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Muonic Molecules and Nucleon-Deuteron Capture*
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Variational wave functions have been computed for all S states of muonic molecules involving hydrogen
isotopes. Results for the ppd ground state have been used to compare nucleon-deuteron capture cross sections
with ppd fusion rates. Using our molecular wave functions and the results of muonic-molecule experiments,
we estimate the low-energy S-wave cross section for the reaction D(p,y)He . Our result is in disagreement
with measurements in the tens-of-kilovolts region, but is consistent with thermal neutron-deuteron capture
data when Coulomb effects are taken into account by means of the usual penetration factor. Finally, we re-
examine the usual assumption that proton-deuteron capture occurs only from the doublet state and show
how the doublet and quartet matrix elements could both be determined from a new measurement of the
total yield of gamma rays from ppd fusion in liquid hydrogen.

I. INTRODUCTION AND SUMMARY

'UONIC molecules are systems like ptsp, ptcd, etc. ,
& ~ in which a negative muon (tc) binds together two

nuclei, each of which is a proton (p), deuteron (d), or
triton (t). Such systems were first studied theoretically

by Frank' and experimentally by Alvarez et a/. ' in con-
nection with the phenomenon of muon-catalyzed fusion,
in which a muon stopping in liquid hydrogen initiates
the following sequence of reactions:

ts+p ~ ptsi

pts+d -+ dts+ p,
dtt+p ~ pttd ~

ptcd ~ He tc+'y ol He +tc.

Other experiments on muonic molecules have in-

volved the production of ptcp and dtcd, fusion' in dttd,

and weak capture' of the muon by a proton in ptsp.
Also, weak capture has recently been observed' in ptcd

and He'ts (the He'tc being produced by fusion in ptsd).
Theoretical work on muonic molecules has included

many approximate solutions of the Schrodinger equa-
tions for these systems. In the past, wave functions have
been computed for all muonic molecules using various
adiabatic approximations, ' "whereas variational calcu-
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lations" —"have apparently been limited to molecules
with identical nuclei. Section II of the present paper
includes variational calculations of the bound S states
of all muonic molecules. Only the results for pttd are
used in subsequent sections, but some of the other states
are of interest for computing various molecular, "
nuclear, " and weak-capture4 ' rates not discussed in
this paper. )Pote added itt proof. A. A. Frost et a/. —J.
Chem. Phys. 41, 482 (1964)—have used a generaliza-
tion of the method of C. L. Pekeris —Phys. Rev. 112,
1649 (1958)—to obtain 2874 eV for the ptcd ground
state. )

For each of our variational functions, we may perform
an integration over the muon coordinates to obtain a
pseudo wave function G(rts), which depends only on the
distance between the two nuclei. In Sec. II, we calculate
G(0) ' for the ptcd ground state. In Sec. III, using
G(0) ' and the results of muonic-molecule experiments,

we estimate the low-energy 5-wave cross section 0-,„for
the reaction D(P,y)Hes. For 2S-keV protons, our esti-
mate of 0,„is in disagreement with the measured20 value
by a factor of 3. This discrepancy, and the kind of
work needed to resolve it, are discussed in Sec. III.

We find that the spin-averaged square of the matrix
element that appears in our estimate of O.,„is roughly
equal to the corresponding quantity for the mirror
process D(rt, y)H'. The matrix elements for proton cap-
ture are dehned in such a way that the Coulomb pene-
tration factor appears as a multiplying factor in the
expression for 0-,„.This result is expected on the basis
of certain assumptions, discussed in Sec. III, which, in
turn, rest on the approximate equality of the absolute
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values of the exchange moments of the nuclei H'and He'.
It is assumed in Sec. III that the fusion rate from the

quartet state of proton and deuteron is negligible com-
pared to the doublet rate. This assumption, which is now
widely used, '"""is re-examined in Sec. IV. There we
point out that certain results which have been obtained
for thermal neutron-deuteron capture apply directly in
our case. In particular, an orthogonality relation'2"
shows that the quartet rate is expected to be of the same
order of magnitude as the doublet rate.

Since there is no theoretical justification for ignoring
the quartet rate, we use the present data" on the time
distribution and total yield of gamma rays to determine
a range of possible values of the quartet rate. We also
show how a more accurate measurement of the total
yield would determine both rates.

TAsj;z I. Energy levels and muon-nucleus overlaps
of muonic molecules.

Vibrational
System level e

PIJP

ppd
ppt

de
de
dIJ,t
djj.t

tp, t

tp, t

Energy
level

E (QV)

2780.8
2883.8
2924.1

2987.6
2698.2
3029.1
2741.7
3072.5
2786.3

Muon-nucleus overlaps'
'yy Pd

0.568
0.507
0.490

~ ~ ~

0.641
~ ~ ~

0.585
0.5036
0.569
0.377

~ ~ ~

0.663

~ ~ ~

0.610
0.635
0.595
0.516

The overlap yx is the ratio of the muon density at a particular nucleus
of type N in the molecule, to the muon density at the nucleus of an Nttt atom.

P=P X,~A, ,B,,C,), (2)

where the I;are numerical coefficients of basis functions
t A;,B;,C;) that have the form

~
A,B,C)=exp) S(Ari+Brs+—Crrs) —). (3)

The scale factor S is positive, and never varies during a
calculation. Once the 3Ã parameters A;, 8;, Ci have
been chosen, the next step is to compute the matrix
elements of the Hamiltonian and of unity:

a;,=(A;B,c, iai A;B,C,),
U„=(A,B,C, ~1[A,B,C,). (4)

These integrals can be evaluated exactly, as rational
functions of the six arguments A;, 8;, C;, A;, 0;, C;.The
functional dependence is given in Appendix A, in a form
which is convenient for numerical work. From Appendix
A, we see that the integrals converge, if and only if
A,+B;,A;+C;, and Br+C; are all positive.

To 6nd the energy level E, and the linear parameters
X;, we solve the matrix eigenvalue problem

II"X.=—EU -X.V 'V

where H and U are real, symmetric E by E matrices,

"E.J. Bleser et at , Phys. Rev. 132, 26. 79 (1963).
~ L. I. SchiB, Phys. Rev. 52, 242 (1937).
'3T. K. Radha and N. T. Meister, Phys. Rev. 136, 8388

(1964).

II. S STATES OF MUONIC MOLECULES

Variational Trial Functions and Matrix Elements

In this section, we find approximate solutions to the
spinless, nonrelativistic Schrodinger equation for each
of the muonic molecules ptjp, pttd, ppt, dtttd, dttt, and tttt
Since we are only concerned with S states, the only
coordinates of interest are the interparticle distances
ri, rs (from nuclei 1 and 2 to the muon), and rrs (between
the two nuclei). For each state, we construct a wave
function

and U is positive definite. A computer program has
been written to evaluate the matrix elements and solve
Eq. (5). The program has been run on an IBM 7090 for
various choices of the 2;, 8;, C;. The resultant energy
levels and certain other quantities (see below) are
presented in Table I. Our energy levels agree with the
most accurate adiabatic'" and variational' calcula-
tions of other authors to within a few electron volts,
for the ground states. For the vibrationally excited
states, our levels diBer from those of other authors'"
by 7—10 eV.

Muon-Nucleus Overlaps

For each S state, we dedne Pl and P2 to be the
probability densities for the muon to be in the vicinity
of nuclei 1 and 2, respectively. From Eqs. (2) and (3),
the following simple formulas are obtained:

exp) 5(B;+B;+C;+—C;)r)4rrr'dr,

I' s= Q Q X;X; exp[ —S(A;+A,+C;+C;)rj4rrr'dr.
i=l j=l

If nucleus 1 (2) is a proton, then the overlap y„ is
defined, as usual, " '" to be the ratio of I'r (Es) to the
muon density at the nucleus of a pp, atom. yd and Vt are
defined similarly with respect to dp, and Ip, atoms.
Equations (6) have been evaluated, and the overlaps
computed, for all states listed in Table I. Our value of
y~ for the pttp ground state is within 1% of that ob-
tained by%essel and Phillipson. "This close agreement
is evidence that our computer program is running
correctly.

Hyperfine Structure of the ppd Ground State

Zel'dovich and Gershtein have calculated the hyper-
fine levels in pttd, assuming that each nucleus interacts
with the muon through a contact term in the Hamil-
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tonian. " They used a molecular wave function such
that, in our notation, y„=yq=~. Since the contact
terms for the proton and deuteron are proportional to
p„and p&, respectively, we multiply these terms by
2y„and 2y~. Otherwise our treatment is identical to
theirs. We do not repeat their derivation, but merely
quote results.

Using the values of the overlaps in Table I, we obtain
the following energies for the J= 2 level, the J=0 level,
and the two J=1 levels:

250
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~&———0.040 eV; e~'= 0.0065 eV. 0 i I
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The rate of fusion from each level depends on the
probability that the proton and deuteron are in a
doublet state. This probability is zero for e2, unity for
es, n for et', and P for et, where n and P dePend on the
values assumed for the overlaps. We obtain o, =0.923,
P=0.077, whereas the values obtained in Ref. 19 were
n= 0.82, P= 0.18.

Probability Density Ps in ppd

The rate of fusion of a muonic molecule by a particu-
lar process is proportional to one or the other of two
quantities which can be computed from the molecular
wave function, depending on the nature of the fusion
process. For ppd, the radiative rate is proportional to the
probability per unit volume I'3 that the two nuclei are
together, while the nonradiative rate is proportional to
~P(0,0,0) ~', the probability per unit volume squared
that all three particles are together. Our wave functions
are not suKciently accurate to give a reliable value for
ill (0,0,0)

~

', so we shall not deal with this quantity in
the present paper.

We have computed P'3 from various of our wave func-
tions, by means of an expression similar to (6). The
values so obtained have all been unreasonably large, and
have tended to decrease, but not converge, as the
number of terms in the wave function increased. A
reliable value for P3 could have been obtained by merely
increasing the number of terms in our wave functions,
but we determined Ps by an alternate method (described
below), which was more economical in terms of com-
puter time.

Two-Body Pseudo Wave Function

For a given wave function P(rt, rs, rts), we de6ne the
pseudo wave function G(r~s) as follows:

(7)

Pro. 1.Plots of the pseudo wave function G(r&s) for the relative
coordinate of the two nuclei in the ppp, ppd, and dpfg ground
states. These curves are remarkably straight for r»&0.7. In this
respect they resemble zero-energy, S-wave Coulomb wave
functions —which is not surprising, since for small values of g»
the Coulomb potential between the two nuclei is the dominant
potential term in the Hamiltonian.

40

'c- 30

E
O
O

20
Al

10— o PIP
EXTRAPOLATED VALUES

Q ppd

'0 1
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Fxo. 2. Continuation of pp p and ppd curves of Fig. 1, for t » &0.3.
Three curves are drawn for ppd, illustrating the convergence with
increasing E in Eq. (2). The height and width of the spikes at
r»=0 decrease as P becomes more accurate. %e assume the spikes
are unphysical, and extrapolate to r»=0.

is carried out in detail in Appendix 8, for f given by
Eqs. (2) and (3); results for some of our wave functions
are plotted in Figs. 1-3.

Although G(r») is not a wave function in the sense
of a solution of a Schrodinger equation, Figs. g to 3
indicate that G behaves very much like the absolute
value of an adiabatic' wave function for the nuclear
motion. The dependence of 6 on the reduced mass'4 of
the two nuclei is just what one would expect in the

Here the integration is over r~ and rg, and dv„ is the
two-center volume element for 6xed r~2. Thus the proba-
bility that the internuclear distance lies between r» and
r»+dr» is equal to 4s.r»'G'(r»). The integration in (7)

M In fact, to an accuracy of about 1% the G curves for ppd
depend only on the reduced mass. This was checked by substi-
tuting 2m ms/(m„+ms) for m„and mz in the Schrodinger equation
for |I. Aut ors whose computer programs are limited to the case of
identical nuclei can therefore find PI for ppd (and probably for
pIJ,f and dII$ as well).
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Fro. 3. plots of G(r&s} for the erst (and only} vibrationally
excited 5 states. These states are just barely bound; hence the
curves extend out many muonic Bohr radii, and die down at a
rate which goes roughly like the square root of the dissociation
energy. (This energy is greater for dpd than for dIJt, hence their
curves will cross at some large value of r12.)

Born-Oppenheimer approximation: As the reduced mass
is increased, the curves (i) tend to have sharper maxima
and minima, (ii) become more concentrated near the
equilibrium point r» ——2, and (iii) fall off more rapidly
as py2~0 ol

Each curve in Fig. 2 has a spike at r~2=0. The un-
reasonable values of I'3 mentioned above are the values
of

~
G(0)

~

'at the tops of the spikes. We therefore replace
them by the extrapolated values shown in Fig. 2. For
ppd, we obtain

~
G(0)

~

'= [12 atomic units (a.u.)7'= 10sr
cm—', which we shall use in the next section to relate the
ppd fusion rate to the 5-wave cross section for the
reaction D (p,y) He'.

ypd Fusion Rates and the Time Distribution
of Gamma Rays

When a muon comes to rest in liquid hydrogen, the
rate of formation of ppd is rapid compared to Xr, pro-
vided that the deuterium concentration is larger than a
few parts per million. The time distribution of gamma

III. CAPTURE CROSS SECTIONS AND
Ppd FUSION RATES

The last of Reactions (1) has two modes: radiative
and nonradiative. We shall assume throughout this
section that both kinds of fusion occur only when the
proton and deuteron are in the doublet spin state. This
is strictly true for the nonradiative process, "but open
to question (see Sec. IV) in the radiative case.

Let X„and P „„bethe radiative and nonradiative rates
from the doublet pd state in pyd. The total doublet
fusion rate is then Xr——X,+X,. The radiative, nonradi-
ative, and total rates for a given hyper'. ne state are
obtained by multiplying the doublet rates by the proba-
bility (see Sec. II) that the proton and deuteron are in
the doublet state. We shall only discuss data taken at
low deuteron concentration. In this case, the hyperfine
levels are statistically" populated, and the average
radiative, nonradiative, or total rate is just one third
of the corresponding doublet rate.

rays" from ppd fusion then looks like a parent-daughter
decay curve. We are interested in the behavior of this
curve in the region 1 psec(t&7 psec, which makes t
large compared to the rise time. We may therefore
neglect the rise time and assume that a free muon
becomes a ppd instantaneously, with statistical proba-
bilities 5/12, ~~, ~t, ~', for occupying the four hyperfine
levels.

Let A, 8, C, D be the populations of the hyper6ne
levels (see Sec. II) as a function of time f. The initial
populations are statistical: A(0) =5, B(0)=3, C(0)=3,
D(0) = 1. Each state is decaying at its fusion rate plus
the decay rate Xo=—0.455 @sec—' of the muon, "but free
muons are being produced at the rate X„„(D+nC+PB),
and these free muons may be regarded as becoming
ppd's instantaneously. The populations therefore satisfy
the following differential equations:

A(t) = (5/12)X „(D+nC+PB)—XpA,

B(f)= (3/12) X„,(D+nC+PB) —(Xo+PXr)B,
C(f) = (3/12)X„„(D+rrC+PB)—(Xp+n} g)C,

(8)

D(f) =—,', },„„(D+.C+PB)—(},+},)D.

Substituting the initial populations into the last three
equations above, and using the fact that n+P= 1, we
obtain

B(0)= (ri —3P)Xg—3Xp,

C(0)= (&-3~)},-3}„
D(0) = (-', r}—1)Xg—Xp,

(9)

where g =X„„/Xr is the fraction of fusion events in which
the muon is ejected.

The rate at which gamma rays are being produced is
(except for a constant of proportionality)

e,(t)=D+rrC+PB. (10)

As mentioned before, this function behaves like the tail
of a parent-daughter decay curve. The slope of the
curve is

ri~(t) =D+nC+PB,

X (0)=Xp+ I
—L1+3(n'+p')7 —-', riI }hr . (13)

The experimental value X~ ——0.305&0.010 @sec ' was
determined" from e„(f) by using the values rr=0. 86,
P= 0.14, and rl =0.16.As a first approximation, we shall

"We neglect the rate of capture of the muon by the nuclei,
since the capture rate in this case is three orders of magnitude
smaller than the fusion and decay rates.

and the apparent rate of decay (the rate of depletion of
the daughter product) is minus the ratio of slope to
value:

},(f)= -ri„(t)/n, (f) . (12)

From (9), (10), (11), (12), and the initial populations,
we obtain
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TAsLE II. Dependence of ppd fusion rates and yields on
a, p, and g, assuming no quartet capture.

Let I'~ be the probability that a muon will catalyze at
least E fusions. Then

ppd fusion rates from the
doublet pd state

Non-
radiative Radiative Total

~n~ Xy

First
generation

yield of
fusions

Total
yield of
gamma

rays
F~

Fsj ——Fs iilFt ——Ft(rjFi) '. (16)

The total yield of gamma rays per muon is" (1—r))
times the expected number of fusions per muon:

0.295
0 305a
0.315

0.295
0.305.
0.315

0.295'
0.305
0.315

0.295.
0.305
0.315

(i) +=0.86, p=0.14, v=0.15

0.044 0.250 0.294 0.130
0.046 0.258 0.304 0.133
0.047 0.267 0.314 0.136

(ii) o.=0.86, P=0.14, v=0.19

0.057 0.242 0.299 0.132
0.059 0.250 0.309 0.135
0.061 0.258 0.319 0.138

(iii) n=0.923, P=0.077, v=0.15

0.040 0.228 0.268 0.118
0.042 0.235 0.277 0.121
0.043 0.243 0.286 0.124

(iv) a=0.923, p=0.077, v=0.19

0.052 0.221 0.272 0.120
0.053 0.228 0.281 0.122
0.055 0.235 0.291 0.125

0.113
0.115
0.118

0.109
0.112
0.114

0.102
0.105
0.107

0.099
0.101
0.104

& Interpolated values of ) yg (see text). Xyg determines the ratio of slope
to value of ny(t) at t=0.

assume that X.(0) is an experimentally known quantity,
related to the above values of Xi, n, P, and r) by Eq.
(13).We may then solve Eq. (13) to determine what X~
must be for other values of n, p, and r):

Xj 0.76607)ir,/(-,'+-,' (n'+p') —-', t)j . (14)

Equation (14) is evaluated in Table II for various
values of n, P, ri, and Xr,. For each row with Xq, 0 295—— .
or 0.315 (the lower and upper limits of experimental
error) in Table II, we have integrated equa, tions (8)
numerically to And the populations at I,=3 @sec, and
then obtained X,(3) from (8), (10), (11), and (12). To
improve on our Q.rst approximation, we have found by
interpolation the value of Xr, which makes X,(3) the
same as it would be for the case XJ =0.305, m=0. 86,
a= 0.14, g =0.16. The interpolated values are given in
Table II. Since they lie within the experimental bounds,
we conclude that our first approximation is accurate
enough to deal with the available data.

1 nkvd 1 PXg 1
Fr=0.9123 — +— +— — . (15)

4 n'Ay+As 4 PXg+Xp 12 Xi+As

Ppd Fusion Yields and an Estimate of X„

From the known" molecular rates it is easily shown
that, at 1% deuterium concentration, the probability
for a free muon to form a pied molecule is 0.9123.Multi-
plying this quantity by the probability tha, t a ppd
molecule will undergo fusion, we obtain the erst genera-
tion yield, i.e., the probability that a muon will catalyze
at least one fusion reaction:

F,=(1—~)(F,+ F,+F,+".)
= (1—g) Fi/(1 —ri Fi) . (17)

The yields I'& and I'~ are evaluated for each row of
Table II.

The first generation yield of rnuons (at 1% deuterium
concentration) is" 'r r)Fi ——0.0264&0.0035. By com-
paring this value with the product of g and column 5
of Table II, we find that

q=0.22~0.03; V~=0.099+' p pp;. (18)

This is in contrast to the measured" value I'~=0.14
~0.024. If it can be said with certainty that I'~ is
greater than 10%, then from (18) we must conclude
that the assumption of no quartet capture is inconsistent
with experiment.

In Table II, the value for X„corresponding to (17)
is 0.216~0.009 psec '.

n/("" )3 / ~-
—s'X, =R~G(0) ~'.

(19)

Here v is the speed of the proton with respect to the
deuteron, and t)=e'/hv is the dimensionless variable
which enters into the Coulomb barrier penetration
factor (in brackets) in Eqs. (19). The factor s is the
probability that the pd system is in the doublet state.

Elimination of E from (19) yields a relationship be-
tween o „X„,and

~
G(0)

~
', which can be used to calculate

any one of them, given the other two. Using the above
estimate of X„and the value of

~
G(0)

~

' from Sec. II, we
obtain an estimate 0.,=0.39)&10-" cm' for 25-keV

"Contrary to appearance, this result agrees with Eq. (A13) of
Ref. 21; since what is called g there is ),/A,"M. SchiG, Nuovo CimerLto 22, 66 (1961).

The S-Wave Cross Section for D(p, y)He'

The S- and P-wave cross sections 0-„cr~ for the re-
action D(p,y)He' have been measured" for proton
energies as low as 24 keV in the lab system. 0-„ is the
larger and more accurately known of the two, and can
be used to compute the fraction of X„which comes from
the relative P wave of the proton and deuteron in pied.
We have not yet accomplished this, but our preliminary
results are in agreement with other authors, "who And
that the E-wave contribution is a small part of A.„.We
shall therefore ignore E-wave effects for the remainder
of this section, and assume that X„comes entirely from
the S wave. Following Ref. 21, we assume that an
energy-independent reaction constant R accounts for
both cT, and A.„:
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protons, in contrast to the measured'P value: (1.3&0.3)
&10—"cm'. Because of this discrepancy, either an inde-
pendent calculation of

~
G(0)

~

' or a more precise meas-
urement of o-, would be desirable. Previous estimates"
of

~
G(0)

~

q only make the discrepancy worse.

Comparison of D(P,y)Heq and D(n, y)HP

The reaction constant R can be written as the product
k( pMd'jpM, ')QP, where Q is the energy of the gamma
ray, k is a constant (which need not concern us here),
and iVq, Mq are nuclear matrix elements for the mag-
netic dipole transition" from the doublet and quartet
p-d states to He'. Substituting the above expression for
E in Kq. (19), and writing a similar equation for
D(N, y)HP, we have

~..=P~n/(d"" 1)3&(p—M"'jpMqp')Q. '/p~, (2o)

also the ratio p= 2M, „q/Md p' from experiments on Ppd
fusion. This has not been done before, since a theoretical
argument" to the effect that e&(1 has been generally
accepted. '" The argument is based on an estimate of
3f&„which ignores the orthogonality of the initial and
Anal states, whereas for M~„ it is well known" " that
this orthogonality relation must be used to obtain
meaningful results. The two cases, e and p capture by d,
are equivalent in this respect. In either case, after the
spin-isospin indices have been summed over, the doublet
and quartet matrix elements are remarkably similar in
form (see Ref. 23). The question of which is larger
depends on the details of the space dependence of the
initial and 6nal states, and perhaps of the magnetic
dipole operator as well. In any event, it seems unlikely
that one of the matrix elements should be orders of
magnitude smaller than the other.

son=~(3M nd+3Mqa )Qn%n y (21)
Fusion Rates and Time Distribution

for Arbitrary e

The rates from the doublet pd state in ppd, which
were called X„, X „, and )f in the last section, shall
hereinafter be denoted by d„, d„„, and df. The corre-
sponding quartet rates are q„, q„„,and qf. We generalize
the previous results by ending the various rates and
yields for an arbitrary value of the parameter

where the subscripts p, I refer to the nucleon being
captured by d. Eliminating k from these equations and
using the measured" value 0-, =0.60&0.05 mb for ther-
mal (p = 2.2X10' cm/sec) neutron capture, we obtain a
relationship between the M's and cr, ~. For our estimate
of o-,„above, we obtain approximately

pMde jpMqn = pMdp +pMqp . (22)

For the measured value" of 0.,~, the right-hand side of
(22) is about three times as large as the left-hand side.

By assuming that the magnetic dipole operator is of
isovector type" and neglecting Coulomb eGects other
than the penetration factor, one 6nds that 3f~„'=M~„'
and M „'q=M qpwhich is equivalent to (22) plus the
statement that

M,„'/Md '=Mqp'/Md„'. (23)

In principle, it is possible to test (23) experimentally.
The left-hand side could be determined by a measure-
ment of 0.„, using polarized neutrons and a polarized
deuterium target, but this would be a very dificult
experiment. "The right-hand side would also be very
dificult to determine from a scattering experiment but
can be found more easily from the time distribution and
absolute yield of ganuna rays from ppd fusion, as we

shall show in the next section.

IV. CAPTURE FROM THE QUARTET STATE

In the last section we saw that Mp y ~q~ y ~dy
3Eqy are quantities that can be determined experi-
mentally, although only the combination Mp'jdpMq„'
is presently known with any confidence. The purpose
of this section is to show how one can determine not
only the statistical combination —,'Md„'jpMq„', but

"The electric quadrupole contribution has been shown to be
negligible: N. Austern, Phys. Rev. 85, 147 (1951).See also Ref. 10.

"F.T. Jurney and H. T. Motz (unpublished).
"M. R. Yeariau (private communication).

p= 2Mq„'/Md„' 2q„/d„. —— (24)

A(0) =5(-',d„„—q&
—ap),

B(0)=d „3(nqtjPdr j—Xp),

C(0) =d.,—3(Pqf jndr j)Ip),
D(0) = p~-—(~fj4).

(26)

The fusion rate at time l is

rp (t)=q„A j(nq, jPd„)Bj(Pq„jnd„)Cjg„D. (2'I)

From (26), (27), the initial populations, and the fact
that n+P=1, we obtain

~,(0)=Sq„j4~„ (2g)

By definition, we have dy d„+d „and qt
——q„+q„„.But-—

we have" q„„=0 by the electric monopole (EO) selection
rules; hence q~= g„.Thus for a given value of e we have
no more degrees of freedom than we did before.

As in Sec. III, we take A (0)=5, B(0)=C(0) =3, and
D(0)=1 for the initial populations of the four ad
hyper6ne states. The differential equations are

A(t) = (5/12)d „(PB+nC+D) (qt jh.g)A, —
B(t)= prd „(PB+nCjD)—(nqr jPdt jap)B,
C(t)=prd„„(pBjnC jD) (pqt jndf jap—)C,

(25)

D(t) =—,', d „(PB+nC+D)—(dr j)tp)D.

Substitution of the initial populations into (25) yields
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n„(0)=Sq„(sd „—B)+(nq„+Pd, )[d„,—3(n&+Pdr)] Solution for the Fusion Rates

+(Pq.+ nd.)Ld- —3(Pq~+ndf) J The problem formulated above is as follows: n, p, e,

yd pd d ) y, (8q+4d ) (29) Xf„and g are constants. First find d„d„„,and q, in the
approximation that

Substituting q„ for qr and d,+d„„for d~ in (28) and. (29),
and using (24) to eliminate q„we obtain

n, (0)=4d„(1+e), (3o)

n„(0)=—4d, [Rd„+Sd „+Xp(1+e)g, (31)

where

3 (e )' (eR=—'."+-
I
n-+P

I +I P-+n
I

+-'
&2 )

(32)
3 tt'e ) (eS= ', (1—+—e)y PI ~-+P I+nI P-+n

I
+-,'.

i
Substitution of (13) into (12) yields

2 gr
P,= — — +—

3 d„+d„„+ho 3 q„+ho

dnr
I' .=——

3 d~+dn~+ "o

which comes from setting n=1, P=O in (36).Then use
the approximate solution to 6nd the exact one.

Introducing the auxiliary quantities 8= (1—g)/q and
s=q„/(q„+Xp), rewriting (35) as 8=P,/P„„, and sub-
stituting (37) into this latter equation, we obtain

(8—2s) d„„=d,+2s(d, +&p) . (38)

[8(Xp+-', ed, )—ed,$d.,=d,(Xp+-', ed,)+ed, (d,+&p). (39)

From (24) and the definition of s, we have 2z=ed„/'+ ' r*' ( ) (X +-'ed ). Substituting this expression into (38), we

Equation (11)defines X,(/), and (33) defines Xf, in terms
of X,(0). From (11), (30), (31), and (33), we obtain

Rd,+Sd„„=0.76607Xf,(1+e) . (34)

Equation (34) is a linear relationship between d„and
d„„,for fixed n, P, e, and Xy,. In order to determine d„and
d „we need one more equation, which we get by Gxing
the value of g. Experimentally, g is dehned to be the
fraction of fusion events which go by the nonradiative
mode. If e/0, then we no longer have g= d „/(d„+d „)
as we did in Sec. III, but rather

g=P /(P.+P ) (35)

where P„and P„„are the probabilities that a ppd will
undergo fusion by the radiative and nonradiative modes,
respectively:

1 d, 1 nd„+Pq„Pd„+nq,—+- +
12 df+Xp 4 ndj+Pqr+Xp Pdf+nqg+Xp

5 q„+—,(36)
12 qr+Xo

d&r 1 edr Pd„„

12 dz+Xo 4 ndz+Pqz+Xp Pd f+nq/+Xo

The needed equation is obtained by substituting (36)
into (35) and eliminating q, = qy by means of (24). How-
ever, these substitutions lead to a quartic equation for
d„(or d„„),which is difficult to solve exactly. An easier
approach is to make the approximation n=1, P=O in
(36), so that we only have to solve a quadratic equation
in d„. We shall see that once we have found the solution
in this approximation, the exact solution can be found
by an iterative scheme.

Solving (39) for d„, and substituting the resulting ex-
pression into (34), we obtain a quadratic equation for d„:

ad„'+bd, +c=0,
where

a= ——,'Se—Re(-', 8—1),
b = —SXp(1+e) —RS,p

+e(1+e)(xp8 —1)(0.76607k ye), (40)

c= (1+e)(0.76607Xy,)Np.

The correct solution is the one which reduces to
d, = —c/b when e=0:

d, = 2c/[ —b+(b' —4ac)'~'). (41)

To summarize, the approximate solution is found as
follows: Rand S are found. from (32), and 8= (1—g)/g
is evaluated. Then a, b, and c are computed from (40),
and d„ is evaluated from (41). Finally, the other rates
(d„„and q„) are obtainedfromd„by solving (34) and (24).

The exact solution is found as follows: The approxi-
mate solution is found by the method described above,
but with p replaced by an arbitrary number p'. The
values of d„, d„„,and q„so obtained are used to calculate
a different value of q (call it q") by means of (35) and
(36). Then p' is replaced by z'+z q". The whole—
process is repeated several times, until p" is very close
to p. At this point we have (very nearly) the exact
solution, because the rates satisfy both (34) and (very
nearly) (35), where P, and P„„are given by the exact
expressions (36) instead of the approximations (37).

We have computed the exact solution for the same
values of n, p, g, and Xf, as appear in Table II, but for
e= 0.1, 0.2, and 0.3. For each set of values of n, P, g, and
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TAsLE III. Dependence of o, and Y~ on n, P, q, and $. and 1.7S. In any case, Eq. (22) still holds approximately
for our estimate of 0,„.

Twice the ratio
of the quartet
to the doublet
radiative rate

0.1
0.2
0,3

0.1
0.2
0.3

0.1
0.2
0.3

0.1
0.2
0.3

Interpolated Factor by
value of which 0;

increases

(i) +=0.86, p=0.14, g=0.15

0.333 1.28
0.354 1.55
0.365 1.80

(ii) n= 0.86, P= 0.14,

0.336
0.359
0.373

0 =0.19

1.28
1.57
1.82

(iii) a=0.923, P=0.077,

0.324
0.350
0.367

q =0.15

1.30
1.62
1.91

(iv) o. =0.923, P =0.077, q=0.19

0.326 1.30
0.354 1.63
0.374 1.94

Total yield
of gamma
rays Y~

0.145
0, 175
0.201

0.141
0.171
0.198

0.131
0.161
0.189

0.127
0.156
0.185
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APPENDIX A

In this Appendix we compute the matrix elements of
the kinetic and potential energy operators (whose sum
is the Hamiltonian) and of unity, between two S states
N(rt, rs, rts), w(rt, rs, rts), each of which is of form" (3).
The matrix elements of the potential energy and of
unity can be written down immediately in terms of the
coordinates introduced in Sec. II. In atomic" units,
we have

I'= (ll (1/mls) —(1/rt) —(1/rs) I ~&, U =(Nl ~), (A1)

e, we have interpolated )tf, (as in Sec. III) to make
)t, (3 psec) agree with Ref. 21. The interpolated values
of A, ~ appear in Table III, along with corresponding
values of the total yield F~, and the factor by which
rsd, +ssq„ increases over its value at e=0. This latter
quantity is also the factor by which the estimate of
O.,„in Sec. III increases.

From Table III we see that F~ increases rapidly with

e, but is relatively insensitive to g. Thus an accurate
measurement of Y~ would yield an accurate value of e,
even though p is only known to an accuracy of about
15/o. Prom Table III, we also see that variations in
n and P have a greater effect on I'~ (for fixed e) than
variations in g. Thus, in order to determine the relation-
ship between e and I'„it is more important to know the
muon-nucleus overlaps in pied (which determine rr and P)
than to improve the measurement" of the yield of
rejuvenated muons (from which rf is derived).

From the measured" value I"~=0.14+0.024, we see
that &&0.25, and that our estimate of 0-,„ in Sec. III
should be multiplied by a factor somewhere between 1

where the integration is with respect to the volume
element discussed below Lsee (A7)].

For the kinetic energy, we start with coordinates r12
from nucleus 1 to nucleus 2, and r» „from the center of
mass of 1 and 2 to the muon. The kinetic energy sepa-
rates in these coordinates; it is"

1 f'1 1~ t' 1 1q
7 =—

l

—+—l~»'+
l +—

l
~»,„', (A2)

2 km, m, ) km, ym, m„)

where the symbol V' with a subscript always means
gradient with respect to the corresponding vector. A
linear transformation of coordinates yields

T= ——',
l (1/mt+1/m„)V'is

+(1/ms+1/m„)Vs'+(2/m„)V, Vs], (A3)

where r1, r2 are vectors from nuclei 1 and 2 to the muon.
To compute the matrix element of T, we make free

use of integration by parts. Our functions fall off
exponentially at large distances, so there are no surface
terms. We obtain for the matrix element

1
T——

2

t1 1 t1 1q 1
l

—+—(~») (&»)+I —+—l(~») (~se)+—L(~») (~7»)+(~») (~»)j dr, drs. (A4)
(mt m„ &ms m„) SSp

Introducing unit vectors r1, r2, 812 in the directions of r1, r2, and r1—r2, we write down the identities

~1~1 ~1, ~2~2 ~2 ~1~12 ~12 ~2~12 ~12 ~

By the chain rule, when operating on 5 states, we have

~1 rlcll+f 12f)12 +2—rsr)2 fisc)12 (AS)

"Integrals of this form can also be evaluated by means of courier transforms. See L. I. Schiff, Phys. Rev. 125, 777, Appendix (1962).
"In atomic units, the electronic charge and mass are 1, and the masses of the muon, proton, deuteron, and triton are 206.77, 1836.12,

3670.4, and 5496.8, respectively. Also 1 a.u. =27.2098 eV.
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where al, a2, al2 are partial differentiations by rl, r2, and r12. From (A4) and (A5), we obtain

(1 1 tI' 1 1 )1 1q
I

—+—(a )(a )+~ —+—(a )(a )+I —+—)(a )(a )
km, m„ &m2 m„ Em, m2)

rl'+r2 r12 rl +r12 r2
+ [(alQ)(a22I)+(allI)( a2 I)]+ [(all)(a12&)+(al~)(a12+)1

2m prlr2 2mlrlr12

r2 +rl2 rl
+ [( a@2)( a] v2)+ (a21I) (a12N) j d'rid'r2 (A. 6)

2m2r2r] 2

(A7)d~= 8~'rlr2r12drldr2d 12 ~

lip to this point our treatment has been valid for any bound S states. We now specialize to functions of the form (3):
N,=exp[ S(Arl+Br2+Cr12) j, 2I=exp[—S(A'rl+B'r2+C'rl2)). (AS)

From (A7) and (AS), Eqs. (A1) and (A6) become

Integration over the irrelevant coordinates (e.g. , three Euler angles) in (A1) and (A6) has the effect of replacing
d'rid'r2 by the volume element

V = 8g 2 rlr2r12e
—s (m"1+n"2+y "&2 drldf 2dr12

U=Sm' (rlr2 —rlr12 —r2r12)e &~"&+""2+&'»&drldr2dr12,

(A9)

T=4Z25'-
1 1l 1 1 1 11 1—+—~AA'+ —+—BB'+ —+—~CC' rlr2'r12+ (AB'+A'B)(rl +r2 rl2')r12

ml m) m2 m„m, m2) 2m„

where

+ (AC'+A'C)(rl'+r12' rl')r2+ —(Bc'+B'C)(r22+r122 —rl')rl e e&~"'+""'+"""'Idrldr2dr12,
2ml 2m2

m= A+A', ll =B+B', p= C+C'. (A10)

%'e introduce an auxiliary function

I(m, 22,p) =- exp( mrl —«2 p—r12)d—rldr2dr12 ~

2
(A11)

This integral is most easily evaluated in perimetric coordinates

2(rl+r2 r12) V 2(rl+r12 r2) 2 2(r2+r12 rl)

which run independently from 0 to ~. One obtains

I(m, 22,p) = 1/[(m+22)(m+ p) (22+p)J. (A12)

Differentiation of the right-hand side of (A11) by m, 22, or p, is equivalent to multiplying the integrand by —rl,
or —r12 respectively. Hy exploiting this fact, we can represent the matrix elements (A9) as linear combinations

of derivatives of I:
U= 82r2S'a a„a~I(m, 2—2,p),
U= Svr2$'(a„a aa„a„a~)I(m—,22,p), —

1 1) (1 1 (1 1) 1r= —4 2s' —+—~AA'+~ —+—BB'+~ —+—~cc' a a a + (AB'+A'B)(a '+a '—a„')a„
ml m) km2 m„kml m2) 2m„

+ (AC'+A'C) (a '+a~2 —a„')a„+ (BC'+B'C) (a„'+a~2 —a ') a I(m, 22,p) . (A13)
2m1 2m2
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The combination of (A10), (A12), and (A13), yields the
matrix elements as rational functions of A, 8, C, A',
B', O'. From (A12), it is clear that the integral in (A11)
converges if and only if m+e, m+p, and e+p are all
positive. For this to be the case, the condition mentioned
in Sec. II is clearly sufEcient. For the diagonal elements
of (3) to be dered, that condition is also necessary.

It is convenient to express G in terms of auxiliary func-
tions which are slightly different from those of Ref. (10):

(—x)"e—*dx

*=(rx+r2)/ri2, y= (ri —r2)/r12

the volume element is

dr„= ,'err»2(x2 —-y')dxdy.

From (2), (3), and (81), we obtain

(&1)

(»)

N N
&2= P P X;X;expL —S(C;+C;)r»—(a;;x+P;;y)rg2],

i=1 j=l

APPENDIX 3
In this Appendix, we evaluate the integral in (7), for

f of the form indicated by (2) and (3). In elliptic
coordinates

P2(n) = e—/n

P2(a) = (n'+2n+2)e- /n',

W2(P) = sinhP/P,

W2(P) =L(P2+2) sinhP —2P coshPj/P'.

(Il~)

Substituting (82) and (83) in (7), and then using (BS),
we finally obtain

These integrals are most easily evaluated by noticing
that P„ is the nth derivative of Po with respect to n,
and similarly for O'„. We shall need only the following
cases:

where
ng= 2S(A;+A;+B;+B;),
P;;=-,'S(A;+A; B;—B;). —

(Il3)

(B4)

N

G(r$2) jQ Q X'Xj27ff» exp) S(C~—+C;)r»$
i~1 j~l

&& 5~2(am~») If'2(P'~r») —&o(aor»)~'2(P' r») 3)'" (&7)


