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Couyled Equations for Rearrangement Collisions*
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An exact set of coupled inhomogeneous equations for rearrangement collisions, analogous to the coupled
equations used in ordinary scattering, is derived. The boundary conditions are obtained from the integral
equation for scattering. The solutions describing rearrangement are the particular integrals and contain
none of the complementary function. Both truncation procedures and distorted-wave approximations are
discussed.

INTRODUCTION

'HE coupled equations method is well known as a
technique for treating elastic and inelastic scat-

tering. ' It is quite straightforward using this technique
to isolate the channels of interest and write down a set
of coupled equations for the chosen channels, while

ignoring the remaining channels. As pointed out, for
example by Mittleman, ' a similar procedure in the case
of rearrangement collisions, while formally allowed, has
not seemed practicable because of the complexity of
the projection operators involved in selecting the initial
and final channels. The reason for this complexity is that
the projection operators in the initial and final states
are not orthogonal. Mittleman has given another
method for selecting the initial and final channels, '
but his method suffers from the same problem as pre-
viously encountered, viz, the complexity of the required
projection operator. In fact, to use this method, as
Mittleman. has noted, requires solving two integral
equations as a preliminary to solving the pair of coupled
channel equations describing the rearrangement.

Ke present in this paper an alternative means for
obtaining coupled equations for rearrangement collisions
that appears to be much less complex than other
methods. Although we also use projection-operator
techniques, the operators themselves are the same as
those encountered in nonrearrangement problems. The
equations are seen to be no harder to solve for the re-
arrangement case than for the case of scattering, since
the same projection operators are used. The usual
uncertainty of only imprecisely known wave functions
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(Prentice-Hall, Inc., Englewood Clips, New Jersey, 1965); or
A. Dalgarno, in Proceedings of the Third International Conference
of Atomic Plectronic Collisions, edited by M. R. C. McDowell
(North-Holland Publishing Company, Amsterdam, 1964), p. 609.
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and/or interactions is no more of a problem for re-
arrangements than for ordinary scattering, and hence
the method will permit one to calculate results as ac-
curately as in this latter case.

The method we use is derived from, and is an ex-
tension of, a technique used to derive coupled equations
for the scattering of a particle by a system of identical
particles. ' In that work, it was found that the exchange
contribution to the scattering was entirely contained
in iehomogeeeous terms in the coupled equations. Since
exchange effects are equivalent to rearrangements
(because of the relabeling), one might expect that a
pure rearrangement process could also be discussed in
terms of an inhomogeneous equation. We show that this
is indeed so, using two alternative, but related, means
in the following work.

We do not isolate in our method one initial and one
final channel coupled together, 4 Instead we retain the
incident wave of the initial channel as the "source" of
an inhomogeneity in the coupled equations for all final
state channels. In effect, we expand the scattered wave
in eigenstates of the final unperturbed Hamiltonian and
then solve. That is, we describe a situation in which a
true rearrangement necessarily occurs and is measured,
and we use the states of the final unperturbed Hamil-
tonian as our expansion set, since one (or more) of
these states will be detected.

For most of our discussion, we ignore the possibility
that the projectile and target and also the reaction
products may contain identical particles. Exchange
eGects are briefly discussed at the end of this work. Only
two-body collisions are considered.

INTEGRAL-EQUATION FORMULATION AND
BOUNDARY CONDITIONS

We assume that the Hamiltonian for the system may
be broken up in a variety of ways into perturbed and
unperturbed portions:

H =H,+Vo = He+ Ue =

where a and b denote specific groupings of particles and

e F. S. Levin, Phys. Rev. 140, 31099 (1965). We denote this
work by I.

4 This is the treatment followed by Mittleman (Ref. 3) and also
in many atomic-collision processes (such as charge transfer) when
the projectile and target have comparable masses.
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COUPLED EQUATIONS FOR REARRANGEMENT COLLISIONS

V„V~ are the interactions between the pairs in these
groupings. As a specific example, we may imagine that
a corresponds to d+C" and b to a+8'p. We also assume
that

H =h,o+T

scribe rearrangement collisions. ~ We now show how. to
convert it into a set of coupled, inhomogeneous, dif-
ferential equations in the final state group of channels,
which we have denoted by P. We project with Pp and

Qp on both sides of Eq. (7), yielding
and

&b= be+2'e,
and

Pp+ =Ppri+ (E+ Hb) —'PpV —
b(Pp+Qp)%' (Sa)

where h is a Hamiltonian for the internal motion and T Q+=Q.+(E'—~)-'Q V (P+Q)+ (Sb)
is the kinetic-energy operator for the relative motion
of the pair described by h. corresponding to the where we have followed the notation of I, and have

Hamiltonian h are complete sets of states (y) and
energies e. r) =C p+ (E+ Hb) '—(V, —

Vb)C o—. (9)

rib&&=.I ~&.

We have (q, bp )=b, (happ, q p ) = happ, and (q~, ppp) W0.
Finally, we define the projection operators Pp, Qp.

Pp=Z'I ~p& &~pl,
Qp=i —Pp,

where the prime on the summation in (4) means that
we choose a restricted set of states (or channels) among
the (happ). Generally, Pp will contain only bobbled states
of hb. A similar pair of operators P,Q can also be
dehned, though we shall not need them.

We suppose that the scattering event is initiated by
the collision of a pair in state p, . The initial state is
then Co= p pXexp(ik r,), where k is the incident wave
number defined by h'k'/2 ,1e=E—e, with E the total
energy and p the reduced mass for the grouping in a,
and r is the relative coordinate vector of the pair
forming a. The total scattering wave function + is
generated from'

+=pe(E+ H) 'C p, — —

where E+=E+ee and lim e —+ 0 is to be taken after
relevant integrations have been performed.

If we use the expansion

(E+—11)-i= (E+—a )-iLI+V.(E+—a)-'], (6)

valid for operators with inverses, then substitution of
(6) into (5) leads to the usual Lippmann-Schwinger
equation' for 0', which is appropriate for a coupled
channels analysis of the nonrearrangement problem.
Since we wish to consider the case of a rearrangement,
we expand (E+ B) ' in terms of (E+ I—Ie) ', the prop-—
agator appropriate to the rearranged system. That is,
as noted above, we assume that the scattering system is
detected in states of h~. Thus, changing the subscript
a to b in Eq. (6) and substituting into (5) leads to

Cp+(E+ Hb) i(V~ Vb)Cp+(E Irb) iVb+ ~ (7)

Equation (7) was first derived by Lippmann to de-

~ This equation is given by M. Gell-Mann and M. L. Goldberger,
Phys. Rev. 91, 398 (1953).' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

Tp =&CplV le@'&, (10)

with Cp=yp exp(imp rb), in a notation analogous to
that used for Co.

Equation (Sa) gives us the asymptotic boundary
condition on 4 in the bound P channels:

Pp%'~outgoing waves only (11)

since Ppri=0. Similarly, Qp@' obeys an identical bound-
ary condition if any open P channels are included in

Qp, otherwise, Qp@' decays exponentially. We have
assumed, of course, that at least one channel in Pp is
open. If three-body channels were open and were
included in Pp, then (11) would be modified to include
a plane-wave component in the three-body channels.
It is evident that the amplitude (10) can be derived
from (Sa) and (11).

The exact set of coupled equations for the Pp@'
follows on solving (Sb) for Qp&. The procedure is
straightforward and yields

Qp'p=l I+(E+ Hb QpUb) 'QpVbfg—pr)—
+ (E+—Hb QpVe) 'QpUePp+. —(12)

Substituting Eq. (12) into Eq. (Sa) then gives

Pp@= (E+ IIb) 'PpU(b)Pp%- '

+(E+ ») 'Pp—U(b)Qpn, (13)
where

U(b) = Ub+ Ub(E+ Hb QpV b) 'QpV—
b

—(14)—
is the optical-potential operator for distinguishable
particle scattering. The differential form of Eq. (13) is

Pp/E lib U(b)]Pp%'=PpU—(b)Qp—rI. (15)

In I, we showed that the term Qpri, for the case of a

7 B.A. Lippmann, Phys. Rev. 102, 264 (1956).
The term Qpg is not zero, as discussed in I.

9 See, e.g., H. Feshbach (Ref. 1) or H. Feshbach, Ann. Rev.
Nucl. Sci. 8, 49 (1958).

We now assume specifically that Pp contains only
two-body bound states. For this case, as indicated in I,
Ppri=0. The vanishing of Pprl (for bound states oc-
curring in Pp) was first shown by Lippmann, " s when
he derived the amplitude Tp for the rearrangement
collision process:
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sing]e particle in the projectile, could be transformed.
The method used in I is applicable in the general case,
if it is assumed, as we have done, that Pp contains only
bound two-body states. The result of applying this
method" is

PpU(b)Qprf=Pp(tE Hs—U(—b) jPpC s+PpU(b)C. s, (16)

where
U(b)= V,+Vs(E+ Hs Q—pVs)—'QpV, . (17)

Comparison of Eqs. (14) and (17) shows that U(b) and
U(b) differ only in the interactions appearing on the
extreme left and right. This is natural, since U, is the
proper interaction for the state C'o. Substituting (16) into
(15) finally yields the set of coupled equations of
interest:

P,Lg—H, —P(t) jP,(e—C,) =PpU(b)Cs, (18)

the right-hand side of (18) is assumed to be known and
we need only use the property (q p, q p ) =bpp. to obtain
equations for Pp(%—C s). One quadrature then provides
Tp . This is also true of approximations, as we shall see.

The amplitude Tp for the transition ns —+P is ob-
tained directly from (19):

T'p = (Nspt —
&ppjUQ) iC'o),

where uI, ~( ~ is the ingoing-wave solution of

Pp[E Hs —U(b) j—Pp(%' —C p) =0
that has a plane wave in channel p with energy gp
=&'k'p/2p, =E ep. Equ—ation (20) is an alternative to
Eq. (10); these two forms for Tp are easily shown to be
identical. If we assume that U(b) =V„ then we have

&p =«sp' 'qp(V. )C'o). (21)
This is similar to a distorted-wave amplitude in the
theory of direct nuclear reactions, which we shall con-
sider in the next section.

In practice, one will not be able to determine either
u&p' ' or U(b) exactly and approximations will be used
instead. One approximation, common to nonrearrange-
ment collision problems, is to include only certain
channels in the calculation; i.e., carry out a truncated
coupled channels calculation for functions PpX that will
approximate the P'p+. That is, we suppose that the
channels in Qp are the ones to be ignored. Then the set
of coupled equations to be used when only the channels
in Pp are considered is obtained from Eq. (18) by drop-
ping the terms with Qp, giving

which is recognized as an irIhorfIogerleogs differential
equation, for the scattered wave +—Co in the channels
of Pp.

A formal solution to (18) is easily obtained. Let
PpGPp be the outgoing wave Green's function delned by

PpGPp =PpttE+ Hs U('b) )—'Pp—. —

Then the solution describing the regrrarlgemeet process
is given by

Pp+=PpC p+PpGPpU(b)C p, (19)

which is recognized as the Particular solution to Eq. (18).
The complementary function is not included since we
do rot have an incident source of waves in the channels
P'p. %e also note that PpC 0 gives no Qux asymptotically,
since Pp has only bound states of h& and we have im-
plicity assumed that in the transition ns —+ P there has
been either a transfer of at least one particle or a re-
labeling of particles. That is, Pq40 decays exponentially
in a/1 of the channels included in Pp.

By iterating Eq. (13) after Eq. (16) has been used to
eliminate the Qpr) term, a solution identical to Eq. (19)
is obtained. In this latter form the solution (19)may be
more easily understood, since the boundary conditions
are automatically speci6ed in the integral-equation form
of (13).It is evident from (13)and (16) that Pp@' has no
incident waves in the two-body bound-state P channels.
Since the iteration of (13) produces (19), it is thus
clear that we must, because of the boundary condition,
choose (19) as the proper solution to Eq. (18).

Equations (18) and (19) are seen to verify our com-
ments in the Introduction that the rearrangement col-
lision problem may be treated in terms of an inhomoge-
neous equation. In such a framework, of course, we do
not need to consider the fact that (imp, y ) AO. That is,

PpN —H&—V,)Ppx=PpV. C'o. (22)

We again assume that only two-body bound states
occur in Pp"so that the P'pCO terms may be ignored, as
before. This approximation will be valid when both the
QpVsPp and QpV, Cs matrix elements are small.

If the inhomogeneity in (22) were set equal to zero,
we would simply have the usual truncated set of coupled
equations for scattering processes. It is the presence of
the inhomogeneity that specifies the rearrangement. Of
course, we must also impose the same boundary con-
dition on PpX as we did on P'p%':

PpX outgoing waves only.

Thus, in analogy to Eq. (19), we may write

(23)Ppx=PpBPpV, C p,

PpBPp=Pp(E+ —H) 'Pp
where

(24)

is the full Green's function for the problem in the re-
stricted space of the channels included in Pp. The so-
lution (23) corresponds to keeping only the particular
solution to Eq. (22), analogous to Eq. (19). The same
result is obtained from iterating Eq. (13) if first Eq.
(16) is used and then all terms in Qp are dropped.

The rearrangement amplitude T'p ~ arising from Kq.

' The steps involved in this transformation are as follows:
First, write U(b)Qp= U(b) —U(b)Pp. Then use an equation similar
to (6) to transform U(b)Qgq to LVq —V,+U(b))j4Using the.
properties of Pp to write Pp(V p Ve)C'o =Pp(E—Hp)C o, and-
eollecting all terms, gives (16).
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(23) is found to be

(25)

with &&op&
& the solution of Pp/E HjP—pX=O analogous

to NI, &( ~. In practice, using available electronic com-
puters, the amplitude Tp ~, or its partial-wave compo-
nents, should be no harder to obtain than the phase
shifts or S-matrix elements of the simpler scattering
problem given by Pp[E H/Pp—X=O. These latter
scattering parameters will, of course, be present in Tp ~

through the solution of v~~' ). Precautions will have to
be taken to ensure that none of the complementary
function is present in the numerical solution, but
this can be done using the known boundary conditions
and normalization on the v»( & to subtract out any such
components.

SCHRODINGER-EQUATION FORMULATION

In deriving the results of the preceding section, we
required P'p to contain only bound states. Let us now
assume that Eq. (18) holds for arbitrary states of Hp
included in Pp. If we include all states of H~ in Pp, so
that Pp ~ 1 and Qp

—+ 0, then U(b) —+ V p, U(b) —& V„
and Eq. (18) becomes

(E—H) (e—C,) = V.C, . (26)

But if we note that (E—H )Cp=0, then (26) is im-
mediately seen to be an alternative form for the
Schrodinger equation (E—H)%'=0. This suggests that
(18) may have a greater range of validity than implied

by our derivation. We now show that (18) Land (22)j
may also be derived from the Schrodinger equation,
using (26).

The method we follow is obvious. We use (E H)%'=0, —
and add to each side of this equation the term V 4'p,

where Co is the incident wave, so that @—Co is the scat-
tered wave. We thus regain Eq. (26). Inserting a com-
plete set of states Pp~ qp) &&pp~ =Pp+Qp into the
left-hand side of (26) and operating on both sides of the
resulting equation with Pp gives

Pp(& Hp Vp)(Pp+Qp)('0 ——C'o)—=PpV C'o. (27)

Similarly, we may obtain

(E—H) (e—A, &+&) = (V.—V)A, &+&. (29)

This equation may be handled exactly as was Eq. (26).
We now find for the truncated set of coupled equations

Pp/E H VpjPpt =P—p(V—,—'U)Ap&+', (30)

with Ppl denoting the approximate wave function and
Pp assumed to contain no three-body channels. Equation
(30) is to be solved in the same manner as Eq. (22).

The full solution to (29) for Pp(4 Ap&+&) is obtained-
fl om

solving (28) for Qp(%' —Cp) using the outgoing-wave
boundary condition and substituting the result into
Eq. (27). We then obtain Eq. (18) with U(b) and U(b)
as defined in the preceding section. YVe note now that in
the preceding derivations, we have nowhere used the
assumption that Pp contains only two-body bound
states Lthis assumption will only enter the specification
of the boundary conditions on Pp(%' —Cp)g. Hence, Eq.
(18) appears to be valid for arbitrary final-state
channels.

It is perhaps important to stress that although the
approximation of ignoring the channels in Qp, which
gives Eq. (22), can lead to tractable problems, there is
no guarantee that inclusion of more and more states
in Pp will give a result that rapidly converges to C. We
are unable to assess either the rate of convergence, or
the accuracy of the approximation 0 =P'p+. It is to be
hoped that inclusion of highly excited states is un-
necessary when E—e, is small, since such states are
far off the energy shell, but this will have to be deter-
mined in particular cases, if it is indeed feasible at all.

One possible means for improving the accuracy of the
approximation +=Pp@' is to attempt to include some
of the interactions, or effects of the interactions, in the
initial wave function Co. This may be done using dis-
torted waves. Let 'U(r, ) be a single-particle potential
depending on r, and let X(+~ be scattering solutions in
this potential:

LT.+~(r.)$& &+&= (E—...)Z&+&.

Now define Ap&+&—=p o&&.
&+&. Then, in analogy to Eq. (26),

we may write

Q [E H V$(P +Q )(4——C ) =—Q V,Co. (28) PpÃ H~(—&)jPp(+ Ao"&) =—PP'(f&)Ao&+&, (31)

Equations (27) and (28) are a set of coupled channel
equations for rearrangements which are to be solved
according to the boundary conditions discussed in the
preceding section. The analog of the usual truncation
procedure of scattering theory is to drop the Qp terms
in Eq. (27), which gives Eq. (22):

Pp(E Hp Vp jPpX= PpV,C p—. — (22)

The set of equations given by (22) was discussed in
the preceding section and is the basic truncated set of
coupled equations for the rearrangement collision
problem. However, we also easily rederive Eq. (18) by

where
IV(&)= $1+(E+ Hp QpV 5—) 'j(—V 'U) . (32)—

Using the boundary conditions specided in the preceding
section, we find the exact rearrangement amplitude
Tp to be

2p.=&pi.p&- &p(IVg)~Ao+», (33)

where the definition of
u op&

' is given following Eq. (20).
Comparing Eqs. (20) and (33), we deduce the relation
IvV(b)Ao&+&=U(b)Cp, which is the analog of the well-
known T-operator equation, which in our notation is

C'0= ~
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The distorted-wave approximation to Tt& of Eq. (33)
is given by keeping only the term (V,—'U) in W(b).
Denoting the resulting amplitude by Tp ~w, we have

Ttt w= (Ns & &pt&( V,—'U~Ap+), (34)

which is the familiar form used in deriving, for example,
the (d,p) amplitude in the distorted-wave approxi-
mation. " Equation (34) should be a good approxi-
mation whenever the matrix elements Qp(V, —'U)Ao&+&

are small compared to Pt&(V,—'U) Ao&+&. Judicious
choice of '0 may help to effect such a situation. It
should be noted that Ng~( & is a wave function in a
complex potential, the imaginary part arising from
the possibility of real transitions to states pt&, P WP.

We have not commented on the possible difficulties
that may be encountered by expanding Eq. (10), (20),
(25), (33), or (34) as a power series" of amplitudes in
the interactions Vq and V,. It is our contention that
such a discussion is unnecessary here, since the only
practical calculations we have in mind would be based
on Eq. (25) or (34), as modified by the replacement
Nl„~~

—'~eI, &~ &. These amplitudes could be obtained
either by solving the homogeneous portions of Eq. (22)
or (30), and then carrying out a single quadrature, or
else by solving Eq. (22) or (30) directly, using in both
cases a computer to determine solutions and to extract
T-matrix elements. Since divergences of the sort found

"The distorted-wave model of direct nuclear reactions has
been reviewed recently in many places: W. Tobocman, Theory oj
Direct 7&'ttccfear Reactioas (Oxford University Press, London,
1961);N. Austern, in Selected Topics in Nuclear Theory, edited by
F. Janouch (International Atomic Energy Agency, Vienna, 1963);
N. Glendenning, Ann. Rev. Nucl. Sci. 13, 191 (1963); G. R.
Satchler, Nucl. Phys. 55, 1 (1964).

"R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121,
319 (1961).Other problems that arise in connection with lim e -+ 0
of Eqs. (5) or (7) have been noted by L. L. Foldy and W. Toboc-
man, i' 105, 109.9 (1957) and S. T. Epstein, ihid. 106, 598
(1957).The discussion of these latter authors, in our terms, deals
with the ambiguities that can arise when solutions of the homoge-
neous ortions of (16) t or (22)g are not excluded from (19)
)or (23 g. Extensions and amplifications of these works are given
by E. Gerjuoy, iMd. 109, 1806 (1958) and Ann. Phys. (N. Y.) 5,
58 (1958). We differ, of course, with Gerjuoy's consistency
requirement that r& of Eq. (9) vanish for all P channels (see the
6rst of the articles cited above). As we have argued in I, only
P~=O when Pp contains only bound two-body channels.

to occur in expansions of rearrangement amplitudes do
not seem to occur in ordinary coupled channel calcu-
lations of scattering, they should similarly not occur
in the type of coupled channel calculations we are
advocating.

So far, we have ignored the efIects of the Pauli
principle. We now indicate how our results are general-
ized to include exchange effects. The change in the
equations so far derived is trivial, as we shall see, but
the actual task of evaluating the additional matrix
elements arising from exchange is seen to be no less of
a problem than at present.

We follow the methods used above where we sub-
tracted the incident wave from +, only now we assume
that all particles in the projectile and target are
identical. The incident wave must, therefore, be
antisymmetrized:

(35)

where Co is the antisymmetric part of Co. Explicit
formulas for Co~ in terms of the relabeling of states
p, are easily determined. In place of (26), we now
have, using (35),

(E H) (O' —C'o") =—6{V C'o}, (36)

where V, is the interaction for a specific labeling in Co
and 8 is an antisymmetrizing operator. All the terms
in C o~ are source terms (in one or another of the different
sets of channels defined by the relabelings); we thus are
subtracting from 4 the total incident wave. The scat-
tered wave 4—Co, projected onto the P channels, can
now be treated exactly as above to give either the exact
set of coupled equations and scattering amplitudes, or
any approximation thereto of the sort already dis-
cussed. In this case also, only the particular integral
should be retained as the solution to the inhomogeneous
rearrangement equations. A similar analysis can be made
starting with the integral equation Co as the source
term. With very few modifications, this approach can
be used to discuss elastic and inelastic scattering of
identical particles. This latter topic will be treated
elsewhere. "

"F.S. Levin (unpublished).


