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The method of correlated basis functions provides a means of systematically exploiting our intuitive
understanding of real physical systems. Here we seek especially to develop a formalism for describing
systems of strongly interacting fermions, for example, nuclei and liquid He', using a complete set of cor-
related functions %I=FC m/ (4 m F%~) ~ .F is taken as a product of two-body factors, 11;&,f(r;;),the f(r;;) em-
bodying at least the correlations arising from strong short-range repulsions; and (4I},a set of independent-
particle-model functions which might serve as a basis in the absence of highly singular interactions. The
matrix elements@~» Rmn of the Hamiltonian and identity operators with respect to the correlated basis
(N~) are evaluated by generalization of cluster-expansion techniques developed originally for the calculation
of the partition function of a classical imperfect gas and adapted to the quantum-mechanical many-body
problem by Iwamoto and Yamada. Contributions to our expansions for the@ n are classified according
to order of magnitude in the quantity our, where ca =J'(P(r) —1)dr is a "correlation parameter" and p the
average particle density. To the extent that ( pcs

~
is small, it provides a true expansion parameter. A detailed

technical discussion of the cluster expansions is given, with special emphasis on their symmetry properties
upon truncation. Although the many-body problem is soluble by simultaneous diagonalization of the
matrices g@~ P and ggtmeg, it is preferable first to transform to an orthonormal basis of "unperturbed"
correlated functions (O~) with respect to which the Hamiltonian and identity operators have the matrix
representations gH~~ P and QN~e P = 0~„$,and then to attempt the separate diagonalization of gH~„P.
In general, such a transformation is expedited by the Lowdin procedure carried out to the desired order in pcs.
However, a Schmidt orthogonalization scheme might prove more advantageous in specific cases. Field-
theoretic techniques (of both perturbative and nonperturbative nature) may be brought to bear in the
diagonalization of gP~ P. The inverse of the unitary transformation which takes the basis (C } into the
basis (Om), applied to the given singular Hamiltonian, leads —for any F in the class considered —to a non-
singular "effective Hamiltonian. " Following this formal cue, we set out to construct explicitly a second-
quantized effective Hamiltonian which generates the same matrix elements, to prescribed order in pcs, when
operating between independent-particle kets of the model occupation-number representation, as does the
given Hamiltonian in the configuration-space representation, between the corresponding correlated functions
of the Lowdin basis. The quasiparticles described by this effective Hamiltonian interact via well-behaved
two-body, three-body, , Q-body, . ~ potentials, in contrast to the highly singular two-body interactions
of the real particles. For small ) pa& i, the etfective two-body forces predominate. An avenue to deeper under-
standing of the applicability of the nuclear-shell model and the dressed-quasiparticle theory of liquid He'
has been opened. This article treats only the formalism for a uniform extended medium. Numerical calcula-
tions, as well as the extension of the method to finite systems, will follow.

I. INTRODUCTION

ET us consider' a collection of X identical nonrela-
& tivistic particles in interaction, the states of the

system being determined by a Hamiltonian with the
configuration-space form

h'
A'+2 s(ij),

i=& 23'
where U(ij) is some given two-body potential. In this
paper we concentrate on a uniform, infinitely extended
Fermi system, characterized by a strong, short-range,
two-particle potential of gross behavior in coordinate
space as shown in Fig. 1. Prime examples of physical
interest are nuclear matter and liquid He'. Any straight-
forward attempt to describe such a system in a basis

(C } of independent-particle functions is of course
doomed at the outset, since all matrix elements of II in
this representation are positively infinite.

Brueckner and others' have developed one method of
circumventing the difficulties resulting from the singu-
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'This introduction was written with the nonspecialist or the

casual reader in mind: We present here the physical motivation
for the method of correlated basis functions and a comprehensive
outline of its development. All technical details which would tend
to obscure the essential simplicity of the underlying ideas are put
aside for later sections.

Fro. 1. Highly singular potential e(r) typical of the interaction
of two nucleons or two helium atoms, consisting of a short-range
repulsion (increasing faster than 1/r as r-+0) followed by an
attraction of somewhat longer range. r=interparticle separation.
C="radius" of an eBective hard core.

s K. A. Brueckner, in The Many Body Problem: Lectnre Notes of
the I.es Houches Summer School, edited by C. Dewitt (Dunod Cie. ,
Paris, 1959), pp. 47-255.
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FIG. 2. Qualitative behavior required of a reasonable two-body
correlation factor, the strong repulsive component of s(r) having
been replaced by a hard core of radius C. f(r) should be essentially
unity outside the range of the attraction.

larity in s. The starting point is the linked (Rayleigh-
Schrodinger) perturbation expansion for the energy in
terms of the independent-particle basis, an expansion
involving Chvergent v-matrix elements. A rearrangement
is performed, generating an expansion involving only
reaction or t-matrix elements, the reaction matrix being
obtained by a solution of the two-particle problem ie the
medium. This rearrangement is accomplished by execu-
tion of the most vital partial summations on the per-
turbation expansion. In spite of considerable serni-

quantitative success, ' ' the detailed application of the
method requires approximations whose merit is difficult
to judge, not to mention the fact that great care must be
exercised in giving precise de6nition to the basic in-
gredients of tbe theory. ' Further, the extension to finite
systems is not at all easy.

Thus, while the explora, tion and application of
Brueckner's method has led to a very significant en-
hancement of our understanding of strongly interacting
many-body systems, there is clearly room for an al-
ternative approach. The method of correlated basis
functions (CBF) offers another resolution of the strong-
interaction difficulty which is at least as flexible and
interesting as Brueckner's and which provides a con-

'K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,
2267 (1962); K. A. Brueckner, J. L. Gammel, and H. Weitzner,
ibid 110,431 (19.58); K. A. Brueckner and D. T. Goldman, ibid.
116,424 (1959);117,207 (1960);K. A. Brueckner, A. M. Lockett,
and M. Rotenberg, ibid. 121, 255 (1961);K. S. Masterson, Jr.,
and A. M. Lockett, ibid 129, 776 (19.63). Cf. also S.A. Moszkowski
and B.L. Scott, Ann. Phys. (¹Y.) 11,65 (1.960); Nucl. Phys. 29,
665 (1962),B.L. Scott and S. A. Moszkowski, Ann. Phys. (¹Y.)
14, 107 (1961);H. A. Bethe, B.H. Brandow, and A. G. Petschek,
Phys. Rev 129, 225 (.1963); M. Razavy, ibid. 130, 1091 (1963);
B. H. Brandow, Phys. Letters 4, 8 (1963).

4 We refer here specifically to troubles introduced by t-matrix
singularities, o8-the-energy-shell propagation, and three-body
correlations. Critical discussions of these and other Gne points of
the Brueckner theory are to be found in papers by: J. S. Bell and
E. J. Squires, Advan. Phys. 10, 211 (1961);R. L. Becker, Phys.
Rev. 127, 1328 (1962); G. A. Baker, Jr., ibid 131, 1869 (1. 963);
G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, ibid. 132, 1373
(1963); G. A. Baker, Jr., B. J. Hill, and Robert J. McKee, Jr.,
ibid 135, A922 (1964.); H. A. Bethe, B. H. Brandow, and A. G.
Petschek (see Ref. 3); G. E. Brown, G. T. Schappert, and C. W.
Wong, Nucl. Phys. 56, 199 (1964); H. A. Bethe, Phys. Rev. 138,
B804 (1965).

venient framework for the construction of weakly
interacting-quasiparticle pictures of such systems as
nuclei and liquid He'. The basic ideas of this method are
so elementary that its full development might well have
come much earlier.

First of all, we consider the behavior of the many-
particle wave function in the presence of repulsive cores.
For ease of speaking, the strong repulsion in Fig. I may
be replaced by a suitable hard core of radius C. Then the
system wave function must certainly vanish for con-
figurations in which any two particles are closer than
C. This suggests that trial functions of the form

where F is a real, non-negative, correlation factor sym-
metric in the particle coordinates and C is a nsodel
furrctioe embodying the statistics and symmetry proper-
ties of the system under study, might be especially
valuable. The statement "F is a correlation factor"
means that F is characterized by

F=O, any r;;= (r;—r;( &C,
F—& 1, all r;;))C. (i, i=1,",&)

(I.3)

We say nothing specific yet about the second factor ex-
cept that (as indicated by the term "model function")
it may at least in first approximation be taken as a
function of the type commonly used for the description
of the system in the absence of strong, short-range
interactions.

The primary quantity of interest is the expectation
value of the energy for the proposed trial function,

EL@)= (+,II%)/(@,+) .

Two practical choices for F are being investigated:

(1) F=II'&; f(r';),
(Bijl-Dingle-Jastrow (BDJ) form)

f(rv) =o re~& C

f(r;;) ~ 1, r;;))C.

The detailed choice of tbe two-body correlation factor f
is a story in itself. An appropriate qualitative behavior
is indicated in Fig. 2, and general criteria for the deter-
mination of f are discussed in Sec. V. In the greater part
of the paper, however, we shall suppose f' 1 is always—
negative; this is merely to enable us to avoid certain
semantic difhculties.

(2) F=@@ (Bose form),

EI +~=A~+~
II= IIer+ IIen .

Here the correlation factor is taken as the (symmetrical,
positive semidefinite) ground-state solution of the Bose
problem corresponding to the spin-independent Hamil-
tonian V~I, for some separation of H into spin-
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independent and spin-dependent parts. s There is now a
good approximation method for solving this hypotheti-
cal problem, '~ based on techniques borrowed from the
theory of classical Quids Lspecifically the Kirkwood
superposition approximation and the Bogoliubov-Born-
Green-Kirkwood- Yvon (BBGKY) integral equation
for the radial distribution function'j, a method that has
been applied with success by Massey' to liquid He4. All
the matrix elements in the Fermi problem can then be
reduced, again using the Kirkwood superposition ap-
proximation, to expressions involving the (calculable)
Bose liquid-structure factor S(k)—the potential having
been, as such, eliminated from the matrix elements at
the outset. '" In practice a BDJ form is assumed for
the Bose solution, so we can to this extent regard the
present choice of F as a special case of (1); some Qexi-

bility is lost, but there is a great gain in facility of
calculation.

We shall develop here the formalism of the CBF
method based on the BDJ choice. In large measure our
work will parallel and reinforce that of I eenberg and
Woo" (FW) for the Bose correlation factor. At the
present time, our path would seem to point more directly
to a theory of nuclei; theirs, to an understanding of the
properties of liquid He'. (This "divergence" is of
course due to the detailed differences in the poten-
tials that act in the two cases. Recall, for example,
that the two-nucleon interaction is highly spin- and
isospin-dependent. )

Throughout this paper, we shall attempt to frame the
development in such a way that the modifications
necessary for adapting our method to finite systems are
easily visible, and adhere to notation convenient even
when the transition is made. Most of the statements
made in the present section apply as well to finite as to
infinite systems.

The techniques to be introduced for the evaluation of
the matrix elements that enter will be useful if the
volume ~Xc0~, with

(I.7)

is small compared to the volume Q of the system. The
quantity &o serves as a measure of the strength of dy-
namical correlations incorporated into Ii. We shall see
that, in many respects, ~Xa&/Q~ plays the role of an
expansion parameter in our method

The proposal (I.2) for the wave function, in its sim-
plest trial form (Bijl-Dingle-Jastrow F, independent-

' F. Y. Wu and E. Feenberg, Phys. Rev. 128, 943 (1962).
'R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 57, 407 (1958) &

K. Hiroike, ibid 27, 342 (1962). .' F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961);
Progr. Theoret. Phys. (Kyoto) 28, 568 (1962).

'H. S. Green, Hcndbgch der PIIysik, edited by S. Flugge
(Springer-Verlag, Berlin, 1960), Vol. 10, p. 52 B.' W. E. Massey, Phys. Rev. Letters 12, 719 (1964)."E.Feenberg and C. W. Woo, Phys. Rev. 137, A391 (1965).

particle C) has a long history, "-"' yet its greater po-
tentialities have been recognized only in recent years by
Feenberg and his students. ' r' "" "The central idea
is that the set {@

~

@ =F4 /(C, F'4 )'I') serves to
dedne matrix elements of the Hamiltonian and identity
operators

with @,finite, even when the two-particle interaction
is singular t e.g. , when v(ij) contains a hard core). All
calculations are to be based on these matrix elements.
As indicated above, for (C }we may take a complete
orthonormal set of independent-particle functions, or a
restricted set of them, not complete but still orthonor-
mal, which would be useful for treating the most im-
portant properties of the systein if the strong inter-
actions were not present. (More generally, we could let
the (C ) contain some dynamical correlations, as
proper, for example, to a weakly interacting but
"superconducting" system. "This possibility, however,
will not be exploited here. )

Writing the trial wave function as a linear combina-
tion of the +,

c @, (I.9)

there results the following expression for the expectation
value (I.4) in terms of @,R

Whatever state we are trying to describe, the best value
that can be obtained for its energy using the class of

"A. Bijl, Physica 7, 869 (1940).
n R. B.Dingle, Phil. Mag. 40, 573 (1949)."S.D. Drell and K. Huang, Phys. Rev. 91, 1527 (1953)."R. Jastrow, Phys. Rev. 98, 1479 (1955); also, in The Maey-

Body Problem, edited by J. K. Percus (Interscience Publishers,
Inc. , New York, 1963), Chap. XI."F.Iwamoto and M. Yamada, Progr. Theoret. Phys. (Kyoto)
17, 543 (195'7)."F. Iwamoto and M. Yamada, Progr. Theoret. Phys. (Kyoto)
18, 345 (1957)."F. Iwamoto, Progr. Theoret. Phys. (Kyoto) 19, 595 (1958)."J.Dabrowski, Proc. Phys. Soc. (London) 71, 658 (1958);
ibid 72, 499 (1.958).

'9 V. J. Emery, Nucl. Phys. 6, 585 (1958)."J.B.Aviles, Jr., Ann. Phys. (N. Y.) 5, 251 (1958)."C. D. Hartogh and H. A. 'Xolhoek, Physica 24, 721, 875, 896
(1958).

"A. Temkin, Ann. Phys. (N. Y.) 9, 93 (1960).
s' S. F. Edwards, Proc. Phys. Soc. (London) 72, 685 (1958);

T. Gaskell, ibid 77, 1182 (1.961); 80, 1091 (1962)."J.S. Bell and J. M. Soper, Nucl. Phys. 13, 167 (1959); G. E.
Tauber and T. Y. Wu, ibid. 16, 545 (1960); H. Ali and G. E.
Tauber, ibid 55, 481 (1964);.J.W. Clark, Ann. Phys. (N. Y.) 11,
483 (1960); Can. J. Phys. 39, 385 (1961)."E. M. Saunders, Phys. Rev. 126, 1724 (1962);L. H. Nosanow,
Phys. Rev. Letters 13, 270 (1964);W. J. Mullin, Phys. Rev. 134,
A1249 (1964)."J.W. Clark and E. Feenberg, Phys. Rev. 113, 388 (1959).' C. Williams and E. Feenberg, in Proceedings of the Midwest
Conference on Theoretical Physics, 1960, pp. 39—46 (unpublished).

"H. W. Jackson and E. Feenberg, Ann. Phys. (N. Y.) 15, 266
(1961);Rev. Mod. Phys. 34, 686 (1962).

~ F. Y. Wu, J. Math. Phys. 4, 1438 (1963).
'0 D. K. Lee and E. Feenberg, Phys. Rev. 137, A731 (1965).
ar K. Nakamura, Progr. Theoret. Phys. (Kyoto) 24, 1195 (1960).
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trial functions %=+ c 4' is some value stationary
relative to the c, or equivalently, the c *. The ex-
tremum conditions

fied according to their order of magnitude in the cor-
relation parameter co, for C, 4, differing in any number
of orbitals. Our treatment leans heavily on the earlier
work of Iwamoto and Yamada (IY)."(In an Appendix
we investigate in what measure the cluster expansions
obtained as in Ref. 10 or Sec. II satisfy obvious sym-
metry requirements, upon truncation according to the
prescriptions of FW and the present paper. Our classi-
Gcation of contributions by order in co is found to be
superior —in this regard, at least —to the FW classifica-
tion by number of distinct indices. Forthcoming papers
by the authors and D. Cjiakkalakal will treat in more
detail the forrnal properties of the cluster expansions. )

A procedure put forth by Lowdin'" appears, in general,
well suited to the accomplishment of (2), and its conse-
quences are explored in Sec. III, where the matrix
elements H, are evaluated, again to first order in the
corresponding cluster expansions. However, in specific
cases a Schmidt orthogonalization procedure may be
more advantageous and thus is also exhibited in this
section. To be definite, the symbols {O~ },gH, P will

be reserved for the Lowdin set and corresponding matrix
representation of H.

Having the matrix elements H „,to prescribed cluster
order, we are ready for an assault on problem (3), the
diagonalization of gH, P. In the new representation,
our problem takes more conventional form, and hence
is more susceptible to conventional approaches. " In-
deed, if the set {0' }is complete, a very natural restate-
ment of the information contained in the matrix ele-

ments EI, will enable us to take advantage of tjie great
arsenal of 6eld-theoretic techniques —both perturbative
and nonperturbative tha—t have recently been de-
developed for attacking many-body problems involving
well-behaved potentials. "First note that since E,=3,
(this is in fact true order by order in &o), the transforma-
tion taking the basis {C }into the basis {0' } is uni-

tary. The corresponding unitary operator is of course
just the product XP of the operator P corresponding to
the factor F/(O', F'C )'ts and the operator X, corre-
sponding to the Lowdin transformation. A rotation of
axes in the Hilbert space of the system has been per-
formed. But a different interpretation of what we have
accomplished is more convenient: the operator (I.F)t
defines a canonical transformation of the given singular
Hamiltonian which yields a nortsittgular "effective

BE/Bc *=0, all m,

yield the relations

g.c.g .—ER..)=0, ail m, (I.12)

which, in turn, imply the well-known secular equation,

det$@ „—ER „/=0. (I.13)

The set of equations (I.12), (I.13) provides a very
general framework within which to launch attacks on the
many-body problem. In particular, if the set {C } is
complete, the set {4' } is also complete; then the solu-
tions of (I.13) are the exact energy eigenvalues and the
corresponding solutions of (I.12) produce, via (I.9), the
associated exact wave functions.

One systematic technique of simultaneous diago-
nalization of the matrices g@,P, /gal, g, leads in a
natural way to various perturbation theories, of the
Feenberg-Feshbach, "Brillouin-Wigner, "and Rayleigh-
Schrodinger'4 types, which of course in detail display
more complicated structure than ordinarily encoun-
tered. "Nevertheless, it is expedient —both for mathe-
matical convenience and for purposes of physical
interpretation —to transform from our rtortorthogoeul

set of correlated functions to an orthoeornsal one before
attempting to calculate energy eigenvalues.

Thus three problems must be faced: (1) evaluation of
the matrix elements @ „5,of the Hamiltonian and
identity operators with respect to the set of correlated
functions {4};(2) transformation from the set {%' }
to set {0' }with respect to which these operators have
the corresponding matrix elements H „ iY,=B „'
(3) diagonalization of the matrix (H,P. (¹edless to
say, the P, may be expressed entirely in terms of the

us~ ua

Problem (1) has been essentially solved by generaliza-
tion of cluster-expansion techniques designed for cal-
culation of the partition function of a classical imperfect
gas."It turns out, as described in Sec. II, that one can
set up a method for the evaluation of the R which

may be readily extended to generate the @ and, by
simple tricks, the nondiagonal matrix elements as well.
We go on to present detailed calculations of the 9l,
and the g) accurate respectively to second order and
to first order in cluster expansions whose terms are classi-

"P.O. Lowdin, J. Chem. Phys. 18, 365 (1950).
ee If the set {CoI}is Suite one may also envision the possibility

of diagonalizing the resulting energy matrix $H~sf by numerical
techniques employing a computer. I'"or example, shell-model
conaguration-mixing calculations could be extended to allow use
of the "real" two-nucleon potential rather than some ad hoc
substitute.

3 The 3faey-J3ody Problem, edited by D. Pines (W. A. Benjamin,
Inc. , New York, 1961);A. A. Abrikosov, L. P. Gorkov, and I. E.
Dzyaloshinski, Methods of QgawtNrrt Field Theory irt Statistical
Physics (Prentice Hall, Inc. , Englewood CliR's, New' Jersey,
1963); P. Ãozihres, Theory of Interacting Fermi Systems (W. A.
Benjamin, Inc., New York, 1964); T. D. Schultz, Quantum Field
Theory and the Mawy Body Problem (Gordon-and Breach Science
Publishers, Inc., New York, 1964).

"E.Feenberg, Phys. Rev. 74, 206, 664 (1948); H. Feshbach,
ibid 74, 1548 (19.48); P. I. Richards, ibid 74, 835 (194.8)."L.Brillouin, J. Phys. Radium 3, 3'?3 (1932); E. P. Wigner,
Math. u. naturw. Anz. ungar. Akad. Wiss. 53, 475 (1935).

'4 E. Schrodinger, Ann. Physik 80, 437 (1926)."J. W. Clark, Ph.o. thesis, Washington University, 1959
(unpublished).

"H. D. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927). See
also: B.Kahn and G. Uhlenbeck, Physics 5, 399 (1938);J.Mayer
and E. Montroll, J. Chem. Phys. 9, 2, 626 (1941);J De Boer, .
Rept. Progr. Phys. 12, 305 (1948).
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Hamiltonian. "LThe foregoing statements are obviously
quite general and not limited to any speci6c choice of F
within the class satisfying (I.5).7 Thus, in Sec. IV an
eGective, second-quantized Hamiltonian is devised
which has the same matrix elements with respect to
independent-particle kets of the model occupation num-
ber space as does the given Hamiltonian between the
Lowdin correlated basis functions, to the cluster order
previously considered. This effective Hamiltonian may
be looked upon as describing a system of quasiparticles
having intrinsic properties associated with the orbitals
of the model functions and interacting through well-
behaved two-body, three-body, four-body, .potentials.
If

~

N&u/Q
~

is small, the many ()2)-body potentials are,
however, of little importance. (In practical calculations
on the physical systems of interest, it is expected that
the two-body forces of the lowest cluster order will in-
deed predominate, but that the two-, three-, and four-
body forces arising in the next cluster order will be
appreciable and will lead to important effects. )

The immediate utility of our second-quantized effec-
tive Hamiltonian is illustrated in Sec. IV: we set up a
scheme for the self-consistent determination of the one-
body potential V(i) of the input independent-particle
model.

In summary, we would like to emphasize that, given
a system of strongly interacting fermions and a pre-
ferred independent-particle model, our method con-
sists in replacement of the physical problem in which the
real particles interact via singular two-body potentials,
by a fictitious problem in which quasiparticles cor-
responding to the model interact via well-behaved, two-
body, three-body, four-body, ~ potentials. A detailed
prescription is furnished for the construction of these
effective or residual potentials. Further canonical trans-
formations will, in general, be required to reduce the
problem to one of essentially independent quasiparticles.
The CBF method, as pursued here and in the paper of
FW, thus lays the way for an exploration of the domain
of validity of the shell model of the nucleus and the
dressed quasiparticle theory of liquid He', through prac-
tical calculations on these systems.

Section V is devoted to remarks on the implementa-
tion of the formalism we have built up. We focus on the
flexibility in the choice of the correlation factor f and in
the choice of the potential V of the input model. Clearly,
our reformulation of the many-particle problem is a
useful one if (but not necessarily only if) the dynamical
correlations of the real system are well represented by
an F (with f'—1(0) corresponding to small (N~/Q~,
for then the matrix gH, P is not far from diagonal and
a low-cluster-order calculation su6ices for the evalua-
tion of its elements. In this respect, the physical situa-
tion appears more favorable to success for nuclear
matter than for liquid Hes. An extensive program of
nuclear applications has been initiated.

The method of correlated basis functions is of course
much more general than we might have implied by

concentrating on the many-fermion problem with short-
range forces: As examples of its application to a wide
range of Fermi and Bose problems we may cite all prior
work based on BDJ wave functions, " s' together with
the more general approaches of Tagami, 4 Nakamura, s'

and Fujita, 4' but single out for closer attention the
studies of liquid He'' " ' liquid He', '" and the
(hypothetical) charged Bose gas" by Feenberg and
collaborators. The underlying philosophy of the CBF
method may be summed up by saying that it is aimed
primarily at calculation of the properties of actual physi-
cal systems, starting from a "zeroth-order" description
that is rich enough, close enough to physical reality,
that there is some hope of attaining this goal.

II. EVALUATION' OF MATRIX ELEMENTS
FOR BDJ CORRELATION FACTOR

By suitable adaptation of cluster expansion tech-
niques developed for diagonal elements by Iwamoto and
Yamada (IY)," we shall be able to achieve a syste-
matic evaluation of all the matrix elements, Q „,@,.
Attention is now centered on an infinitely extended,
umiform system, whose description will involve, as
usual, the ultimate limiting process N, Q ~m, N/Q= p
=constant. A correlation factor Ii of BDJ form (I.5)
is assumed. For each model function C we take a
(normalized) Slater determinant of single-particle orbi-
tals y„,, s=1, , N (i=row index); for the q„,, the
natural choice of plane waves, ' supplemented by the
right spin, isospin factors, normalized to unity and satis-
fying periodic boundary conditions in a large cube of
side length I., L'= Q. To avoid confusion of the multi-
tude of superscripts and subscripts that will arise, the
following conventions are to be adopted: Let italic
Latin letters up to f (. ,i,j,k,l(='I, , N)) be, as
appropriate, particle or "place" indices. By "place" we
mean the number of the row occupied by a given orbital
in a Slater determinant. Reserve boldface Latin char-
acters beginning with m (m,n, y,q, . ) to distinguish
independent-particle states. Thus, I is specified by the
sequence of orbital labels m~, m2, ., m;, ~, m~. Each
m; signifies a distinct collection of single-particle quan-
tum numbers. We presume further that for the par-
ticular pair of states m, n with which we deal, the place
subscripts are so chosen that m;=n; only if i =i' and
that the d(='0, 1, ~, N) orbitals in which m and n
differ have the first d place indices. LThis requirement is
eventually relaxed (Sec. IV), with the result that some
of the matrix elements 9t, @ for a given set {4 )
may differ in sign from those we calculate here. 7 Finally,
in functional arguments, the space, spin, and isospin

4sT. Tagarni, Progr. Theoret. Phys. (Kyoto) 21, 533 (1959).
4' I. Fujita, Nuci. Phys. 14, 648 (1960).
~Plane waves are one solution of the Hartree-Fock self-

consistency equations for an infinite medium. Whether they are
the optimum single-particle orbitals with regard to minimizing the
expectation value of a well-behaved Hamiltonian is a topic of
current interest. Cf. C. Warke, Phys. Rev. 139, 317 (1965).
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coordinates x; of particle i are often indicated by j
alone.

Given that the Hamiltonian of the system is a sum of
one-body and two-body operators only [Eq. (I.1)), all
the information we need may be extracted from the
behavior of the geleratized rborribalisatioN integral

where V(i) is an arbitrary one-body potential (which
may later be determined self-consistently). The central
role of I "(P,ni nb) then emerges from the readily
verified properties

n..= g urban *I'e„

I (p nl' ' 'nN) p7))i)2 g dgb@m+
b

expPH&(ij k) }(g f'(r, ;) expPH2(ij )}

BdI (O,ni n~)

BGy t9Gd

&&(rI expPH1(i) exp(n'~ -;(i)/~-;(i)) ~ -;(i)} (II 1)
pe, e *IHI.e„

b

for values of the parameters P, ni n~ near zero. The
symbol Jgb dxb implies integration over the space
variables and summation over the spin variables of all
particles. Here JJj, H2, and H3 are properly dined one-
particle, two-particle, and three-particle operators, re-
spectively. For example, we shall take

Hi(i) = —(k'/2') 6;+V(i),

(II.2)

k v; f(r;;) ~~f(r;«)
Hb(ij k) = ——Q

cV ~g« f(r 1)f(r,«)
cyclic

8 8"I (P,ni ng)

BP Bni' ' 'Bnd
(II.3)

These are the matrix elements of the identity and
Hamiltonian with respect to the set of unnormalized
correlated functions iI'e }. Clearly contributions to
I ' quadratic in any of the parameters p, ni. . zr may
be ignored; also the order of differentiation is immaterial.
The reason for the name gemeralis'ed eormalizatioe im-

tegrat is that, so far as the cluster analysis of IY is con-
cerned, I ' looks in all essentials like a diagonal matrix
element of the identity, viz. , like H . Our ability to
evaluate the 9t, @,thus rests on the great flexibility
of the IY formalism. [One may note that I(P) of IY is
the same as the above I~~(p,0, 0), to first order in p.)

Let us now begin the necessary enrichment of the
scheme as presented in the first IY paper, by defining
subnormalization integrals involving lesser numbers of
orbitals (suppress superscripts for the moment):

I;= (1f)'I' dxirp, .*(1)expPH1(1) e p[xnan„, (1)/q, .(1))rp, .(1), .

I;;= (2!)'i' dxidx2e„, ,*(12)f'(r») expPH2(12) expP[H1(1)+Hi(2)7

Xexp[n, q ~,.(1)/y, .(1))e xp[ np„, (2) /p, (2))q, (.1)p, (2.), (I.I.4)

I,,„=(3!)it«d~idg2dxbe, , «*(123) exppH&(123) f'(r») f'(r 3)2f'(r )«1expp[H, (12)+H,(23)+H, (31))

)&exp[n;q „,.(1)/&p„,.(1))exp[n;q „,.(2)/q, .(2)) exp[n«q „«(3)/q~«(3)) q~,.(1)q ~,.(2)q~«(3),

I12 N I(p .n~ 1 nN)

and, in terms of these, cluster integrals X;, X;;, X;;«,

I1=X;X,+X;;,
I;;«= X;XrX«+X;X;«+X;X«g+X«X;,+X;p, ,

I=I»...~= Q X;,...;, X;,...;,b, ., c positive integers.
all partitions5+"~ +c~N

(II.5)
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co= (f (r;;) 1]dr ~
———rt(r;;)dr;;, (I.7)

though it may be better to take pp as a suitable average

(In the definition of I;. .~, C,...„, is a (normalized)
Slater determinant involving the orbitals pp .. . pp „
a function of as many sets of particle coordinates. ) In-
dices occurring on an I...or an X... are always supposed
to be distinct. 4' Clearly neither the I... nor the X...
depend on the order of their indices.

In order to classify the successive contributions to
I ', we introduce a parameter ~ whose magnitude
measures the effective volume in which —as depicted by
the correlation factor f apa—rticle's correlations with a
second fixed particle are very strong: Decomposing the
correlation factor f (r;;)=1+rt(r,;), we now set

of antisymmetric two-body matrix elements of g." (If
the total

~
Nro

~

of all such volumes, taking each particle
in turn as the fixed particle, is "suKciently small" com-
pared to the normalization volume 0, then the expan-
sions we shall ultimately obtain for the Q and @,
will converge rapidly. ) To assign an order of magnitude
in the correlation parameter a& to any integral involving
some number of g's, consider the g's as Dirac delta
functions on the separations r;;, etc. , contained in their
arguments and count the number of independent delta
functions that result.

Certain useful but not essential simplifications emerge
if V(i) is chosen such that the qr~,. s are eigenfunctions
of Irj,.

(11 6)

Solving for the first few X's, we obtain

X;=I,=p 0(1)
X;,=( m, m~h, (12)(m, ;).=, 0( /0),

X,;q = (m;m m~
~
h2(12)hp(23)+h2(23)hp(31)+he(31) hp(12)

+hp(12)h2(23)h2(31)+gp(12)gp(23)gp(31)hp(123)
~

m, mm )p, = p 0((~/0)'), (II.7)

X,;k~' ——(m mmjm& lhm(12)h2(34)+hp(»)h2(24)+hp(14)hp(23) I
mm mim~).

—X;;Xpg—X;gX,(
—X;ill,——p 0(((u/0)'),

with gp(12)= f (ri&) expPH&(12), h&(12)=g, (12)—1, etc. , gp(123)=expPH, (123), h, (123)=g,(123)—1, and the
notation

(m, m~ "[ 8(1 k) [m; mg), = (k!)'t' dxi dxI 4~, ,*8(1.... k) exp)[Hi(1)+ +Hi(k)]

&(exp[rr;pp„,.(1)/y,.(1)] exp[aqq, (k)/q, (k)]&p „.(1) . pp, (k) (11.8)

gX.mn

t'ai y

t9Qi p ~i o

8 BX.

~ei P-a;-0

(II.9)

the last two being consequences of the choice of V(i)
implied by (II.6). For the cluster integrals with more
than one index, differentiation with respect to P (with
respect to an n) reduces by one (leaves unchanged) the
order in pp of a given cluster integral as shown in (II.7)
and of course cannot affect its order in Q. LThis state-

(the subscript a stands for "antisymmetrized"). The
order-of-magnitude assignments in ~ and 0, given at the
right in the above expressions, are appropriate to zero
values of all the parameters P, ni .n~. I. n this sense,
we have given explicitly all X's of second or lower order
in the correlation parameter. (It should be remarked
that X;;I,&' is only that part of X;;I,& in which two separ-
ate h&'s are connected by exchange. ) For the one-index
cluster integral, we have the properties

QX.m n

X; (p,. p
——1,

ment is clear for the term in X;;I, involving Hp(123)
only after an integration by parts. ]

Asymptotically (N, 0 —+~, p= const) the last equa-
tion of (II.5) does not provide a useful expansion for
I ', since the successive groups of terms in the explicit
series increase as higher and higher powers of N. The
transformation of I from the last of (II.5) to the asymp-
totically valid exponential or Ursell36 form

N
I '(P,ni n~)=g X;(P,rr;) expNG '(P,ni . nN),

i=1
N, 0 ~~, p= const, (II.10)

G "=0(Nco/0)

goes through exactly as described for I(P) by IY, with
modi6cations indicated by Iwarnoto. 44 These authors
utilize in particular the feature that there are no duplica-
tions or omissions of place indices in the last of (II.5), to
develop a set of partial differential equations for
G '(P,O 0) which may be solved by successive
approximations. A more satisfying

justification

of
the transformation Pand concomitant generation of

"Note that an I... with two equal indices would vanish by ~ F. Iwamoto (private communication to F. Y. Wu and
antisymmetry of the 4. ..*in its integrand. E. Feenberg).
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+—Q x;t1,+—Q x;11,1'+O((No)/Q)'), (II.11)

where the (small) x's are so-called normalized cluster
integrals,

x;...1
——X;...1/X; Xt. (II.12)

The first term is O(Nu/Q), the second, O(N-'(N~/Q)')
and hence asymptotically negligible, and the next three,
O((N~/Q)'). The analysis of the four-index term is a bit
tricky. For a full explanation the reader is referred to
IY; we will, however, take time to point out, in our ex-
plicit results, the unusual features which arise from this
term.

Using (II.3) together with (II.10), (II.11), and the
properties (II.9), we arrive at the following working
formulas for the computation of the matrix elements
9t „@ with respect to our set of normalized correlated
functions:

G '(P,O 0) expansion( has been offered by Wu and
Feenberg, ' and analyzed with great care by Wu. "The
result of both procedures, applicable to our more genera/I,
ls

1 1
g 0 0 — g I ~ 2Z ij 2 P X"X1,ij

E'&j 2g i&j 2g i j'&

k,.+k,.=k,+k „
k,.+k,=k„,.+k„„
k,.+k,=k„,.+k, .

(II.16)

Here we have initiated certain helpful practices:
(i) Order of magnitude assignments are placed under the
explicit terms; in these the average density p=N/Q is
taken unity to simplify writing. (ii) A repeated model-
state label on a given symbol is often omitted. (ii) Dif-
ferentiation is indicated with a comma followed by the
variable with respect to which the differentiation is
carried out, it being henceforth understood that the
parameters p, ni nN are set zero finally in att
expressions.

It should be remarked that the addend involving
a sum over four place indices, instead of being O(N'cu)

as one might at erst suspect, is indeed of the order
indicated, since, as detailed examination of the struc-
ture of I;,&z,p will reveal, the indicesi) j) k) l associated
with nonvanishing contributions are not independent
but are connected, because of our periodic plane-wave
choice of single-particle functions, by one of three rela-
tions of linear dependence among the corresponding
wave vectors":

%mn= ttmn/(umm&nn) =6 mn(0) q

@mn = Ilmn/(ummunn)
(11.13)

Nondiagonal Elements

One Orbitat Diferent: miWni, m; =n;, i) 1.

where

8
= h 6 .(0)+—6 „(P)le=o

&mi )

Bo,'y ' BQg
expNG "(P)&1' ' '&N) ~a1 "=aN=O

o(N) o(N)

—Q X;;,e Xg~+ Q Xgi, e
i, j,I i&j&k

O(Nca) o(N~)

+ Q X~p, ( e' +O(cVin') .
i&j'&I &Z

O(N )

(II.15)

)&exp[——,'N(G (0,0 0)+G"(00 . 0))j. (II.14)

In a calculation accurate to second order in ~0 for gt,
and to first order for @ „we need only consider the
following (Ave) cases:

Diagonal Elements. ' m;=n; i =1 E.
mm=(pm=1,

=h +(P,e= h +NG, e

= h +Q X;;em —P X;; (e,+n„,.)

Our choice of single-particle orbitals leads to a
momentlm conservation theorem, @ =0, %,=0 unless

g; k„,. =P; k„, Since model-function momentum can-
not be conserved in the present case, the required matrix
elements are zero. One should note at this juncture the
collateral vanishing of integrals X;;,. X;;,e, X;;1. ..
X;;q,e, , hence. , the vanishing of NG, , NG
for i=1, , d, again —as we say—due to momentum
conservation in the extended medium. These relations
allow simplihcation of calculation in subsequent cases.
All future order of magnitude assignments are made on
the supposition that the momentum of model state n
is equal to the momentum of model state m.

The above momentum conservation theorem holds

strictly for our uniform extended medium. However,
two model states m, n might di8er just in the spin
(isospin) quantum number of the 1st orbital. If so, and
the particles interact via a two-body potential which

conserves the total spin (isospin), R, and 9, still
vanish, but in the presence of a two-body potential
which is able to alter the total spin (isospin), @,(for
such a one-orbital difference) may survive. The general-

izations required to treat the latter kinds of potential,
not profound, will be developed as needed in future
applications.
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Two Orbi tats Diferent: ml/nl, m2/n2, m;= n;, i)2.

(P,=NG, , 2mn exp2N(G —G"),

tPmn p= (NG n, nlp '+NG n, n, NG, p ) exp-,'N(G —G )

O (cp'/N)

1VG;aln2P =X12,aza2P X12,ala2 (eml+ em2) X12,ala2P 2(Xl~ +X2i )

0(i/N) 0 (07!N)0((0/N)

X12,alan g(Xli, p +X2i,p )+2 X12i,alanp +Q X12ij,alanp +O(& /N)

NG, ala2 X12,ala2 X12,nial Z(Xli +X2i )+p X12i,aln2 +2 X12ij,ala2 '+O(~'/N),
i&j'

0(eu/N) O(op'/N)

0(cp/N) 0(op/N) 0 (o)/N)

In the P;&j above, only one of i,j is independent, as will be seen by inspecting again the fourth member of (II.7),
or better, (II.29), (II.30).

An expansion of the exponential factor in (P, p is permissible.

exp-,'1V(Gm —G') = expLnl p(X "m—X"n)+O(nl2)]

= 1+'2 P(X1P+X2i —Xli' —X2i )+O(~') .

Thus, we obtain finally

Rmn X12,ala2 2X12,alan p(Xli +X2i +Xli +X2i )+ Z X12ialal +,2 X12ij,ala2 +O(in /N) p

0(co/N) 0 (co'/N) 0(oP/N) 0 (co~/N)

gmn X12,alalp 2 X12,ala2 (emg+ em2+ inl+ 2n2) 2X12,ala2p 2(Xli +X2i +Xli +X2i )

0(&/N) O(M/N} o(oj/N}

2X12 aln2 Q(Xli p +X2i,p +Xli,p +X2i p )+Q X12i alalp +Q X12ij nlalp

o( /N) 0(c0/N)

+-2,9l „(@ +@,)+O((02/N) . (II.17)
O(o8)

The occurrence in @,of a contribution O(cn), which would seem to dominate all the others, might be a bit dis-
turbing at this point. There is nothing amiss, however, since the nondiagonal @,only enter into many-body cal-
culations in forms like @,—@„%„sdiffering from m, n in numbers of orbitals small compared to 1V, so that
terms O(cd) do not survive.

Three Orbitats Diferent: ml/nl, m2/n2, m8/n8, m;= n;, i)3

(P,=NG . . . exp-', N(G —G"),

CPmn, p= (NG, alalalp +1VG,alala8 1VG p ) eXP21V(G G ) )

NG, alala8 X128,nza2a8 +P X128i,ala2a8 +O(& /N ) p

0(~i/Ni) 0 (rui/N2)

NGalalasp , X128,alalalp +2 X128i,al 2,p +O(in'/N') .

0(co/¹) 0( /N')

Take note here that the index i appearing in the sum terms is restricted to only a few possibilities by the relations
of linear dependence of the type (II.16) which one must always associate with the primed part of the four-index
cluster integral.
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Expanding the exponential,

exp-', N(Gm —G )=1+-', g(Xi@'+X24m+X34 —X„'—X, —X, n)+O(4n2)

O(N)

Thus, to the cluster orders of interest, we have quite simply

Ãmn X123,aia2a8 +2 X1234,aiana8 +O(4d /N ) y

o(N~/¹) O (N2/¹)
(II.18)

@mn X128,ala2a8e +P X123i,aiana8e +2+mn(@mm+gnn)+O(4n /N )

o(N/N~) O(N/Nm) o(N~/N)

For the same reason as before, the term O(o& /N) presents no difficulties. If we elect to retain, in @ „nothing of
higher than 6rst order in &e, we are (formally) justified in omitting this term completely; it has been kept explicit
only to emphasize a general feature. Similar statements apply to the next case.

Four Orbitals Diferent: mi/ni, m2/n2, m8/n8, m4/n4, m;=n;, i&4.
(P,=(NG . . . , '+NG, , 'NG, , '+1VG, , NG, , +NG, , "1VG, , ') exp-', N(G —G ),

tpmn, e t NG, aia3a8a4e +NG, aia2e NG, a4a4 +NG, aian NG, a4a4e +
+NG, , NG, ,e +(NG . . . , + +NG, , NG, , )NGe 7 exp-,'1V(G —G ).

Additional complexity enters suddenly at this stage, since it is possible to have products of n derivatives of G with-
out violating the momentum conservation theorem. This complexity is only illusory here, however. The extra
terms actually simplify the structure of the final results:

%mn X1234,aia2a8a4 +O(& /N ) y

o(N'/&')
(II.19)

gmn X1284,a4ana8a4e +2%mn(@mm+gnn)+O(4e /N ) y

O(N/N2) O(N&/N)

where X;;34' '(p, 43; ai) is X;;34' of (11.7) 2oith the last
three terms omitted. As usual, we should comment on
the peculiarities associated with the four-index con-
tributions. In this case, though, the situation is a bit
different than before, because of the difference between
X;;34™(P,n; 434) and X;;34' (P,43; .ai). Neverthe-
less, there are sti/l restrictions on the wave vectors corre-
sponding to the single-particle states m;, e;, i= 1, ~ . , 4.
The explicit terms in St „@,above do not enter the
picture unless the wave vectors involved satisfy one of

e .=(
all partitions

8+b+ 4 +C ~tg
8 5 ~ ' ~,C+2

+6 +s(1)"'s(o) +~ +i(~)"'~i(&&

momentum conservation condition k,+k,+k,+k,
=k„,+k.,+k„,+k„,).

To the cluster order considered, the matrix ele-

ments vanish for 6ve or more orbitals different.
Q'e cite for future use the following general' formula for

the matrix elements of the Hamiltonian:

k„,+k„,=k„,+k„„
k„,+k„,=k„,+k„„
k„,+k„,=k„„+k„„
k„,+k„,=k„,+k„„
k.„+k„,=k„,+k„„
k,+k,=k.,+k.,

(II.20)

X12, , '——(mim2
~
rt(12)

~
nin2), (II.22)

'1VG, an(o ~, ,an(4)p) exP-', N(Gm —G )

+2%mn(@mm Onn)+2 Rmn(@mm+@nn) ~ (11.21)

Let us examine some of the X's in detail to gain
familiarity with the structure of the matrix elements
we have treated. Consider the (most important) non-
diagonal case of two orbitals diferent. We need in
particular

(in addition, of course, to the presumed over-all and

x12, ,e =(mim2~f'(12)a2(12)+2t(12)Lai(1)+Hi(2)7~nin2)
h'

= (2!)»2 d*idz2f(12)4m, ,* — (5,+52)+V(1)+V(2)
235

+ e(12)— LV(1)+V(2)7 f(12)rp„,(1)&p„3(2), (II.23)
E—1
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the matrix element of a (manifestly Hermitian) two-particle Hamiltonian between two-particle correlated func-
tions. LHere ti(12) =hs(12)

I p —p and ),= I,I,=... „=p=p.]A more convenient form for the latter cluster integral is

X12,alake 2 LX12,aramp +(X12,arasp )

where

(mtmsIws(12) Inrns), +—', (mtms I
f'(12)—1

I ntns) (e +e + e + e ),
O(1/N) o(~/N)

h'
w&(12) = (V'f(12))'+ f'(12)s(12) f'(12)I V(1)+V(2)]

3f g —1

(11.24)

(II.25)

is an effective two body i-nteraction. Observe that the second term in this expression for X», ,p ', 0(&p/1V), exactly
cancels the second term in @,. It is thus advantageous to consider the first two terms in @,as a unit.

Proceeding to more complicated cluster integrals, we hand

X»;, , '——(mtmsm;I Q I tl(12)tt(23)]+rt(12)rt(23)rt(31) Intnsm;),
123

cyclic

X»r, p
= (mtmsm; I Q Lrt(12)f'(23)Hs(23)+ rt(23) f'(12)Hs(12)

123
cyclic

+~(31)~(12)fs(23)Hs(23)]+ f'(12)f'(23)f'(»)Hs(»3) Intnsm').
O(co/Nm)

(II.26)

where

+(mtmsm;
I P I rt(12)rt(23)]+ rt(12)ti(23) ti(31) I ntnsm~), (e„,+e„,+e,)(II..27)

123
cyclic

Q(co~/N~)= (mtmsm;
I
wp(123) I ntnsm;), +0(cp'/cV'),
O(ca/N2)

ws(123) = Q Lrt(12)w, (23)+ tl (23)ws(12)+ ti(31)tt(12)ws(23)]+ f'(12)f'(23)f'(31)Hs(123) (II.28)
123

cyclic

is an egectise three body inte-raction. Finally,

X» 't, (mime
I
rt(12)

I m'm;). (m'm; I 1l(34) I nine)

+(mrm;I rt(12)
I
n&m). (m&m, I rt(34) I

ntm ),+(mtm;I ti(12) Imns). (mms
I
rt(34) I

ntm ), (II 29)

Xts;;, ,p™=6(mtmsmm;I rt(12)f'(34)Hs(34) Intnsmpn;), +0(rp'/'E')
O(co/¹)

=6(mtmpmm;
I ri(12)w&(34) Intn, mm;), +0(rp'/E'),

O( /N2)
(II.30)

where the quotes on the a mean that in the antisym-
metrization one should omit terms resulting from per-
mutations 1, (mtms), (m,m;), (mtms) (m;m;).

Reduction of the X's to explicit forms in terms of f',
rt, w&, ws may also be carried through for the other cases,
by trivial modification of the above. 4' To bring out a
general feature, note in particular that for the diagonal
Hamiltonian matrix elements,

K;., p —X@ (e,+e~,)= (m,m; Iws(12) I
m, m;), (II.31).

This provides the prototype for combinations that may
be made in all orders of our @ expansion to eliminate
the single-particle energies that appear in one order
higher, at the same time replacing all two- or more-

"The contributions to the diagonal elements Q~~ have been
subjected to considerable manipulation by previous authors. See
Refs. 16, 18, 20, 26, and. 28.

index cluster integrals X...by their corresponding matrix
elements in terms of A@2. We have not displayed the
terms 0(E&p') which are needed to make this recombina-
tion and rewrite (II.15) in ws language, but they are
evidently present. Similar recombinations may be made
in all orders of expansion for the nondiagonal matrix
elements; again there is a cancellation of terms con-
taining single-particle energies and zV2 takes over a
basic role. Thus a general theorem may be proved: The
cluster expansions for the matrix elements @,may be
rearranged so that single-particle energies enter only in
the form -,'P,.(e;+e„;)gt, Lcf. the last term in (II.21)).
This gives a more satisfying justi6cation of our revision
of the explicit forms in (II.15), (II.17), (II.18), (II.19)
than the mere fact that all differences are of higher
order than we choose to consider.

The effective interaction operators zv~, $3 that occur
in the preceding formulas are loca) apart from non-
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III. LOWDIN TRANSFORMATION TO AN
ORTHONORMAL BASIS

As they stand, our correlated functions, being non-
orthogonal, do not yield to direct interpretation as a set
of "unperturbed" state functions. I'urthermore, there
persists the rather uncomfortable feature that the
Hamiltonian matrix elements @, contain contribu-
tions which would appear to swamp by a factor E the
vital terms carrying all the physical information. While
neither of these defects causes any serious difliculty, it is
certainly clear that considerable formal advantages are
to be gained by transforming from our original set
{@}to an orthonormal set of correlated functions {0~ }.
This may be effected by means of the Lowdin trans-
formation, '~ leading to a systematic orthogonalization
scheme which 6ts neatly into the framework of our basic
cluster-expansion procedure for approximate evaluation
of the required matrix elements.

The transformation law for going to the new set is
compactly stated if we interpret {+ }, {0" } as row
matrices %', 0, respectively, and denote the matrix of
% .bye:

Q~
—ling-1/2 (III.1)

One can check that, for '5 '/' Hermitian, (0~,0 ) = 8

De&ning H as the matrix of elements H = (O~,HO" ),
we have then

H —g—1/2og —1/2 (III.2)

where, of course, @= g@,P. Let Q be the deviation of
5 from the unit matrix I, and suppose it is small in the
sense that the matrix binomial expansion provides a
meaningfll definition of 'R '":
m-/ =(1+3)-/ =1—3+-3 —3+ . (»I.3)

)Now R '/' is manifestly Hermitian, and one can fur-
ther verify that (0",0',) = 8 is fulfilled order by order
in 3.$ For the calculation of the H, we thus propose
the (Lowdin) expansion

The expansions (III.3), (III.4) are qualitatively of the
same nature as the cluster expansions for R, @, in the

locality introduced by p(ij) itself, or the V's. Upon
omission of the V's the tildes are to be removed. We
shall at times make use of the further decomposition:

(m,m; (w, (12) ( n,n/).

= (m,m;i w2(12) —(N' —1) 'PV(1)+ V(2)gt n,n;)
O(1/N)

—(A/ —1)-'(mm;
~
p(12)PU(1)+ V(2)j ~

n,~;)..
O(eo/N)

(II.32)

sense that convergence should be rapid if the deviation
of F from 1 (which is, indeed, responsible for the devia-
tion of the set {4' }from orthogonality) occurs over a
small enough region of con6guration spa, ce, which will

be true in our work if the function g(r) = f'(r) —1 has
short enough range. Thus the Lowdin expansion seems
quite appropriate to our over-all attack.

Note further that

m=0,

gmn %mn &
IBWn

&

so, from the general formula (II.21),

+mn @mn p g Lgmp@pn+@mpgpn)+ ' ' '

(III.5)

=1VG em exp-,'1V(G —G')+

pram, n

The contribution —,% „(@ +@„)with disconcerting
S dependence is cancelled completely. The last addend
shown explicitly contains @-matrix elements and hence
again unphysical terms; however, these terms may be
shown to cancel against further contributions from the
Lowdin expansion, so that one may obtain, anally, an
expansion for the matrix element in which every term
has the expected dependence on the particle number.
LIt is far from obvious that the Lowdin expansion for a
given matrix element, H „contains mo contributions
with catastrophic /V dependence. This assertion has,
however, been checked for low n& orders by Woo. Even
if we are satisfied that the "improper" parts of the

create no diKculty, the surface appearance of
the expansions is discouraging due to the presence of
unlinked terms analogous to those of the usual Rayleigh-
Schrodinger perturbation theory, but the absence of
terms analogous to the renormalization corrections re-
sponsible, in that case, for the complete cancellation of
unphysical contributions. Analogy fails; here the cancel-
lation is accomplished by terms, arising from the @ „
~~, cluster expansions, which contain barred four-index
X's. (The unusual features of the X;;q/' ' have been
noted previously. ) A thorough treatment of this problem
will be presented elsewhere. Care must be exercised be-
ginning with the corrections of second order in &o for the
off-diagonal elements of @, and with third-order cor-
rections for the diagonal elements. j

More to the point, if we ask only for accuracy to 6rst
order in o/, terms of order 3' or higher in (III.4), which
produce at most contributions to the H, of one order
higher in co than needed, may be discarded. Any non-
diagonal II, that enters then may be obtained from
the corresponding @,of Sec. II simply by dropping the
term 2P,(@ +@„)and attaching an "orthogonality
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correction, " which has the form

p(m&m2 I
ri (12)

I pip&), (pip& I w&(12) I
yy iyy Q),—

y

Px CPa
pi, paQimgi, {egi

+(mim2 1~2(») I pip2). (pip2I ~(») Inin2), 7 (III.7)

281 gtng P1 gPg
pi, ps+ (my i

$(mim2I ri(12)
I pipe).

in the case of two orbitals different and is easily de-
duced in the other two cases. As for the diagonal ele-
ments, one just adds an orthogonality correction term

order in the correlation parameter:

Hoo'= @oo,

Hmo =Hmp+yRmp(@mm @pp) p

Ho '=Ho +-', gto (@ —goo), mWO,

Hmm =@mm 2 Z L%myg ym+gmy+ym7
pram =P, m/0,

H -'=H .—% ohio. —@ o%o. ,

mgn, m, ns0.

(III.10)

X (pip2 I 8&(12) I mim&), +c.c.7. (III.S)

We have, of course, neglected contributions of second
and higher order in oi contained in the last explicit
addend of (III.6).

The occurrence of the term (III.S) in all the H,
raises an interesting problem. Since the 0~ are orthogo-
nal, the H provide upper bounds for the first Estates'
of the system, E being the number of members in the
set {4' }.For the class of F's we have discussed, the
ground-state energy will be approximated by Hoo, where
Cp is the Slater determinant built from the»y's with the
E lowest single-particle energies (describing in our case
a completely filled Fermi sphere); the energy of the
first excited state by Hii where Ci is the" Slater de-
terminant built by replacing the»y in Cp with the Xth
lowest energy by that with the (X+1)tb lowest energy
(describing the lowest particle-hole state relative to the
filled Fermi sphere); and so on. Now suppose, for tbe
sake of argument, that tbe Lowdin expansion is rapidly
convergent, and tbe second term in the expansion (III.4)
applied to the H well approximated by (III.S).
Suppose further that (III.S) is positive. Then a better
value of the ground-state energy is obtained with Co
than with Op.

Feenberg and Woo4' indicate that their analog of
(III.S) is indeed positive, and thus propose the replace-
ment of the set ( 0' }by what they consider an energeti-
cally more advantageous one, {0~ '},giving the ground
state a special role by exempting %o from the Lowdin
procedure. The new set to be orthogonalized by Lowdin's
process is

+ '=(+ —Ro +o)/(1 —IRo I')"', mWO, (III.9)

all members being manifestly orthogonal to %p= O~o'.

Keeping only asymptotically significant contribu-
tions, we 6nd easily, for the Hamiltonian matrix in the
representation defined by the new orthonormal set
(8 '}, the following relations which are correct to first

6 Of course there will in general be degeneracy, but this is more
or less irrelevant here."E.Feenberg and C. W. Woo (private communication).

m-1
b T =e PTy(Y„e )—,

p=O
(III.11)

where the b are to be chosen such that (T,T ) =1,
and the energy ordering sketched above has been
adopted for the labels m. Retaining only contributions of
first or lower order in co, this collapses simply to

m—1
T =e —P @ygty

p=O
(III.12)

(All terms containing products of nondiagonal matrix
elements Pt», may be discarded, and all b set equal to
unity. ) Thus we obtain, for the matrix elements
3' =(Y,HT ) of the Hamiltonian in the representa-
tion defined by this Schmidt set,

m—1
X,.=g .—P $.,9t,. g9t.,g,.—+ ", (111.13)

p=0

the terms neglected (dots) being, as usual, of second
order in the correlation parameter. The spectrum of

(It should be noted that, to the order in re prescribed,
tbe second term in H p', m/0, is present only for the
case of two orbitals diBerent, and the last two terms in
H, ', mWn, m, n/0, only if both m and ndiffer from 0
in just two orbitals, while m differs from n in exactly
three or four. ) In view of these relations, it is clear that
the above reformulation is never appropriate to a nor-
mal system (though it may be useful for a system dis-
playing superQuid properties). For if the "extra" term
(III.S) in Hpp is positive, there will be introduced into
the new spectrum of bounds, B ' versus m, a gap w}uch
must be removed by subsequent approximations. On
the other hand, if the extra term is negative, the tempta-
tion to go to the modi6ed orthonormal set does not arise,
the ground-state upper bound being lowered by tbe
original ortbogonalization process.

The Schmidt orthogonalization procedure may, on
the other hand, provide a useful substitute for the set
{O~ }in the case that (III.S) is positive and tbe system
is normal. A set {T } of orthonormal correlated func-
tions is given by the well-known formula
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bounds,

X =@ —P L@ p%p +c.c.j, (III.14)
p=O

calculation to be based on the dynamically uncorrelated
states of the given model (i.e., on the

~
C )).

To see most simply how such many-body potentials
arise, look at

displays no gap, because the summation in the new cor-
rection term now extends only up to the state label
precedirbg m. For m4n, say m)n,

n—1
+mn= Cmn P Zmp%pn

m—1

p=0
pgn

(111.1S)

IV. CONSTRUCTION OF A QUASIPARTICLE
HAMILTO MIAN

In the last few years, the application of field-
theoretic methods to many-body problems involving
nonsingular, well-behaved two-particle interactions-
i.e., two-particle interactions with Fourier transforms-
has reached an advanced stage of development. " In
order to make direct use of these techniques, we now
phrase our results for the matrix elements H in field-
theoretic language, by constructing a second-quantized
effective Hamiltonian Hn" which has the same matrix
elements with respect to the independent-particle basis
kets

~

C ) of the model occupation number representa-
tion as we have found for the given first-quantized
Hamiltonian H of (I.1) with respect to the correspond-
ing correlated wave functions 0' .4' "Contrary to H re-
written immediately as a second-quantized operator,
H"' is certainly well behaved in the sense that the co-
ef&cients of all combinations of creation and destruction
operators that appear are finite. For this we must make
a sacrifice: our effective Hamiltonian will contain many-
body potentials. These are, of course, artifacts of the
method, not of fundamental origin, but some of them
must be included, or at least estimated, in any accurate

and the last term suflices to cancel the unphysical com-
ponent of @,leaving, just as in the case of the Lowdin
procedure, a matrix element having the correct asymp-
totic dependence on the particle number. Notice, how-
ever, that the sums over states involved here will cer-
tainly be more dificult to evaluate than those of the
I.owdin prescription, the ordering of the state labels now
playing an essential role.

II dxbFC *HFC

II d&bC' *{ll f(»' )H II. f(» l)}@
i&j k&l

If this is regarded as a matrix element with respect to
independent-particle wave functions, the (configura-
tion space) operator that is sandwiched is a truly inany-
body operator: though H itself is a sum of one-body
operators plus a sum of two-body operators, the opera-
tor in curly brackets can couple independent-particle
functions differing in as many as S orbitals.

The same point may be brought out in more useful
fashion by consideration of the results of our cluster
evaluation of the H —we not only see explicitly that
each H may be written as a sum of contributions
from one-body, two-body, three-body, , Q-body,
operators, taken between the independent-particle state
vectors signalled by m and n, but also notice that, to the
extent that ~1Va&/Q~ is small, the importance of the
Q-body operators will decrease rapidly (though not
necessarily monotonically) with Q, independent-par-
ticle states labeled xn and n being only very weakly
connected if aa diGers from n in a large number of
orbitals. In particular, if we are satisfied with stopping
at first order in +—and preliminary work indicates that
at least for nuclear matter this should still permit an
adequate description of most properties —,then H'"
will contain only two-body, three-body, and four-
body potentials, whose precise forms we now derive.

Going over to a more appropriate labeling scheme
than employed in Sec. II, we designate the complete set
of single-particle orbitals by {p„},with K= 1, 2,
(The label ~ may, for instance, denote the energy order
of the orbital q„, e~~&&2~&~&e„~&. , a convenient
ordering prescription for degenerate single-particle
states having been adopted. Each m; of Sec. II is now
supposed to be a certain one of these b.)

Define operators c„t, c„, obeying the usual fermion
anticommutation relations, which respectively create
and destroy a (quasi)particle in orbital bp„. Then to first
order in the correlation parameter, H'" assumes the
form

1
H"'=Q e,a,ta„+ Q(nX—) U2~z X )a,tabtab a„+ Q (dpi U3~~'X'p')g„gb a„a„gb g„

2 l «), «r), ' 3 t «)p «&'Ar~r

+— P (zkpv
~

U4
~

'X'pn, 'v')a„ta&ta„ta„ta„a„ag.g„. , (IV.1)
4t «xpv, «'x'p'v'

' We suppose in this section that the set {O~m} is complete, hence provides a basis.
The construction of such an effective Hamiltonian in conaguration space has been envisaged by I'ujita, Ref. 41.
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where a„=(—)z~«+~,1V,=c,tc„and the U matrices are to be determined from the requirement

(C IH" IC,&=H „all m, n.

After detailed study of both sides of (IV.2), the U matrices which emerge are:

(~~ 'olUol~~' 'a') =(~~" 'olUa&ml&&'' ' '&o')+(«' ' '&alUc&-~»l~~ " ~a) Q=»"
(~~l U2(2) l~'~') = (~~l2I~ ~),

(~l I U2(-~h) I
"~')= ——:&- L(«l I ~ I»')(»'I21 "~').

+(~l l~nl»')(»'lnl~'l ') 7(1—&&..'&.& .»)(1—&l..'l. l".~ »
(~» I Ua&» I

&'l 'u') = (&» I U~&8).2I &'l '&')+(&»
I U8(». 3 I

~'l '~')

(~»l U3(3),~l "~'~') =3'(—(~l l~~l "~')(~s lnl~s '). b~..~~, &".~ l
—H(d ill "l )I:(~~I~2I~~').+(»I~21»').

+("u I 2 I "~').+(~'~
I
~2 I

~'~').7+(~~ lnl "~')L(~~ I ~ I
~~').+(»I ~ I

»').
+(~'~I~I~'~') +P'~I~I») 7}4'(1—&(.~).t".~ I))

(~»IU3(~), al~ »)=(~»I~II~'~'~')

(~»IUS(-~~) l~'l'~') =—'E L(~&l~l~'~).(»l~nl») (1—&t,~~.~", ~)(1—~~., ~, ~".~ l)

+(~~I l "&') (»1~2I~'~).(1—~&.. &. t",~ &)(1—&&..»&'. L)7,

(~~»IU4(4) I
"l'~")=(~l l~l~'l')(»l2l~'~')Lg«, ~,. l.&".~.',")+(1—~& .~.. &. &",~,'."&)7

(d» I U4(-~h) I
"l '~"') = —

6(~~ Ill "~')( ~I~2lu"')(1 —~~.,», ~".~ ~)(1—~~. .~.t. ,"~)

In these expressions (a,X, }stands for the set of indices ~, X, and

8(„,q ...~ [. ,q, ...}=1, {~,3, }=(~',X',

=0, otherwise.
Also,

(IV.2)

(IV.3)

(IV.4)

g(~»v, aVp'v') =1, I yNp', v'; vAp', v'; ~W~', X'; XW~', X'7 all satisfied,

=0, otherwise.
(IV.5)

Those terms containing (orth) subscripts arise from the orthogonality corrections derived in Sec. III. The
second-quantized operator generating these corrections was obtained as follows. In the notation of Sec. III, let the
matrix R=O —@z;,g, @z;,I= Q) 8,P. To 3 and Q' there correspond second-quantized operators g"f and R"~
such that

(c-l3'"
I c")=B-,

(c- I
@'"I+-)=0-—Z-&-.

Then, since ( I
C )}is a complete orthonormal set,

-' ~ L~-P~-+@-» .7= l ~ L(~-I&'"I~.&(~. I
&'"Ic'.&+(~-I @'"I~.)(~.l&"'I ~-&7

pram, n

—1(@ IQ ffQ ff+g fg ffl@& )

Thus 3"'&'"+R"'g'" is the required operator. Evidently, in lowest nonvanishing &o orders,

(IV.6)

(IV.7)

2 (IJ~ I~2 IP ~ )(1 ~teel, (I', ~ })&gtAtay 8„.
(IV.S)

The resulting symmetrized product, accurate (as
needed) to first order in ~, was then split up into two-,
three-, and four-particle operators by reduction of the
products of eight creation and destruction operators to
normal form.

The notation for the other addend of each Uo
matrix should be obvious: Uo &q& is the part of Uq arising
from b index terms in @,.

The appearance of the step function g in the U4~4&

matrix is a consequence of the omission of contributions
from certain permutations in the construction of the
four-index terms entering into the diagonal elements

; the step function 1—8I„,q, „,„) („.,&...„.„.l guaran-
tees that this restriction is not applied in the case of
oG-diagonal matrix elements. LSee the last of (II.7)
together with the discussion surrounding (A4) in the
Appendix. 7
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Notice that although the term

Us(s), s' =g„),„,, & „'(ahpl Us(s&, sl» ~ Iz )
X~g~~h~~p~Gp'+Z'~x'

in tbe effective Hamiltonian is bicubic in the creation
and destruction operators, it is unable to couple
independent-particle kets diGering in three occupation
numbers and in this sense acts like a sum of two-
particle operators rather than a sum of three-particle
operators. Thus we are naturally led to ask under what
circumstances this term can be approximated by a
biquadratic form. Now the contributions of U3~3~,2'"

to the H, I
see the second O(/VS&) term in (II.15) and

the third and fourth O(cu/E) terms in (II.17)7 contain
sums over all single-particle states involved in both m
and n. If N is very large, and if the only important
matrix elements are those in which m, n differ from 0 in
just a few orbitals (for X=10",a few could be 10"),
we make negligible error=ssentially of order unity
compared to cV—by replacing these sums by sums Q~
over the single-particle states occupied in

I
C'o). Then it

is permissible to replace U3(3~,~"' by

Us(s)" ——Q„), „), (anal Us(s) ls X )a„tag ay a

where

(~)tIUs(s) l~) )={—s(~) I~la) )Z.'L(z~l~sl~~). +()~lysi) ~).+("~l~sla~).+( ~l~sl»).7
2(z~l~s IK'~')&.' L(~i I i l~u).+( i I 7 I») +("~l 7 I

a'~) +9 '~l 7 I
~'~) 7)(1—zbi",», i",~ I) (IV»

Under tbe same circumstances, the sums in the or-
thogonality correction terms such as (III.7), (III.S) may
be replaced by sums P~ over the single-particle states
not occupied in

I Co). Such modifications of the effec-
tive Hamiltonian and its matrix elements are of obvious
computational advantage; they are an essential feature
of the work of FW. The underlying assumption —loosely
speaking, that there exists a "macroscopically occupied
condensate" —is already widely made in many-
particle theory.

Clearly the matrix elements of Us ls& are of zeroth order
in the correlation parameter; those of all tbe other ex-
plicit U's, of 6rst order.

One more technical remark is necessary: The signs of
corresponding matrix elements (4 IH"'IC ), H, will

agree in general if and only if the same ordering has
been adopted for the single-particle states in both
occupation number and configuration-space representa-
tions. To be definite, we may impose the aforemen-
tioned ordering according to energy, i.e., choose the
K(= 1, 2, ' ', oo ) such that et & es & . (with suitable
prescription for degeneracy), hence requiring for all m
the ordering of the e;(=1,2, , ~, i=1, , iV') such
that e,&&e,&~

. &~e ~ (with the same prescription for
degeneracy). Thus, upon computing (C I

P"
I
C ) using

(IV.1), (IV.3) we must attach a sign (—) raised to a
power equal to the combined number of interchanges re-
quired to go from the ordering adopted in Sec. II for
the single-particle states in the Slater determinants C

4 to this energy ordering.
Our result for H"' has an elegant and useful inter-

pretation in terms of quasiparticles. The first term,
diagonal in the orbital occupation number operators
a„ta„,5o is the Hamiltonian for a system of noninteracting

' Following Feenberg and Woo, one may extract from the U
terms additional contributions which are quadratic, cubic, and
quartic functions of the quasiparticle number operators a„ta„, and
thus split H'ff into diagonal and nondiagonal components. This is
possibly the best way to proceed in practice. However, we Gnd the
form as given in (IV.1) more suitable for preliminary discussion in
terms of conventional Geld-theoretic techniques.

Fermi quasiparticles, moving in a one-body field V(i),
carrying spin tz and (for our extended system) mo-
mentum hk„. These quasiparticles, though having free
properties Lset V(i) =07 identical with those of the real
particles, interact not through a singular two-body po-
tential but instead via me)/-behaved two-body, three-
body, and four-body potentials given by the remaining
terms in II"'. (The dominant interaction between the
quasiparticles is of two-body nature, arising from
Uslsl. ) We thus arrive at a Hamiltonian susceptible to
a powerful array of held-theoretic methods, including
linearization of equations of motion, ' canonical trans-
formation, "the Green's function formalism, "etc.

The lowest cluster order result (zeroth order in ~)
is quite interesting —and, at least in tbe nuclear case
where, as we shall see, simple f's give IcV~/Ol =—',,
should contain most of the physics. To this order no
many-body forces appear, and the effective Hamiltonian
in configuration space has the same form as the Hamil-
tonian H from which we started, with the replacement
of tbe highly singular potential z(ij) by the well-

behaved two body potential to-s(ij)=(h'/M)j Vf(ij)7'
+f'(ij )w(ij). For an fof the general type we consider-
i.e., one for which the cluster expansions are sensibly
convergent —not only the repulsive but also the at-
tractive component of roe(i j) may be considerably re-
duced from that of z(ij): qualitatively, the singular
repulsion goes into a repulsive edge at or a repulsive
bump near the equivalent hard-core radius and the
depth of the attraction is diminished, while the long-

~ K. Sawada, K. A. Brueckner, ¹ Fukuda, and R.Brout, Phys.
Rev. 108, 507 (1957); H. Suhl and N. H. Werthamer, ibid 122, .
359 (1961); K. Sawada and N. Fukuda, Progr. Theoret. Phys.
(Kyoto) 25, 653 (1961).

's N. Bogoliubov, Zh. Eitsperim. i Teor. Fiz. 34, 58 (1958)
LEnglish transl. :Soviet Phys. —JETP 7, 41 (1958)g; J. G. Valatin,
Nuovo Cimento 7, 843 (1958).

"V. Galitskii and A. Migdal, Zh. Eksperim. i Teor. Fiz. 34,
139 (1958) t English transL: Soviet Phys. —JETP 7, 96 (1958)];
A. Klein and R. Prange, Phys. Rev. 112, 994 (1958). The very
extensive literature on the three classes of Geld-theoretic methods
just cited is indexed in the bibliographies of Ref. 39.
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range behavior is left unaffected. (See the next section
for an example. ) So, for such an f and suitably chosen
V, the interactions of the quasiparticles as described by
(IV.1) may indeed be weak enough that it is not a
bad first approximation to regard these entities as
independent.

Nonetheless, the residual two-body interactions must
be expected to be crucial for a variety of system proper-
ties. Their inclusion by Goldstone-Hugenholtz perturba-
tion theorys4 (if applicable) proceeds as usual. And the
available Geld-theoretic techniques for nonperturbative
approximate diagonalization of a second-quantized
Hamiltonian are of immeChate utility: speci6cally, we
may appeal to the random-phase approximation" to
treat long-range collective effects (as exist in an elec-
tron gas) and the Bogoliubov-Valatin transformation"
to treat pairing effects (as exist in a superconductor).
Both these methods are in wide use as means of dressing
the quasiparticles of the shell model in nuclear physics, "
and the question of a possible super8uid transition
(due to strong pairing correlations) in liquid He' is still
open. "A large measure of the uncertainty in this work
lies in ignorance as to the effective or residual inter-
actions that should be inserted, an ignorance we hope to
eliminate.

We have derived here definite rules for generating
suitable two-body, three-body, four-body, residual
interactions for use in a quasiparticle or model calcula-
tion accurate to given cluster expansion order. '~ The
inclusion of the three-body, four-body, interactions
in the quasiparticle Hamiltonian leads to complications
beyond those normally encountered, which may spur
development of new techniques, associated with new
facets of the many-body problem.

For those accustomed to the Brueckner method, and,
in particular, to the double-counting diKculties which

"J.Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957);
N. M. Hugenholtz, Physics 23, 481 (1957).

"M. Baranger, in l06Z Cargese Lectures in Theoretical Physics,
edited by M. Levy (W. A. Benjamin, Inc.

&
New York, 1963),

Chap. 5; A. M. Lane, Ntsclear Theory (W. A. Benjamin, Inc. ,
New York, 1964).

s'A. M. Sessler, in Proceediwgs of the lrsterrsateortal school of
Physics "Enrico Fermi, " Course XXI, Liquid Helium, edited by
G. Careri (Academic Press Inc. , New York, 1963), pp. 188—292;
V. J. Emery, Ann. Phys. (N. Y.) 28, 1 (1964). It should be men-
tioned that the experimental work of V. Peshkov, reported at the
Ninth International Conference on Low Temperature Physics,
held at Ohio State University-Battelle Institute, 1964 (un-
published), points to a second-order phase transition at very low
temperature.

57 Interesting comparisons may be made with the program of
F. Tabakin, Ann. Phys. (N. Y.) 30, 51 (1964) and J. Da Provi-
dencia and C. M. Shakin, ibid. 30, 95 (1964), based on a suggestion
by Villars: a model Hamiltonian with given smooth two-body
residual interactions may be reproduced, apart from effective
many-body terms, by a canonical transformation applied to the
realistic Hamiltonian. 1he correlation factor F of our method is
replaced by a unitary model operator. See also J. S. Bell, in the
Many-Body Problem, Lecture Notes of the First Berg en Internati onal
School of Physics E96E (W. A. Benjamin, In—c., New York, 1962),
pp. 214-222; F. Villars, in Proceedings of the International School
of Physics "Enrico Fermi, " Course XXIII, Nuclear Physics,
edited by V. Weisskopf (Academic Press Inc. , New York, 1963),
pp. 24—28.

plague the use of an effective Hamiltonian in which the
t matrix replaces the e matrix, our advocation of care-
free treatment of the above H"' as a true Hamiltonian
might require more explicit justification. Recall that
the orthonormality of each of the bases ( ~

C~)},{~ 8~)}
implies the existence of a unitary operator which trans-
forms one into the other. Our effective "many-body"
Hamiltonian, then, may be regarded as the result of a
similarity transformation upon the original, singular
"two-body" Hamiltonian via this unitary operator.
Viewed in this way, the CBF method allows us to in-
ject our physical intuition into the choice of a camottzcal
transformation5~ of the original many-body problem
to another many-body problem which is presumably
easier to solve.

Let us present a simple example of the use of H"t, for
the self-consistent determination of V(i). It will be
imagined for generality that our system is ftrtite, yet
explicit results will be stated only for the speci6c form
of H" that we have derived, a form which has strict
validity just for a uniform, extended medium. The
independent-(quasi) particle ket

~C')=g a„t~0), ~0)=vacuum ket, (IV.10)

renders the expectation value E= (Her') stationary (we
desire a minimum) if and only if

(5C ia «—ZiC)=0. (IV.11)

A sufficiently arbitrary first-order change
~
5C) in ~C)

is given by

~

5C)=f t4. tu„~ C), «=1, , N, tt') N, (IV.12)

where |is a first-order infinitesimal. Thus, obviously,
(N ~E~ C)=0, and using the anticommutation relations
of the a's and ttt's our stationary condition becomes

N

0+&(a) IUsla)~).+—2 (")t IUsla»)-
'A 1 2 t x, p,=l

+—P (tt9, tsar ~
U4

~
K) tsv) o+ =0. (IV.13)

3 I y, gg, v=1

«D. J. Thouless, The Quantum Mechanics of Many-Body
Systems (Academic Press Inc., New York, 1961), Chap. III.

Note that all the U-matrix elements involve V
through zv2.

For a Hamiltonian of the usual sort with only two-
body interaction terms (as considered by Thouless, "
whose procedure we have adapted), the determination
of V(i) is trivial; ignoring Ust„eh&, Us, and U4, in fact,
all contributions of first or higher order in co, we readily
achieve a solution of the same type. Recalling the de6ni-
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tions of vV2 and m2, and noting

P (~'x
I
f'(12)LV(1)+V(2)) I ~A)

1 N N

Q (a'X
I L v(1)+v(2)g I «X).— Q (~'X

I
(f'(12)—1)I v(1)+v(2)] I KX).

X—1 ~=& E—1 &=i

1 N
= —(w'I V(1) Iz)— Q(z'Rig(12)LV(1)+ V(2)gld)„S—1 )=~

(IV.14)

(IV.13) yields as a zeroth approximation

("Iv"'I~)"'= p ("~I~2I~~).'",
~ =1),Ã, K') iV. (IV.15)

The superscript I 07 outside the matrix elements indi-
cates that correspondingly approximate q 's, p&'&'s

obeying (II.6) with V —+ V&& and hence self coesislee-l
with V~0&, are to be inserted. I Remember that our ex-
plicit results depend on the satisfaction of (II.6).j
However, we do not as yet have an unambiguous pre-
scription for the q &'&'s and V&", since (IV.15) restricts
only a subset of matrix elements of V& &. Generalizing
(IV.15), we define a self-consistent Hamiltonian,

-( Q2

qual

Hso~~=K
I
~—

2M )

+(Xl VN Ip)&" agta„, (IV.16)

where
(xl v'"lp)&'&=+ (zvlw2lpv). i'& (Iv.17)

without restriction on X, p. Consider the operation
of this Hamiltonian in a one-body space. We are cer-
tainly free to suppose, within the framework of our
variational criterion (IV.13), that the

I
q)'s are in

zeroth-approximation eigenkets of JIgc& ~,"i.e., we are
free to choose a single-(quasi)particle representation
based on

I
pi"&) which diagonalise Hso"&.

I
In other

words, we may take (IV.16), (IV.17) as defining Hi in
(II.6).j This "Hartree-Fock" self-consistent choice of
orbitals provides, with (IV.17), a complete self-consistent
determination of V&'&.

The inclusion of the effect of the higher terms in co

on V is straightforward but tedious. In particular, self-
consistency to erst order in co is achieved as follows: Re-
place V by V&'~ and the p's by the p&'&'s, in all terms of
(IV.13) except that providing tbe first term on the right
in (IV.14). In the resulting expression, discard all con-
tributions of second and higher order in &u, to obtain

(el v'" l~)"'=("Iv&o&l~)"'+("I&"'l~)'"
a=1, , X, ~')1V, (IV.18)

5'This follows from invariance of the trace. See Ref. 58 or
A. Messiah, Quaetlm 3Eechuei cs (North-Holland Publishing
Company, Amsterdam, 1963), Vol. II, pp. 776-778, for a complete
discussion.

where (x'I1t.'i'&Iz)~ & stands for the sum of (first-order)
terms arising from the initially neglected second term
of (IV.14) and from U&i„&i,» U8, and U4. Finally, ex-
tend (IV.18) to all matrix elements (Xl Vt'tip)&'~, de-
fine therewith a self-consistent Hamiltonian Hso&'~, and
diagonalize this Hamiltonian in the one-body space to
obtain the self-consistent orbitals q &'&. Self-consistency
order by order in co is accomplished by an obvious
generalization of this iteration scheme. To any order I'
in &o, the &i&~' —e„&~& obtained upon diagonalizing the
corresponding Hso&p' may be interpreted in the usual
way as approximate excitation energies for the system
(associated with quasiparticle-quasibole excitations).

For the infinite medium, one set4' of IIartree-I'ock
single-(quasi) particle functions is supplied by our choice
of plane waves supplemented by appropriate spin factors:
With these orbitals the momentum conservation theorem
of Sec. II implies that all matrix elements on the left in
(IV.13) vanish, so that (~'I Vl~) =0, meaning Hso
I
defined as in (IV.16) but with the

I Oj removedg is
diagonalized. The triviality of this result —which is
often stated as an immediate consequence of transla-
tional invariance —is alleviated by the fact that (IV.15)
or any higher iterate (here the L0$'s on the p's may be
omitted, the orbitals being the same in all orders),
generalized in form to diagonal matrix elements, deter-
mines a correspondingly approximate "self-consistent"
dispersion law for the motion of our quasiparticles in
the quasiparticle medium. However, as is the case of the
ordinary Hartree-I'ock method, it is only in applica-
tion to finite systems that the full advantages of the
procedure outlined will be realized.

V. PRELIMINARY REMARKS ON
APPLICATIONS

Having completed our exposition of the formalism of
the CBF approach, we now turn to some problems that
must be faced in actual execution of the method. In
this section, rather than belabor details that are better
deferred until the proposed calculations have been
carried out, we want to emphasize one salient point:
There is considerable Rexibility in tbe choice of tbe
factor F in the decomposition of the exact wave func-
tion according to O'=FC; nevertheless it is essential to
strike a compromise between the inclusion of correla-
tion effects in F versus their inclusion in the model
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function C. Tbe degree of correlation incorporated. into
F must not be so great that the cluster expansions that
arise fail to converge with sufhcient rapidity, yet great
enough that C is only weakly correlated in the sense
that simple methods are still apt for the diagonaliza-
tion of II

Can one realize an expedient compromise for the two
systems, nuclear matter and liquid He', whose descrip-
tion is of most concern to us? A satisfactory answer to
this question can only be given after extensive computa-
tional exploration. We have, however, found the follow-

ing qualitative considerations useful in motivating our
program of applications.

In practical calculations we must at present exclude
from consideration all choices of f leading to cluster
expansions for the H, that may not be truncated after
terms of ftrst order in the correlation parameter. When
the strong repulsion in v(ij) is replacable by a hard core
of some radius C, the sirrtp/est possible choice of two-
body correlation factor is just a step function,

f(r) =0, r&C,
=1, r&C.

(U.i)

"Nevertheless, our classi6cation of contributions according to
the co prescription remains a highly valuable one, for the reasons
detailed in the Appendix.

This is assuredly not a "realistic" choice in the sense
that tbe C required to reproduce in V=FC the exact
wave function contains minimal dynamical correlation,
but within the class of f's such that rt(0, it gives the
smallest values for the parameter

~
1Vco/0 ~. For nuclear

matter, the core radius C is 0.5 F or less and the radius
ro of the specifi. c volume is about 1 F, so we find, to our
satisfaction,

(V 2)

while for liquid He', the effective C is essentially the
sttme as ro, i.e., 2.43 A, yielding the disturbing answer

(V.3)

The former result should not, however, be viewed with
too much enthusiasm, nor the latter with too much
alarm; such estimates as (V.2) and (V.3) can hardly
provide the last word on the utility of the CBF ap-
proach. As we should have emphasized before, it is
safe to regard ~Zoo/Q~ as a true expansion parameter
provided it is so small that rt may be treated as a delta
function and thus all many-body integrals factored. On
the other hand, for ~%to/Q~ =1, this quantity is of
questionable relevancy as a measure of tbe rate of con-
vergence of the cluster expansions. "In any event, one
may anticipate appreciable cancellation among terms
classi6ed in the same order. """Further, if we relax
the restriction q&0, as for example in Fig. 2, it seems
plausible that regions of positive and negative correla-
tion will, to some extent, compensate one another, inso-
far as their effect on the size of tbe first and higher clus-

(V.4)g, c,'(II,—E8 .)=0,
where O'=P c 'O~, according to the procedure of
Feshbach. "' The Rayleigh-Schrodinger expansions
for the coefficients c ' and energy E corresponding to a
given state, say the ground state, to which we shall

"K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958)."L.C. Gomes, J.D. Walecka, and V. F.Weisskopf, Ann. Phys.
(N. Y.) 3, 241 (1958).

63 J. L. Gammel and R. M. 7'haler, in Progress ~rI Cosmic Ray
Physics, edited by J. G. Wilson and S. A. Wouthuysen (North-
Holland Publishing Company, Amsterdam, 1960), Vol. V,
Chap. II.

's T. Hamada and I. D. Johnston, Nucl. Phys. 34, 383 (1962)."K.E.Lasilla, M. H. Hull, Jr., H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962)."P. M. Morse and H. Feshbach, Methods of Theoretical Physi cs
(Mcaraw-Hill Book Company, Inc. , New York, 1953), Part II,
Sec. 9.1.

ter corrections is concerned. (This is certainly true if g
has very short range compared to the other character-
istic lengths of the problem, viz. , ro and tbe potential
range. ) These remarks prompt the search for an
"optimum" f, one which produces, so far as one can
tell, the most rapid convergence for the cluster expan-
sion of some quantity of central interest, say the
ground-state energy. It then remains to be determined
whether or not f's we would consider "realistic" are
near enough to "optimum. " For the nuclear-matter
problem, there is enough evidence, especially from the
work of Brueckner and Qammel ' and Gomes, Walecka,
and Weisskopf, "to support some degree of confidence
in the claim that they are. The correlation factors one
extracts from these independent-pair theories have
essentially the behavior shown in Fig. 2, with a region of
small positive correlation (meaning f exceeds unity),
and lead to quite manageable first-order cluster cor-
rections. "In the case of liquid He', there is, on the other
hand, no definite reason for optimism. With this in
mind, we have decided to explore first tbe more promis-
ing nuclear applications of our method. A parallel study
of liquid He' is being carried out by Feenberg and Woo,
following an alternate path of the general CBF method
more appropriate to this system (described in Sec. I).

There exists of course another source of flexibility
which we have not mentioned in the above discussion:
The one-body potential V of the input independent-
particle model is at our disposal. For instance, we are
free to choose V so as to greatly suppress the cluster
contributions to the ground-state energy of first order in
co. This can, however, be accomplished only at the
sacrifice of self-consistency; i.e., for such a V, (IV.13)
will not be met.

Perturbation calculations of the gross properties of
nuclear matter (binding energy per particle, equilibrium
spacing, compressibility, symmetry energy) for realistic
two-nucleon potentials" " are projected. An appro-
priate (Rayleigh-Schrodinger) form of perturbation
theory arises out of stepwise solution of the set of linear
equations
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(1,0), and (0,1) appear immediately susceptible to
practical evaluation. "

Lowest cluster-order perturbative calculations pro-
vide an illuminating example of the sort of compromise
that must be achieved. Certainly f must be near
enough to "optimum. " But it must also be such that
m2 is relatively weak; otherwise we will have to go to
high order in the perturbative expansion to obtain
meaningful results. To make this statement more con-
crete, we present, in Fig. 3, plots of ws(ij ) for the fol-
lowing simple choices of s(ij) and f, corresponding to
the cluster-method study of nuclear matter by Iwamoto
and Yamada":

FIG. 3. Effective two-body potential ws(r) for the Iwamoto-
Yamada choice (V.7) of two-body correlation factor and the
Ohmura-Morita-Yamada two-nucleon potential (V.6) (singlet-
even states).

specialize, consist of series of terms of increasing order
in some Gnite perturbative parameter p, associated
with off-diagonal elements of H. Each of these terms
must be evaluated by cluster expansion. To lowest
cluster order, one obtains perturbative expansions for
the c ', E which are identical in all save two respects
with those of the usual theory based on an independent-
particle resolution of the Hamiltonian, i.e., a resolution

The two required modi6cations of the standard theory
are:

(1) t'( j) tt' ( j)

Pn cn(@mn +Ptmn) =0
q (V.S)

where O'=P c 4', since all orthogonalization effects
are of 6rst order in the correlation parameter. j Higher
order corrections c " ', Ei ' of 8th order in ar and
E'th order in p (f, P'&~1) are easy enough to generate
formally. However, only the contributions labeled (0,0),

'7 The second diBerence has the consequence that, in contrast to
the situation in the usual Rayleigh-Schrodinger theory, the
Feshbach procedure leads to energy denominators which auto-
matically incorporate a dispersion effect. It is interesting to note
that, for the infinite medium, the self-consistent choice (lV.17) and
the choice V(~) =0 give identical results. In the extension to Gnite
systems, V will be more instrumental in hastening convergence of
the perturbation expansion: For the self-consistent choice all
diagrams corresponding to single-quasiparticle excitations —absent
from the outset for the infinite medium because of "momentum
conservation" —are cancelled, so that self-consistent and vanishing
V's no longer give equivalent results term by term.

everywhere, and

(2) sq~ sg+P„+(X~l~sl~~),

in all energy denominators. "
l Clearly, the same lowest

cluster-order expansions are obtained if we instead

apply the Feshbach procedure to the determination of
c~~ E ln

(V.6)

2=397.3 MeV, rr=2.627 F ', C=0.6 F (Ohmura-
Morita-Yamada" singlet parameters, for Serber force)

(V.7)

with y in turn 1.0, 5.0, 9.0 F '. We see that the reduction
in strength of m2 from e decreases as we go from longer
to shorter range for fs 1=rI (h—ence from larger to
smaller l%ojQl). rs IY found 5.0 F ' as the most
advantageous value for y by minimizing the (new) ftrst-
order perturbation expression for the energy (which of
course is an expectation value), ignoring, however, the
cluster contributions of 6rst and higher order in co.

Estimates of these first-order cluster corrections showed
them to be appreciable, but suKciently small that their
neglect does not spoil the semiquantitative nature of the
results. In this case of y=5.0 F—', comparison with the
work of Euler, ~'Huby, "Swiatecki, "Bethe, ~4 Thouless, "
and Brueckner' indicates that the effective reduction in
strength of the potential should be enough that a
second-order perturbation calculation is adequate. For
much smaller p, the cluster expansions may converge too
slowly; for much larger y, on the other hand, the per-

"Of course, rearrangements of the type discussed by Brueckner
in Ref. 2 may be applied to the aP expansion. In particular, large
classes of terms may be summed to all orders in the new (finite)
perturbative parameter by the introduction of an appropriate
reaction operator, de6ned in the same way as Brueckner's except
that m» replaces e. Further, important three-body eBects may be
included by summing out three-quasihole diagrams as described
by H. A. Bethe (Ref. 4). However, the necessity of such refine-
ments would in large measure destroy the utility of our method.

69 L Ohmura, M. Morita, and M. Yamada, Prog. Theoret. Phys.
(Kyoto) 15, 222 (1956).

7 Also note that the limiting case y —+~ is inadmissible, because
it leads us back to a singular potential in the sense that fws (r)Hdr
diverges. This limiting case is just the step function used for
estimates of co. It is what we might be led to call the optimum
correlation factor within the class (V.7), since it produces smallest
~a& (, but it is energetically so unfavorable in a variational calcula-
tion that we must exclude it as quite unrealistic (cf. Ref. 13).

"H. Euler, Z. Physik 105, 553 (1937).
7' R. Huby, Proc. Phys. Soc. (London) A62, 62 (1949).
7' W. J. Swiatecki, Phys. Rev. 103, 265 (1956).
74 H. A. Bethe, Phys. Rev. 103, 1353 (1956)."D.J.Thouless, Phys. Rev. 107, 559 (195'/).
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(v)s, = sin'ktrv(r)dr~&0.
0

(V.8)

The leading terms in our effective Hamiltonian yield
formally the same problem, even when v is singular, ex-
cept that ws must be used everywhere in place of v.

Therefore a sufficient condition for a gap, in the situa-
tion that cluster corrections of Grst order in the correla-

"T.P. Wang and J. W. Clark (to be published).
'r J. S. Bell and E. J. Squires (see Ref. 4)."L. N. Cooper, R. L. Mills, and A. M. Sessler, Phys. Rev. 114,

1377 (1959); R. L. Mills, A. M. Sessler, S. A. Moszkowski, and
D. G. Shankland, Phys. Rev. Letters 3, 381 (1959);V. J.Emery
and A. M. Sessler, Phys. Rev. 119, 248 (1960); K. A. Brueckner,
T. Soda, P. W. Anderson, and P. Morel, ibid. 118, 1442 (1960);
E. M. Henley and L. Wilets, ibid. 133, B1131 (1964).

"However, cf. E. M. Henley and L. Wilets, Phys. Rev. 133,
B1118 (1964). Comprehensive reviews of work done before 1961
are given by Bell and Squires in Ref. 4 and by J. S. Bell, in The
Many Body Problem, Lectst-re Notes ofthe First Bergen inter'national
Schoot of Physics 1961 (W. A. Benjamin—, Inc. , New York, 1962),
pp. 197—213.

"V.J. Emery, Nucl. Phys. 12, 69 (1959);19, 154 (1960).

turbation expansion may become useless. sr Numerical
evidence in favor of sensible convergence, for the value
y=5.0 I ', of both perturbative and cluster expansions
bas emerged from recent photonuclear calculations
based on the CBF method and realistic two-nucleon
potentials. ~'

A more favorable situation is to be expected with a
more ffexible f than (V.7), one displaying some re-
stricted amount of positive correlation. (There is quite
a lore connected with the choice of the correlation fac-
tor f"I.n particular, one must avoid the "Emery
difficulty. "") Ultimately, we might envisage the de-
termination of f and V from cogp/ed Euler-Lagrange
equations, these derived by extremizing the energy ex-
pectation value, to given cluster approximation, subject
to such constraints as are required to suppress the
magnitude of higher cluster corrections. It is likely,
though, that this will be more of a luxury than a
necessity, i.e., that intuitively motivated analytic trial
forms for f will suffice. We reserve thorough analysis of
this problem for a later paper.

With an understanding of the gross or "normal"
properties of nuclear matter, the next interesting ques-
tions are:

(1) Is nuclear matter a "superffuid"; more speci-
6cally, does it possess a ground state with strong pairing
correlations of the type existing in a superconductor?

(2) If so, as is now believed, "what is the magnitude
of tbe energy gap in the excitation spectrums

These are indeed delicate questions. The methods
used to deal with them previously have not been very
satisfactory because they lean too Chrectly on a formalism
designed for nonsingular potentials. "

For a well-behaved potential v(r) which allows no
bound state (or at most one of zero energy), a slffscient
condition for an energy gap is"

TABLE L Results for (sos)„, (in MeV-F) at various ht and y
(both in F '), for the Iwamoto-Yamada choice of correlation
factor and three diferent two-nucleon potentials (singlet-even
states): Ohmura-Morita- Yamada (A), Brueckner-Gammel-Thaler
(B), and Hamada-Johnston (C). Under the assumptions of the
text, negative values signal an energy gap in the excitation spec-
trum of nuclear matter. Equilibrium density is usually taken to
correspond to kg=1.4 F '.

Poten-
tial

1.0 —1.05 —13.8
1.4 3.07 1.50
1.8 5.87 19.4

1.0 —2.85 —17.0
1.4 0.545 —8.47
1.8 3.29 4.77

1.0 0.099 —13.9
1.4 2.15 —7,61
1.8 3.93 3.88

—15.3
6.64

36.1
—20.6—10.3

8.94
—20.3—13.1

4.53

—10.4
18.3
57.1

—19.6—6.52
17.7

—21.3—12.1
10.5

—2.36
33.8
81.3

—16.4
0.169

29.4
—19.2—6.78

20.9

tion parameter exert negligible effect, is (ws)s, &~0, pro-
vided of course the effective potential ws does not
bind. ' The quantity (ws)s, has been evaluated for
three choices of the singlet-even two-nucleon poten-
tial (Ohmura-Morita-Yamada ""Brueckner-Gammel-
Thaler, " and Hamada- Johnston" ) and the simple
correlation factor (V.7), over a range of y's. Results are
cited in Table I, and should be looked upon as only a
tentative indication of the physical situation. $1t might
be noted that the value y=5.0 F ' seems to play a
special role. A calculation like that of IY was carried
out using the singlet-even Brueckner-Gammel-Thaler
potential, and again this value was found to be the most
advantageous energetically. " A similar result (y=6.0
F ') was obtained by Temkin" for his spin-dependent
Serber potential, using a modified cluster expansion
method but the same class of trial f's.j In order to
arrive at definitive answers to questions (1) and (2),
a detailed investigation employing the Bogoliubov
canonical transformation method (as described by
Bell, for example) is being carried out by Chakkalakal.

Once f and V are selected, ws and ws are fixed and
thus H'" completely determined. An important question
remains to be answered: Is the II"' res~~lting from a
choice of f, V appropriate to accurate practical calcula-
tion of the ground state energy in the -framework of the
new perturbation theory conducive to accurate practical
calculation of the energy spectrlnt of low lying excited-

states' One may well be driven to criteria other than
or in addition to those we have suggested, in making
the "best" choice of f and V for treating a given aspect
of the many-body problem. This general statement

' One would hardly expect ros to bind for realistic f, if v does
not. However, this possibility is still open for the f's we have used,
and is being examined.

8' One must refrain, however, from taking very seriously, for the
actual nuclear-matter problem, the saturation properties that
come out of preliminary calculations of this sort—certainly the
tensor component of the force plays too important a role to be
ignored; also we should be more clever in our selection of the
class of f's.
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applies, irt particllur, to the aforementioned energy-gap
calculation.

In extending our formalism to Gnite nuclei, complica-
tions will arise most obviously from the fact that terms
of order 1/X can no longer be neglected. "And since
plane waves do not provide appropriate orbitals for a
system which has a surface, momentum conservation
cannot be invoked to discard large classes of matrix
elements as we have done. Sums over states become more
dificult. Nonetheless the formal work is quite straight-
forward and is now in progress. For the p; we may
take either self-consistent single-particle wave func-
tions, or, more practically, suitable shell-model orbitals.Configuration-mixing

calculations, according to the
procedures of Ref. 35, and studies of pairing and col-
lective effects on the basis of an effective second-
quantized Hamiltonian, using Q.eld-theoretic methods
as described in Sec. IV, are definite possibilities. All
work begins with a "second-principles" potential, which
6ts a selected collection of two-particle data.

We close with a remark about three-body nuclear
forces. If one does, say, a very elaborate con6guration-
mixing shell-model calculation for a number of nuclear
states, for a number of nuclei, with an adjustable weak
two-body potential (the same for all cases) and finds
that the data can be Qtted well only with the inclusion
of a three-body potential, one is of course not justified
in citing this result as evidence for the presence of a
fundamental three-nucleon potential of appreciable
strength (which could, it we knew how, be derived from
meson theory). Such a result, as we have seen, may very
well be an arttfact of the model that has been adopted-
one can certainly replace the problem of interaction of
the real particles via strong two-body potentials by an
equivalent problem of interaction of quasiparticles via
weak two-body potentials, plus additional three-body,
four-body, ~ .potentials. "On the other hand, the fact
that the sophisticated shell model works so well without
introduction of many-body potentials is good evidence
for the applicability ot our method and the rapid
convergence ot the cluster expansions for suitably
chosen f, V.
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APPENDIX: SYMMETRIES OF TRUNCATED
CLUSTER EXPANSIONS

Here we direct attention to certain symmetries of the
matrix elements of the identity and Hamiltonian opera-
tors, and examine to what extent these symmetries
survive in truncated cluster expansion formulas for the
matrix elements.

Certainly Ft, Q, are

(1) Hermitian,

(2) if diagonal, symmetric in any two orbitals ttt;, tttt;
if nondiagonal, with m;4n;, i~&d, m;=n;, i)d, anti-
symmetric in m;, m; and in n;, n;, i, j~& d, and sym-
metric in m;, m;, i, j&d,

(3) invariant under a unitary transformation of the
single-particle orbitals used to construct the model
functions C, 4 .

Two prescriptions for truncation of the cluster ex-

pansions have been proposed. One, that of keeping all

terms of say 8th order or lower in the correlation param-
eter and discarding those of higher order, has been in-
herent to our development. The other is that ot Feenberg
and Woo (FW), who instead de6ne a 8th-order cal-
culation as one including all contributions arising from
terms in G involving no more than P distinct indices.
Consideration of symmetries (1), (2), (3) leads to a
preference for our classi6cation of orders of approxima-
tion. (However, it should be kept in mind that the fail-

ure of successive approximations in a given computa-
tional method to satisfy symmetry properties of the
quantity to be calculated is not sufBcient reason for
rejecting this method; for example, failure of the in-
variance (3) implies the existence of some optimum
choice of single-particle orbitals for which the corre-
sponding successive truncated approximants converge
most rapidly. 'o We await detailed calculations to throw
additional light on the merits of the proposed classi6ca-
tion procedures. $

A meaningful comparison with the work of FW is
possible only after we are convinced that the "linear
combination method" used by them to extract nondiago-
nal matrix elements from diagonal ones is equivalent—
within the framework of the present discussion —to the
"n-parameterization scheme" we have adopted, i.e.,
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we want to be sure that any differences in the degree to
which (1), (2), (3) are met by the truncated expansions
of FW and ourselves are indeed due to the diGerent
prescriptions for truncation. Their procedure is the
following: En tt, i) replace m by m*, i.e.,

pm; & pm;+)

pmg+= amgpmg+bngÃng )

pm ~ —pm;) z)d)

(A1)

where a, , b„, are arbitrary coefficients, and do this
also in the cluster expansions for these matrix elements.
The required nondiagonal matrix elements tt „$ are
then obtained by matching coefficients of a„,*
a „*b,. b„„ in the "generating functions" 0 + ~,
f& ~ ~ and their cluster expansion representations. In
practice the magnitudes of a „b„„i~&d, are set equal
to g—'„ the remaining (arbitrary) phases being used to
separate the various contributions that enter. The role

played by this choice in the formalism is not yet clear-
but surely any deviations from the results for some other
recipe for reducing the "excess arbitrariness" can only
come about due to a truncation of the cluster expansions
which is, to this extent, inappropriate.

Our n-parametrization procedure can be phrased in
the same language. Note that for n; near zero

exp(agV&e;/gag) Ãm; pmg+ai&png ) (A2)

so that we also replace q,. (but only in the right-hand
wave function) in tt, f) by a linear combination of

p,. and q „,. and —by the artifice of differentiating with
respect to at, , nq and setting all the n's zero —seek
the coefficients of n~ n~ in the resulting cluster ex-

pansions. The primary difference, then, between the FW
procedure and ours is in the reduction in excess arbi-
trariness of the coefficients in the linear combinations

(A1): We suppose a„,.=1 and b„,. is small but other-
wise arbitrary. LIt is worth remarking that the
p-parametrization procedure, the much-used device for
drawing matrix elements f) of the Hamiltonian from a
generalized normalization integral resembling It, is
really in the same spirit. For small p, we have, for
example,

(expPII&) p„, q, +PEIgq „, . . (A3)

Again, in eGect, q,. in the right-hand wave function is
replaced by a linear combination (this time involving, in
general, all the single-particle orbitals) and the coeKci-
ent of p in the resulting cluster expansion is sought. )The
fact that only the right-hand wave function in tt
is replaced. deserves mention in connectionwith symmetry
property (1).This feature has the consequence that our
I ', in contrast to I m(m~m+) of FW, is not Her-
mitian, i.e., whileI m(m —+ m*) goesto(I (m-+ m*))~
upon interchange of the roles of m; and e;, i= 1, ~, d,
our I 'N(I )*.However, all that is actually required

is Hermiticity of the derivatives,

8 I /Bal' ' '~adieu ~ ~ a~ p-0 —ttmnq

~ ~1™/~p~at ''' ~a~
I ~i -"N-N t&-

and this requirement is fulfilled for our definition of Im',
with the choice (II.2) of II&, II2, II». Further, the final
results of Sec. II are Hermitian order by order in co,

in fact, term by term.
Our calculations of R „@,of Sec. Il were repeated,

using the Feenberg-Woo linear combination method.
The results are in fact identical to those we came by
earlier, provided all terms of second or lower order in co

for+, and of first or lower order incr for @ „and only
those terms, are retained; so the techniques in question
are equivalent, to the approximation considered in this
paper. Furthermore, the results obtained are formally
identical with those of FW, if, as they, we keep the
contributions from all terms in G with no more than
three distinct indices; the choice of BDJ versus Bose
correlation factor, though leading to detailed differences
in the explicit forms for the cluster integrals, is essen-
tially immaterial to the present discussion. With this
latter truncation there arise certain ernbarassing terms
which violate the antisymmetry requirement in (2).
These terms, besides being weakened due to internal
cancellation (they involve differences of cluster in-
tegrals which are the same apart from the particular
orbitals that appear), are all of third order in cu for the
Q, and of second order for the @,in our classification
scheme, hence only need be considered in a higher order
calculation than we have given, where they are pre-
sumably compensated by other terms also failing of
antisymmetry. To reiterate: excluding these terms, i.e.,
replacing (in FW's notation) all cosh-,'(Spent. &

—
bb&t&),

cosh-,'(8b&q &

—
kg&2&) ~ factors by unity and omitting

all bE(1,1'), bE(2,2'), ~ contributions, then adding the
proper contributions from the x;;~~' term in G) we obtain
exact agreement with our results of Sec. II. One might
speculate that differences caused by different assump-
tions for magnitudes or phases in the linear combina-
tions (A1) (which still allow, though, sufficient arbi-
trariness to separate the various contributions) will

appear, in calculations otherwise following that of FW,
only in these "small" terms.

A consistent co-classification scheme is not easily de-
vised for the Anal explicit cluster integrals given by FW
for the Bose correlation factor, since no»'s appear, but
it is clear from formal analogy to our work just which
contributions should be kept to given order in the rele-
vant correlation parameter.

Testing the final results of Sec. II according to (2),
we Qnd, order by order in co and term by term, an en-
tirely satisfactory situation. The only source of difhculty

might be the four-index contributions. For the diagonal
elements there is certainly no difhculty —these contribu-
tions are indeed symmetrical under interchange of any
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two orbitals. For the nondiagonal elements, we must X(4).
look at Lcf. the last member of (II.7)7

Interchanging m;, m; (we may suppose m;An;, m;An;),
this becomes I(» —— Z iggg:= X(i)'

1V(1V—1)(1V—2) ii4
+(m,m; I hm I

n,n;),(mimg I hmI ng,ng),
—(m,m, Ih, In;n, ).(m,mg Ih, In;n, ).

—(m,m, Ih, In;n, ).(m,m, Ih, In,n,).. (A5)
I(~)=I=

+3X(»X(2)+X(4),

S~X(y) X(y) X(g)

IIV )"If either mg,
——ng, or mg ——ng, the last two terms (whose

presence would imply a deviation of our approxima-
tions for 5, @, from antisymmetry in m;, m;)
vanish in the limit of a uniform, infinite medium by
momentum conservation. In the remaining case of four-
orbital excitation, (A4) is irrelevant, for then it is the
barred four-index cluster integrals which enter, and
these are clearly antisymmetric with respect to inter-
change of any two "left" orbitals or any two "right"
orbitals with indices ~& d.

Feenberg and Woo also noticed that their truncated
forms (derived on the basis of the IY cluster formalism)
do not display invariance under a unitary transforma-
tion of the single-particle basis functions. The terms
which fail of invariance arise from contributions to G
involving a repeated index, as P;;g, x;;x;4. An invariant
cluster formulation, in which all FW approximants
manifestly do meet the symmetry requirement (3), may
be devised by defining subnormalization integrals I(~),
b=i, ~, 1V, which are averages over those of the IY
formalism, and, in terms of these, cluster integrals

a11 partitions
N
Z bsb~N
b-1

The last expression is to be compared with the last of
(II.5). It leads to an exponential formula,

I(N) ——I(y) exp' G~HT,

GgHr =
2 1Vx(g&+ &)1V (x(4)—3x(4)i)

+(1/24)1Vgx(4)+, x(g,) =X(g,)/X(»',
(A7)

analogous to (II.10), (II.11), (II.12) (m, n labels are
again omitted). The AHT on G serves to indicate that
this form of the cluster expansion theory is the same
as that investigated by Aviles and by Hartogh
and Tolhoek. The calculations of Sec. II were re-
peated in the framework of this formalism

I using the
a-parametrization scheme and our truncation pre-
scription, but the above basic formulas (A6), (A7)7. At
f&rst the results for 9t, gl, appear to fail of (1),
Hermiticity. For example, in the case of two orbitals
diferent,

I&i) =—g I;—X(»,—(m,m, I h2 I nn;). (m)gmg I hs I ng, ng).
(mgm& I h2

I ngngg) a(mgmg I h2 I ngg) a

(—mmgIh2I nn)g, ( mmgIhmInng), .(A4) I(,)= p I,,=X(,) +X(,)
1V(1V—1) gj

O(c0/N) O(c0~/N) o(~~/N)

+-,'N'X(4), a,a,m'+(1/24)1V'X(4), a,a,'~'+O(co'/1V), (AS)
O(op~/N) O(40~/N)

@ma= 21V X(2)i ip aa1,VX(2), iau a&gm+41V X(s),aiai (@m @a)
o(~/N) O(c0/N) O(c0/N)

—1V'X(g), i,p 'X(2) +g)1V'X(4), i,p '(X(2) —X(4) )—1V'X(p), i 4 'X(g),p
O(c0/N) o(c0/N) O(c0/N)

+81V'X(~). 4-4 '( X(~). p X(2).p')+—p1V'X(4)-i-ap '+(1/, 24)1V'X(4).-i-ip' '+O(~'/1V) (A9)
O(c0/N) O(c0/N) O(c0/N)

The unsymmetrical appearance of the results is, however, illusory: In fact they may be seen to reproduce exactly
those of Sec. II (which are certainly Hermitian), upon application of various &g, P derivatives of the identities

(1/24)1V4X(4) = p Xgjg, g+-', 1V'X(2)'—Q [X;;X47,+Xg4Xg,;+Xg„X;;], .
& j(&(&

$(2),P = Px;;,p— Q X;;(2X(i),p—X;,p —X;,p) .
1V(1V—1) gi1V(1V, 1) '.i—
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(The first of these was given by FW. Both relations are
easy to check from the basicdefinitions. ) The importance
of this finding, with regard to the invariance property
(3), is to be emphasized. Because of the equincdelce of
the IY and AHT formalisms to second order in ~ for
the 5, and to first order in co for the @ „our IY re-
sults of Sec. II mist be invariant under a unitary trans-
formation of the single-particle basis. Again one might
at first be deceived: The presence of terms in (II.15), for
example, with overlapping indices is not at all reas-
suring; however, any apparent lack of invariance melts
away upon recognition of the subtle differences between
the AHT cluster integrals and averages of the IY
cluster integrals, as displayed in (A10), these differences
compensating the noninvariant terms. It is also clear,
from the first of (A10), why the truncated cluster ex-
pansions of FW, based on the IY formalism, violate (3)—
the four-index X;;I,~ terms have an important role in re-
storing invariance. The FW truncation prescription
produces different results for IY and AHT formalisms
in given "order. " In contrast, it is quite reasonable to
conjecture that IY and AHT formalisms will continue
to be equivalent order by order when, instead, our co

classi6cation is used.
At any rate, our 6nal results for the IY formalism

satisfy symmetry (1) term by term as well as order by
order in a& and (3) only order by order; our final results
for the AHT formalism satisfy (1) only order by order
and (3) term by term as well as order by order.

It must be admitted that E~/0 is not a genuine ex-
pansion parameter; co factors cannot in general be ex-
tracted rigorously from a cluster integral with three or
more indices because the integrations over rg2, r23, . ~ ~

are just not separable. Nevertheless, the ~ class+cation
of cluster iutegrahs is unambiguous old leads, as has be-
come clear in this Appendix, to truncated clus/er ex-
pulsioes with all the desired symmetry properties in-
these respects our expansions do indeed behave like
power series in Zco/Q.

To avoid a possible misunderstanding, perhaps we
should point out that the (asymptotic) cluster ex-
pansions we have derived are not power series in the
density p. This is obvious from the presence of sums over
single-particle states coupled with the fact that the
system obeys Fermi statistics. But also, if any param-
eters in f are determined variationally, as proposed,
these parameters become (generally, nonanalytic) func-
tion of the density, implying a corresponding p de-
pendence of each cluster contribution with more than
one index.


