies and low-energy scattering did so well

with so little input that they left little space for learning
about these details. But it is well known that wave
functions are a much more sensitive test of a theory
than energies or scattering parameters.

The recalculation of the binding energy and form
factors with short-range repulsion will require con-
siderable time and effort. Tabakin's fit of nucleon-
nucleon scattering with separable interactions indicates
that there are a number of effects, tensor forces, attrac-
tive d waves for example, that are of the same order of
importance as the short-range repulsion. "Including all
of them would add many new equations to the coupled
set (6a) and (6b) and many new form factor terms. In
this context it should be recalled that it requires at
least two separate interactions in a channel to represent
long-range attraction and short-range repulsion. This
greatly added complexity probably could be tolerated
in computer memory space for the bound-state problem

"Such eGects of the dependence on repulsion have been ob-
tained in a phenomenological model by Y. C. Tang and R. C.
Herndon, Phys. Letters 18, 42 (1965).I would like to thank L. I.
SchiB for calling this work to my attention in preprint.

'"Note added ie proof. The need for short-range repulsion is
also evident in the work of Dalitz and Thacker (Ref. 18). We
thank Professor Dalitz for a letter clarifying this work.

'0 F. Tabakin, Ann. Phys. 30, 51 (1964).

since the kernels are purely real and rather smooth in
this case. Neither is true for the scattering problem and
thus to add so many forces in that case is probably
beyond present computer fast-memory capabilities.
Even in the bound-state problem, however, the cal-
culation of the form factor would take a great deal of
time. A simpler possibility would be to take a two-body
vertex that Gts the deuteron form factors better than the
Hulthen form and use it both for the singlet and triplet
case. This can always be done. A single separable inter-
action resulting from such a form will never truly be
repulsive at short distances, that is the phase shift will

never change sign. This is the case even if one puts a
"hole" in the deuteron wave function. In that case the
phase shift oscillates at large energy, has many zeros,
but is always of one sign. Modifying our calculation
with the introduction of a more complex two-body ver-
tex is presently under study. A simple wave function
that fits the deuteron form factor without introducing
oscillation in the phase shift has been given by Durand. "

IV. BOUND-STATE WAVE-FUNCTION
SYMMETRIES

The traditional way in which the triton wave func-
tion is analyzed is in terms of its symmetries. "It is well

known, for example, that the three-nucleon bound state
consists mostly of a totally symmetric S state of iso-
topic spin —,. This is the state that would arise from a
pure signer force, that is no spin or isotopic spin de-
pendence. It would lead to no splitting of the odd and
like pair form factors and a vanishing cross section for
thermal neuteron capture of deuterium. ' The next most
likely state is the S state of mixed symmetry, but still
isospin —,

'—usually called the S' state. This state arises
with a singlet-triplet spin dependence of nuclear forces.
It splits the form factors and gives rise to thermal neu-
tron capture. The inclusion of tensor forces and spin-
orbit forces gives states of more complex symmetry and
states of nonzero total orbital angular momentum.
These states and also states of isotopic-spin ~3 coming
from isotopic spin violating forces have been discussed
recently. ' In particular they have been invoked since
the amount of S' needed to Qt the form factor splitting
seems to give too much thermal neutron capture. Un-
fortunately this simple analysis is confused by the ques-
tion of meson exchange currents. It is already known
from the magnetic moments of H' and He' that these
effects are present. "In the thermal capture rate they
interfere destructively with the S' contribution and
therefore it might be possible to tolerate larger S'
probabilities than usually considered without doing
violence to the neutron capture rate. '

Another approach to the wave function symmetries is

"L.R. Durand, Phys. Rev. 123, 1393 (1961).
"See, for example, R. G. Sachs, Nuclear Theory (Addison-

Wesley Publishing Company, Inc. , Reading, Massachusetts,
1953).
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through the Gamow-Teller matrix element for tritium
beta decay. ' The purely svmmetric S state gives v3 for
this matrix element, and any other reasonable state
including 5' would subtract from this. The experi-
mental number is slightly larger than this. ' Again this
gives slight evidence for exchange effects. Until these
can be calculated we see little hope of using the matrix
element to find the 5' probability. We hope, of course,
that these effects are not very important in form factors,
or at least have been properly removed in the analysis of
the data. This question of the meson effects on the form
factors is a complex one which we have neither the space
nor the competence to discuss.

In our theory, since we have only charge-independent
central forces but do have spin dependence, our triton
will be a pure L-5 eigenstate with total orbital angular
momentum zero and spin and isospin —',. Both the com-
pletely symmetric and mixed symmetry 5 state will be
present. We wish now to calculate the 5' probability.
Not having our states expressed explicitly as product
wave functions in space, spin, and isotopic spin, we
shall calculate the probability by calculating the
Gamow-Teller matrix element and then comparing with
conventional results. We want the reduced matrix ele-
ment between the triton and He' of Pert. We take 0,
and the states of the triton and He' with Z component
—,
' and divide by the appropriate Clebsch-Gordan coeS-
cient to get the reduced matrix element. This gives when
the Port is expressed in terms of field operators

(2' m=-,' ~A(2 t(k)fi, 2+(k)
(2~)'

4'—1/2—'(k)4 i!2+(k) j
«' m= —',)&'&/(-,' —,

'
j

1O-', 2), (25)

where (jm
~
jimi j2m~) is the Clebsch-Gordan coefficient

for adding ji+ j2——j and mi+m2 ——m. The minus sign
is an over-all phase to make us the same as Blin-Stoyle. '
This matrix element may be expressed in terms of the
various factors that enter the form factor calculation.
In fact the diagrams of Fig. 4 may be interpreted as
beta-decay diagrams with the photon replaced by the
lepton pair. Only the spin algebra must be redone.
Also since the operator in spin space is 0. now rather
than 1, a new term appears in the 8 sequence. The cor-
relative pair can change from p to d via the decay. So
we need a term B„~.All terms are, of course, to be taken
at zero momentum transfer. Doing the spin algebra by
the method indicated in the Appendix, and using the
relation

~/'8= 1—Ps /3, (26)

where Pz is the 5' probability we obtain

Ps =25(Be+Bz+2Bqz) (Cpz+Cpp+2Cpg)$. (27)—

In obtaining this relation use has been made of the
equalities of Kq. (16). Calculation similar to those out-
lined in (17) gives B„q —0.1788. Both B„,i——and C,,q

are negative. Hence each of the combination in round
brackets are differences. Each of these differences
clearly vanish when the singlet-triplet force difference
is turned off. Pq. is furthermore a difference of these
differences. It is therefore possible that there is a con-
siderable singlet-triplet force difference, leading to rela-
tively large values of B„+Bz+2B„&and the corre-
sponding C expression but that P~. is small. The form
factors, measuring as they do a different combination of
these factors and measuring them at nonzero momentum
transfer, could therefore be quite different for proton
and neutron, and PB be quite small. Our value is
Ps i (7%——1)%.This value is larger than usually allowed
but may be compatible with the Gamow-Teller matrix
element and the thermal neutron capture rate when
due allowance is made for exchange currents. The error
in our answer comes from the computing error. We meas-
ure this by the extent to which the equalities of (16) are
satis6ed. Due to our relatively coarse integration mesh
they are only valid to 1%.This error is vastly magnified
in P & because of the many differences of large numbers.

V. CONCLUSION

We have seen how the exact three-particle wave func-
tion may be extracted from our equation for nucleon-
deuteron scattering with separable interactions by
studying the residue of this equation at the triton pole
as a function of momentum, and we have seen how to
calculate the proton and neutron-body form factor of the
triton from this wave function. Many terms enter be-
cause of antisymmetry. We have calculated all these
terms for our simple theory with only low-energy triplet
and singlet nucleon-nucleon interactions. In spite of the
good value we get for the binding energy, our triton is
too small because of the absence of short-range repul-
sion to keep the particles apart. The same difficulty
would occur with our deuteron. On the other hand, the
difference, seen experimentally between the proton and
neutron body form factors is reproduced qualitatively.
To correct the trouble with the form factor by including
short-range repulsion in a consistent manner would be
quite complicated —but not impossible. To correct it in
a more phenomenological way would be easier but per-
haps of less fundamental interest.

It is satisfactory, in a way, that our results are not
very good. The surprisingly good results we obtained in
the binding energy and scattering calculation'' left
little leeway for learning about the rehnements of the
nucleon-nucleon force such as its short-range behavior,
oG-energy shell effects and three-body forces. As we
would have expected, the wave function is a much more
sensitive test for these effects.

We have also calculated the probability of the mixed
symmetry state. The expression we obtain is the (small)
second difference of large numbers. Hence very small
changes such as a short-range repulsion could make it
very small indeed. We obtain (7&1)%,the error arising
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from the computer mesh and the differences of large
numbers. This probability is rather larger than usually
estimated' —' but the effects of meson currents make esti-
mates of this probability from experiments treacherous.
Whether reducing our form factors by including re-
pulsion will also reduce this probability remains to be
seen. It will be interesting for us to calculate the rate of
capture of thermal neutrons in deuterium to compare
with other estimates and get further information on
this state.

The problem of meson effects is a knotty one. It is
even present in the form factor analysis, where hopefully
it has been properly tamed. It may in fact be the limiting
feature in an attempt to calculate the wave function
with great accuracy and comparing with experiment,
setting in to cloud the issue before the fine points of, for
example, multiparticle forces can be unraveled.
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APPENDIX I. THE WAVE FUNCTION

Using a field-theoretic formalism in which we intro-

duce an elementary particle for each of the p and d, we

may write the renormalized Hamiltonian for the system

in second-quantized form:

+=+ kVa'(k)4'a(k)+Z l &d(k)+4(d)]D t(k)D (k)zd+Q Led(k)+bd(k)]e, t(k)C, (k)zd
k, m

Vd+— Q fd(k')Cd, Maa LDMt(p)P (-,'p —k)P .(—,'p+k)+P ~(—,'p+k)P t(i2p —k)DM(p)7
K2 p, k, M, , 'aa

+— & f (k')C, --L~,"(p)4.(lp —k)4-(l +k)+4-'(l +k)4-'(-' —k)4'. ( )7, (A&)
~2 p, k, r, , 'aa

and

where the P (k) are the creation and annihilation opera- spin p, and isospin i, they are

tors for the nucleons of momentum k and n is a spin and
isotopic spin index, they satisfy

(A4)

LD (k)» (k')7= L@.(k)P"(k')7=0

LDM(k), DM'(k')7= 8M M. Bk,k /Z„
l e,(k)p, .&(k') 7= ~.„.~k,, /z, .

(A3)

The Zd and Z„are wave-function renormalization
constants. Zd is called Z in the body of the paper. After
deriving the equations we set Z„=O."All other com-
binations of f, D, and 4 commute. ed(k) is the renor-
malized energy of a d particle of momentum k, and
similarly for e„.The 8d(k) and 5„(k) terms are the energy
renormalizations —the counterparts of mass counter
terms. The coeKcients Cd, ~ ~ and C„, , are coupling
coefFicients. Re-expressed in terms of the components of

{f(k),$ (k')) =0, {P t(k),P (k')) =8, bk, k ~ (A2)

The DM(k) and C,(k) are the corresponding operators
for the D and p particles with third component of spin
and isospin 3f and r, respectively. They satisfy

Cd ...= (1 -'I, i', i')( 00-l', P-', y'),

where the bracket (jMl jiMij2M2) is the Clebsch-

Gordan coefFicient for adding j=ji+js and M=Mi
+M2. The coef5cients of (A4) have the properties

Cd, Maa'Cd, M' a4aI, M'
y

u, u

Cd, raa'Cljl, T' ~1a', a&' t

u, u'

Q Cd...Cd, M =0,
uf

and are odd under the interchange of n and n'. The p's
are then renormalized coupling constants and the f's
the two-particle vertex functions.

We now look for a state
l T) such that in the T rest

frame
el T)= alT)—

and write

l&)=Zd 2 gd, M (k)DMt(k)f. t(—k)l0)+Zd P gd, , (k)e,t(k)g ~(—k) l0)
k, M, u kru

+2 k-i, -m.,(ki,k2, kk)&k, +k~,-kA- '(ki)4-2"(k2)4-s'(ka)10), (A&)

~ M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258 (1961).
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where we have suppressed dependence of the g's on the spin and isotopic spin of the triton. We now insert this form
for

I
T) into the Schrodinger equation (A6) and use the commutation relations. Equating the coeKcients of D"Pt,

4tft, and PtPtikt separately to zero, we get
7" 7$

k-i, -.,-4(2P+k, lP —k, —P) = (2p'+2k'+8) ' f—d(k')Cd, M-i "gd, M-, (p)+ f—4(k')~4, -i-rgb, -2(p) (A )
K2 K2

and
&2yd fd(k') Cd, M...,

gd, Ma(p) p Lkai, at, a(2P+k, 2P—k, —p)
Zd(P'+ ed(P)+ bd(P)+ 8)

+k-, ,-,-(2P+k, —P, 2P—k)+k-, -,-.(—P, 2P—k, 2P+k)j, (A9)

and a corresponding expression for g„. If we substitute (AS) into (A9) a,nd use (A5), we get

fd2(k2)
gd, Mu(p) = 2 Zd(p +ed(p)+Id(p)+8) rd

~ (-,'p'+2k'+8)

fd(k )fd((4P+2k) )~d, M y 2+d, M'ntagd, Mat(I 2P kl )

k, nI, n2 ('p'+2k'+-8)

fd(k )fd((4P+2k) )Cd, Maiatcdt, ra2agd, rat( I 2P k
I )

+Vdyt Q — (A10)
(-;pty2kt+ 8)

and a corresponding equation for g„. The first factor is
the full propagator (8a). The vertex defined in (6) is g
without this factor and (A10) when expressed as an
equation for this vertex is just the integral equation
(9a). Hence the prescription given in Sec. II for the
wave function, h, is the same as that given by Eq.
(A8) with g from (A10).

APPENDIX II. SPIN ALGEBRA

In this Appendix we present, by example, our method
for obtaining the spin and isospin weights accompanying

m, mI, m2
I

&-,
' -,'Ioo-,'~&&ool-', ~,—;~,&l =1

the form factor terms. Let us consider erst a very simple
term, A~. The diagram is rewritten in Fig. (7a), with
the Z component of spin and isospin for each line
labeled. We take the triton to have 3Ig ——-,'. From each
vertex representing disassociation of the triton into y
and a particle we get a Clebsch-Gordan coefficient in

spin and in isospin. These are contained implicitly in
the g functions of the previous Appendix. We also get a
set of Clebsch-Gordan coefficients for each p disassocia-
tion. Thus the spin factors going with the diagram give

(a) and the isospin factors give

Z I &2
—

2 I »222&&» I22i22'2& I'=1&2—
2 I »222& I', (»)

{b)

N) tl )

N, l

where we are to take i3=-', for the proton term and —-',

for the neutron and this gives the coefficients of A„ in
(14) and (15).

Now consider a more complex term. Let us take
C~ ~. where Z and Z' stand for y or d. This diagram is
shown in Fig. (7b) with the third component labels. The
spin contribution is

(c) 2&2 2 I
~~2~2&&~~

I 2~i2~2&&2 2 I
~'~'2~i&&~'~'I 2r~2rr2~2&

—
I (22+1)(2Z'+1)j''2W( —' —' r —' ZZ') (83)

e v

FxG. 7. Diagrams for spin sums. The lines are labeled by the
third component of spin and isospin, respectively. For {b) and {c)
we do not specify which correlated pair is involved and call the
total spin and isospin of the pairs Z and v-, with third components
0 and 8. (a) The diagram A~. (b) A "C" diagram. (c) A "I3"
diagram for the beta-decay case.

where W is the usual Racah coeKcient. '4 For the isospin
one gets just the same sort of term except there is no

'4 See, for example, M. E. Rose, ElemerItary Theory of Arlgular
3fomemtum {John Wiley Bz Sons, Inc. , New York, 1957).
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sum over i3. Hence the final spin and isospin factor is sum we do explicitly. For the spin factors we get

L(2Z+1)(2Z'+1)(2r+1)(2r'+1)g'leg (tzzr tz rz; ZZ')

+~(l l —:—: -')18——:I~el ) I' (Il4)
m1mmm3o o'

(-', —,
'

I
Zo-,'mt)(Zo

I
—,'ms-', ms)

X (-,' —', I
Z'o'-,'mt)(Z'o'

I

—',ms-', ms)ms, (86)
The other factors are obtained in corresponding ways.

For the calculation of the Gamow-Teller matrix ele-
ment one requires a different set of factors. Consider,
for example, the 8-matrix element shown in Fig. (7c).
The isospin part gives

i1, i288'

x(.'(l'I —,
' ——,

'
—,'t, )(-,' ——,

' I.'s'-', i,), (as)

which is not conveniently further reduced, but which

where the factor of m3 comes from the matrix element of
r, . This sum can be converted to a sum over Clebsch-
Gordan coefficients by making use of the identity

ms= (rs/2) ((zms I 1ozms))

we get for the spin sum (86)

[(2Z+1)(2Z'+1)g'i'W(1Z-', -', ;Z'-', )W(1-', Z'-', tzZ) . (88)

The other sums for the Gamow-Teller element are done
in a similar way.
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Approximate expressions for the optical-model potential U,~t in terms of the nucleon-nucleon interaction
are discussed. The identity of all the A+1 nucleons of the scattering problem is approximately taken into
account in our final formulas. The imaginary part of V,p& is calculated for the case of "C and the incident-
nucleon energy of 20 MeV. The spherical-model random-phase-approximation (RPA) eigenvalues and
eigenvectors are assumed for the complete set of intermediate nuclear states involved. The results are rather
insensitive to the exchange-force mixture assumed for our zero-range nucleon-nucleon potential. The anti-
symmetrization of our V-matrix elements is extremely important as it reduces our ImUopt by a factor of
2—3.For a reasonable set of our RPA intermediate eigenvalues and eigenvectors we obtain a semiquantitative
agreement with the best phenomenological Imv, ~t available for our case. The most important contribution
to Imv, pt corresponds to the erst excited T=0, 2+ state in' C.

I. INTRODUCTION

A GREAT variety of attempts have been under-
taken to calculate the optical-model potential

from basic two-body forces. Several independent defini-
tions of the optical potential have been employed which
are not exactly equivalent. One common fundamental
difficulty of a microscopic derivation of the potential is
the exact antisymmetry in the (A+1)-particle system,
i.e., the Pauli exclusion principle. It leads to many
pitfalls. In fact, most early attempts to incorporate the
Pauli exclusion principle in the derivation turned out to
be failures. ' In the following we shall not review these

' J. S. Bell, in Lectures on the Many-Body Problem, edited by
K. R. Caianiello (Academic Press Inc. , New York, 1962), p. 91; in
this reference the following papers are criticized: (a) F. Coester
and H. Kummel, Nucl. Phys. 9, 225 (1958); (b) H. Rollnik,
Z. Naturforsch. 13a, 59 (1958); (c) L. M. Frantz and R. L. Mills,

attempts, nor shall we discuss all the different ap-
proaches to the general problem of the microscopic
theory of 'U.pt Only a few treatments related more
closely to our calculations will be mentioned.

One of these is the Watson multiple-scattering formal-
ism. The corresponding solution constructed for 'U„~
is a rather complicated infinite series of terms, and only
partly considers the indistinguishability of the projectile
("0")from the target nucleons. ' This approach employs
the concept of the two-nucleon t matrix, which we shall
refer to in our treatment. Most applications and

Nucl. Phys. 15, 16 (1960); (d) L. M. Frantz, R. L. Mills,
R. G. Newton, and A. M. Sessler, Phys. Rev. Letters 1, 340 (1959).

s K. M. Watson, Phys. Rev. 89, 575 (1955); (a) N. C. Francis
and K. M. Watson, ibid. 92, 291 (1953); (b) G. Takeda and K. M.
Watson, ibid. 97, 1336 (1955); K. M. Watson, ibid. 105, 1388
(1957).


