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An outline is given of a proposed theory for the behavior of electrons in transition metals. This is based
on considering corrections to a supposed self-consistent band calculation which arise from the intra-atomic
electron-electron Coulomb repulsion. The resulting interaction energy is considered to occur only between
electrons with similar Bloch wave functions and to depend on the shape of those functions. An important
element in the discussion is the one-electron s-d admixture term in the Hamiltonian which arises when the
d band and conduction band are worked out using different potentials. The behavior of dilute alloys of non-
transition metals in transition metals can then be understood in terms of the hybridized s-d band. It is
suggested that the effect of the nontransition impurity (Cu, Zn, etc., are here to be regarded as transition
metals) is to lower the conduction band, thus changing the s-d band. In terms of a theory parallel to the
localized-moment calculation of Anderson, this reduces the magnetic moment by moving the spin-up and
spin-down d bands with respect to each other. Because of the increased s-like character, the true s-d electrons
have become more mobile and this reduces the effectiveness of the exchange splitting. It is shown that this
model leads to reasonable agreement with the experimental reduction in the saturation magnetization. It is
further shown that if the interaction energy is regarded as a dominant factor in determining which is the
stable lattice structure in these metals, one can obtain correct ranges of stability as the electron-per-atom
ratio changes for all three transition series. The second and third series are supposed to be nonferromagnetic
because of a large band width and small interaction energy. The paper is entlrely qualitative, such calcula-
tions as are presented being of an illustrative nature.
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I. INTRODUCTION

NE of the most striking experimental problems
still defying satisfactory theoretical description is
the phenomenon of ferromagnetism in the transition
metals. Many models have been proposed which de-
scribe reasonably well certain aspects of the problem,
yet for each model there always seems to remain a
number of experimental details which cannot be prop-
erly treated? A fundamental criticism of all these
models is that they do not adequately describe the
microscopic origin of ferromagnetism, which is still not
properly understood. The purpose of this paper is to
outline yet another model, which, it is hoped, might be
capable of leading a little closer to a true understanding
of the behavior of electrons in the transition metals. At
the very least, it suggests a difference in emphasis which
might help improve some of the earlier models.

This paper is directed primarily at discussing the
alloys of transition metals with nontransition elements,
in particular their magnetic properties. In order to do
this it is necessary first to outline a model of transition
metal ferromagnetism within which such a discussion
can be held. In fact this will occupy the bulk of the
paper. The arguments are entirely qualitative; it is
improbable that a quantitative version could be com-
pleted within the present day understanding of correla-
tion effects in a medium-density electron gas.

* Supported in part by the U. S. Office of Naval Research under
Contract No. ONR 1834(12).

1 Present address: Theoretical Physics Division, A.E.R.E.,
Harwell, Didcot, Berks, England.

1 A comprehensive review together with an extensive bibliogra-
phy has been given by N. F. Mott, Advan. Phys. 13, 325 (1964).

2H. Brooks, in Electronic Structure and Alloy Chemistry of the
Transition Elements, edited by Paul A. Beck (Interscience Pub-
lishers, Inc., New York, 1963).

141

The principal physical features involved in the
following pages are:

(1) The interaction favorable to magnetic alignment
of electrons derives from intra-atomic d-electron—d-
electron Coulomb repulsions which are larger between
electrons of unlike spin than between electrons of like
spin. The unusual feature here is that it will be argued
that any given electron interacts in this way with only
a very limited number of other electrons (those having
energies sufficiently close to that of the electron in
question). These are distributed irregularly through the
crystal.

(2) The principal deterrent to ferromagnetism is then
the normal increase in one-electron energy as the occu-
pation numbers for different spins become unequal. A
second effect, which can be viewed in two equivalent
ways, is due to admixture with the conduction electrons.
The correct wave function, involving both s and d
components, is more evenly spread through the lattice
than a pure d function so that the interaction energy
discussed in (1) above is smaller. Increasing the s com-
ponent reduces the interaction, and hence the magnetic
moment if any, still further. Alternatively one may
regard the electrons as undergoing transitions between
s- and d-like character. The interaction is then fixed for
the d-like electrons, but as the transition rate increases
the electrons feel the interaction for smaller portions of
their time. This latter approach is the more amenable to
calculation.

(3) Alloys between transition metals and nontransi-
tion elements can then be understood in terms of the
model® in which the d electrons are confined to the
transition metal sites in the crystal, the d band in
consequence being narrowed without change of shape.?:*

3 J. L. Beeby, Phys. Rev. 135, A130 (1964).

4 E. A. Stern (to be published).
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TasBLE I. The experimental and theoretical results for the solute
concentration at which the low-concentration saturation magnet-
ization extrapolates to zero. The number of sub-bands supposed
participating in the magnetization is also given.

Experimental No. of Theoretical

Alloy results bands results
Fe-Al 100 3 55.5
Fe-Si 100 3 47
Co-Al 33 3 35
Co-Si 31 3 27.5
Ni-Al 21.5 2 13
Ni-Si 16 2 9.5

The valence electrons introduced by the impurity con-
tribute to the conduction band which in turn screens the
impurity potential. The increase in the number of
conduction electrons will then increase the s-d admix-
ture and, as discussed in (2) above, this will lead to a
reduction in the magnetic moment by moving the spin-
up and spin-down d bands closer together in energy.
Though it is, in principle, important how the screening
takes place, the admixture being different if some of the
conduction electrons are localized, the work to follow is
too crude to reflect this point. Note that in this sense
Cu, Zn (and Ag, Cd, Au, and Hg) are iransition metals
when in dilute solution, their d band being involved in
the alloying process.

(4) The question which of the lattice structures
(bec, fec, or hep) should be stable in any given case is
not easily discussed for the transition metals. If, how-
ever, one considers the interaction energy to be the
primary difference between the structures, the Slater-
Pauling curve and the ranges of stability in the three
transition series are found to be related in a natural
way. The important feature here is the suggestion,
which arises in the analysis of point (1) to follow in the
next section, that the interaction energy varies rapidly
with wave function localization. This latter quantity
varies with the energy of the electron concerned, the
range of variation probably being much less in the fcc
system than in the bec system.

A question which should be answered at once re-
garding this model, in which the transition metal mag-
netic moment is reduced by increased s-d admixture,
concerns the magnitude of the effect. The following
interesting results arise from the crude calculation of
this point to be presented in Sec. IV:

(i) Though, at first sight, the effect seems likely to
be a small one, surprisingly good agreement is obtained
with the experimental results on the alloys of Fe, Co,
and Ni with Al and Si as may be seen in Table I.

(ii) Essentially no free theoretical parameters need
be assumed to obtain this result; it does not depend on
the magnitude of the interaction energy nor on any
parameters of the admixture. This is true only for the
change in the magnetization, any prediction of the
magnetic moment itself would require a knowledge of
these values.
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(iii) The predicted valence dependence of the result,
the change in magnetization being proportional to
v—n,), where v is the impurity valence and #, the
number of conduction electrons per transition metal
atom, agrees very well with experiment, especially for
the Ni alloys. This should be contrasted with pro-
portionality to v arising from the usual model' in which
the d band is filled by the valence electrons of the
impurity.

Points (1) to (4) will be discussed sequentially in the
following sections.

II. THE INTERACTION ENERGY

The concern of this section is an attempt to under-
stand which parts of the electron-electron Coulomb
energies have been included incorrectly or inadequately
in a supposedly self-consistent band calculation. If the
self-consistency is at all reasonable, the potential in-
volved will be, in each unit cell, not very different from
an ionic potential. Thus, the usual types of transition
metal band calculation are appropriate. The d electrons
on a given ion are, however, actually subject to strong
correlations so that an electron moving in the neighbor-
hood of the ion will be influenced by the specific distri-
bution of electrons there. There are many possible
distributions, just as there are many configurations
possible in a free ion. These distributions will not, in
general, be arranged in an orderly fashion (this would be
observable, e.g., in neutron scattering) but will be
distributed in some way throughout the crystals. De-
spite the lack of periodicity, a band calculation in such
a system is still possible provided that the energies of
the electron in the presence of the various distributions
are sufficiently close together. The wave function in this
case should be thought of as adjusting itself to each
particular distribution passed by the electron on its way
around the crystal.?

It is useful at this point to observe that with a few
exceptions the neutral atom energy levels depend only
weakly on the outer electron configuration, so that a
band-type calculation using atomic potentials is not
unreasonable.l: From this point of view it is not im-
portant that the individual electron-electron correlation
energies are large since the over-all electrical neutrality
suggests that the total energy at a given site does not
depend strongly on the number of d electrons there. In
this way the self-consistent theory can adequately repre-
sent the bulk of the correlation energies. On the other
hand, those atomic configurations having energies
significantly different from the “average” energy used
in the self-consistent calculation will require modifica-
tion of the band calculation. The simplest way to do
this is to add an “interaction term” to the Hamiltonian,
but because the necessary mathematical techniques do
not exist this must be done in a somewhat arbitrary
manner. One can interpret the atomic situation by

5 C. Herring, J. Appl. Phys. Suppl. 31, 3S (1960).
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supposing that a pair of electrons are able to stay
sufficiently far from each other to avoid the majority of
the Coulomb energy except when their wave functions
are related in some special way. The naive view will be
taken here that this special relationship occurs when the
wave functions would have been, in the absence of the
Coulomb potential, very much alike.

This atomic viewpoint, used by way of illustration,
requires some modification for the transition metals
where the electron wave functions are Bloch-like func-
tions which can be considerably different from atomic
functions even inside the unit cell. A further considera-
tion arises from an important consequence of the dis-
orderly arrangement of the various distributions. This
is the introduction of an imaginary part into the energy?®
which modifies the band calculation discussed above
essentially by transforming the Bloch functions into
wave packets with dimension depending on the dis-
order. The success of the itinerant electron theory
indicates that the wave packets cover many unit cells,
so that the wave function within any given unit cell is
similar to that of a Bloch function. Nevertheless the
conceptual picture is altered and is best regarded as
time-dependent. The wave packets move about under-
going various transition processes; the resultant elec-
tronic distribution in any one cell depends on those wave
packets near the cell and necessarily changes with time.
If the wave packets, supposed derived only from d-type
Bloch functions, are denoted by the quantum index p,
the energy may be written:

Hbzmd=z Epnp,d' (1)

.o

Here 7,,,=1,,,1p,, is the occupation number for the
wave packet p with energy E, and spin ¢. The index p
refers to the position, energy, and effectively to the
band number of the wave packet. The set p will vary
with time.

Now suppose one follows the assumption above, that
the Coulomb effects between two electrons lead to
interactions only when their wave functions are very
similar. Consider only the d functions. Within a given
unit cell the wave function of the wave packet is like a
Bloch function, so wave packets can only interact in this
way when their energies are very close together. For only
in this case (neglecting complications due to multiple
bands) are the Bloch functions similar. Also, the Pauli
principle will ensure that electrons of the same spin will
not approach so closely as electrons of opposite spin, so
the interaction is predominantly between electrons of
opposite spin. The interaction thus has the form

Hing= 23 UQp,p")np, 110 1. 2)

»,p’
The potential function U(p,p’) will increase as the
electrons p and p’ overlap more, its range will be of the
order of the wave packet size. One may deduce two

6 S. F. Edwards, Proc. Roy. Soc. (London) A267, 518 (1962).
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further properties of U from the way the interaction
energy was described as arising. U will decrease rapidly
as p and p’ become different in energy, the wave func-
tions no longer being sufficiently alike and U (p,p") will
increase rapidly as the wave function corresponding to
$ becomes more localized at the cell center. One may
estimate from the variation in energy of the atomic
configurations that the magnitude of the interaction
energy will be 1-4 eV/atom.

This then is the model to be used. Any attempt to
improve upon this discussion is beset by many diffi-
culties, several of which have been discussed by
Hubbard.” The self-consistent calculation, for example,
requires a more accurate description of the wave func-
tions in the disordered system than is at present
possible.

III. ADMIXTURE WITH THE CONDUCTION BAND

It is important that the conduction electrons were not
included in the discussion of the previous section since
no estimate could have been made of the change in U
due to the alteration in the wave function caused by
hybridization. So the conduction band must be worked
out separately and will give rise to the Hamiltonian

Ho—_—j’:l 6161T61, (3)

where ¢;" will denote the creation operator for the state ;
with energy ¢;. If the Hamiltonian in the absence of any
interaction is H, then the eigenstates of H divide ap-
proximately into two groups; d-like and conduction-like
states. The band calculation leading to the d-band
Hamiltonian (1) should give a reasonable approxima-
tion to the first group, the conduction states as defined
in Eq. (3) to the second group. It will now be indicated
how admixture between these states can lead to a
further one-electron term in the Hamiltonian. It is not
appropriate to carry out a rigorous derivation here since
H, Hpana, and Hy would need to be more accurately
defined, and in any case only a crude averaged value for
the admixture is used in the calculation. Consider the
first group of true states and denote them by creation
operators #4f. The difference between ¢4 and the d-state
np' of appropriate energy is a conduction-like admixture
in the true state:

ta=mp 2" 1o el

apart from normalization factors. The v;, should be
small except for the limited number of states with
strong conduction and d-like admixtures, and may be
calculated, e.g., by perturbation theory. Thus, that
part of the true Hamiltonian due to this group of states
is
H(l):ZdEdtdftd

=25 Ep(n'+ 2 10" (np -1 vipet)

which, to first order in v, is Hpana plus the admixture
term Y 5.1 Epvip¥ciinp+c.c. The second group of states

7 J. Hubbard, Proc. Roy. Soc. (London) A277, 237 (1964).
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leads to H® in the form H, plus a similar admixture
term. Thus the hybridization can be approximated by a
term in the Hamiltonian of the form

Hoa=2(Vigeimp+Vip* nplcs). 4)
lLp

The total Hamiltonian is thus Hy= H ¢+ Hypana+H int
+H,.4 and is very similar in form to the Hamiltonian
used by Anderson® for a localized d state in a sea of
conduction electrons. The formalism is identical in
outline to Anderson’s and depends on the approximate
equation for the d state:

[H,mp.0 1= [Ep‘i'Z(U(P;?,)”p’ —a) Inp,a"
pl
'I'Zl Vplclr;r; Q)

where the Dirac brackets here denote an ensemble
average. The calculation now proceeds by writing down
equations for the matrix elements of the Green function

G(E+tie)= (E+ie—H), ©)
in terms of which the total density of states is given by
p°(E)=— (1/m) Im[TrG(E)]. Y,

It is then straightforward to calculate the matrix ele-
ments involving the d states®:

Gp " =[(E—ep,0)8pp— 21 Vpri(E—€1,0) Vi), (8)
where

Ep.szp"f‘Z,(U(P:P,)”p’.—a)~ )

The last term in the denominator of Eq. (8) represents
the effect of admixing conduction states into the d
states. Since the major interest will be in the occupation
numbers #,,, the off-diagonal terms, mixing states p
and p’, are not very important. The real part of the
admixture term may also be neglected since it may be
assumed absorbed into £,. Thus, the diagonal elements
are given by

Gy’ =[E—eptil, ]|, (10)

where
iAp':’l.ﬂ' le lel25(E— El)giﬂ'(I leP)ps(E) (11)

and p,(E) is the density of conduction states of energy
E. The approximate equality in Eq. (11) arises from the
supposition that |V, ,|? is sensitive only to the energy
of the states ;, the average then being over all states on
the surface of energy E. Equation (10) shows that the
d level has broadened to Lorentzian shape with width
A,. The total d-state density is thus

1 A,
pd’ (E) =— / —"——"Pdo(Ep)dEp s
w) (E—ep,o)2t+ A2

showing that the pure d-band density of states ps°(E,)
has been smoothed by the width function A,. A is
8 P. W. Anderson, Phys. Rev. 124, 41 (1961).
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probably of order 1 eV. The probability of occupation
for the state p, o is given by

1 rer A, 1 €p,0— EF
n,,,q=—/ ———————dE=—cot ™ l——,
TJw (E—ep,0)*+A2 T A,

One has then for ¢,,, given by Eq. (9)

1 €p',—c— EF
€p,0= Lt / pd (Ex)U(p,p")- COt"ITdEp' (12)
T

'

and this gives a pair of self-consistent equations to be
solved for e,,,. Ferromagnetism then depends on whether
ny=J pa®(Ep)np+dE, is the same as #_ or not. As an
example one may reduce to the special case given by
Anderson® by choosing U (p,p") = U= constant, p°(E,)
=0§(Ey—Eo), Ap=A=constant. The presence or ab-
sence of ferromagnetism then depends on the parameter
U/A, larger U/A being more favorable to ferromag-
netism. Some curves are drawn in Fig. 1. If one really
understood the functional forms of the parameters re-
quired in Eq. (12) it would be possible to evaluate the
saturation magnetization predicted by this model. This
is not possible, but in the next section a qualitative dis-
cussion of the effects of alloying will be presented and it
will be seen that changes of magnetization are not too
sensitive to the parameters involved.

IV. ALLOYS WITH NONTRANSITION METALS

Dilute alloys of nontransition metals with transition
metals can show a wide variety of behavior depending
on which transition metal is the host. The remarks of
this section are mainly directed towards magnetic prop-
erties and are thus principally concerned with the first
transition series. Consider the saturation magnetization
of Fe, Co, and Ni upon alloying with Al or Si. The Fe
alloys show a saturation magnetization decreasing as
though simple dilution is taking place, i.e , the magnetic
moment per e atom stays constant.®? In Ni alloys the
magnetization decreases rapidly, roughly as though the
d-band were being filled by the solute conduction
electrons.’**? Finally in Co alloys the decrease in
magnetization is so fast that there are too few solute
conduction electrons to fill the d band quickly enough.??
The results of the last section, severely truncated in
order that some numbers can be obtained, will now be
shown to give a reasonable qualitative understanding of
these experimental facts.

Since the d band is supposed to change only by be-
coming narrow on dilution with nontransition elements
and the Fermi level must remain approximately con-
stant in a dilute alloy, the important change is in the

® D. Parsons, W. Sucksmith, and J. E. Thompson, Phil. Mag. 3,
1174 (1958).

0 C. H. Cheng, K. P. Gupta, C. T. Wei, and P. A. Beck, J.
Phys. Chem. Solids 25, 759 (1964).

1 7, Crangle and M. J. C. Martin, Phil. Mag. 4, 1006 (1959).

2 J. Crangle, in Electronic Structure and Alloy Chemistry of the
Transition Elements, edited by Paul A. Beck (Interscience Pub-
lishers, Inc., New York, 1963).
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F16. 1. The value of the saturation
magnetization m as a function of the m 05—
number of electrons # in Anderson’s
model. Three values of U/A are
illustrated.

conduction band. The conduction electrons, in fact,
move in a potential which is the same at each host site
as in the pure metal but is much larger at each solute
site. To completely screen the solute potential needs a
number of electrons equal to the valency of the solute,
and these must lie in the conduction band and be below
the Fermi level. This is just like an alloy between two
nontransition metals, but the attendant complications
may be avoided because only an average of the matrix
elements V7, is required and this should be rather
insensitive to details of the wave functions. It is thus
qualitatively satisfactory to use a free-electron-like con-
duction band as will now be done.

One needs to calculate the lowering dE of the bottom
of the conduction band E, to accommodate the extra
electrons introduced by the impurities. If there are 7,
conduction electrons per host atom and v per solute
atom, the conduction band contains

nac="n,(1—dc)+vdc=n+ (v—mn,)dc

electrons per site in an alloy with concentration dc of
impurities. If the Fermi energy is er and the effective
mass o then

€F
1/1/=/ Ol(E"‘Eo)lde:20[(€F—E0)3/2/3

Ey

is the band occupation. The width function A, defined
by Eq. (11), now varies according to

dA dp Op < dE)

A p 9E\p/’

It is here assumed that | V|2 is not appreciably changed
by the impurities. Since there are (v—n,)dc extra
electrons

dE=dc(v—mn,)/p(er) .

20

Combining these results one has
dA dE e

(v—mn,)dc a

o 2er—E)? g2 2(ep—Eq)i

A eF
V—1s
=< )dc (13)
3ns
for the fractional change in the parameter A.

The final step is the calculation of the change in
magnetization due to this increase in admixture. De-
tailed results, using Eq. (12) are out of the question,
but as an illustration it is interesting to consider a crude
model. In this the d band is regarded as split into five
bands, each independently satisfying Eq. (12) for the
special case solved by Anderson. Then the magnetiza-
tion of each band in the strong-correlation case (U>>A)
is given by

m=1—[ryx(1—x)—17", y=U/A,

where x depends on the filling of the band. When m is
not zero this gives

dm/dy= (1—m)(2—m)/y.

b
The total magnetization will be given by M= Y m;

=1

so that

aM 1 s
——==2(1=my)(2— m¢)~—
dy Y i=1
defining 4. The prime on the summation 1nd1cates that
only bands with ;40 have been included. Thus one
has at last

dM dM dy dA A —y A(v—ns) —A(v—ns)

—_— T 7 (15)
dc dy dA de y A 3ns 3ns

for the change in the host bands due to the increased
admixture. To this must be added the dilution effect.
This result depends only on the solute valence, the

13 Equation (30) of Ref. 8.

(14)
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number of conduction electrons per host atom and,
through 4, on the sub-bands of the solvent. All other
parameters have dropped out. Table I indicates the
results of a comparison with experimental values which
in view of the many crude approximations involved
must be regarded as satisfactory. 4 was calculated as-
suming # bands were involved equally in the magnetiza-
tion so that A=n(1—M/n)(2—Mo/n). n, given in
Table I, was guessed empirically, mostly by reference to
the Slater-Pauling curve. More details on this point will
be found in the next section. 7z, was taken to be 0.55 and
My=2.12,1.61,and 0.55 for Fe, Co, and Ni, respectively.

Roberts et al.** have carried out experimental work on
the Mossbauer effect for 1°7Au alloys and these included
some Ni-Au alloys. They correlated the measured
isomer shift with the residual resistivity and were forced
to the conclusion that the Au ion in Ni is, if anything,
negatively charged. This, coupled with the absence of
any change in slope in the isomer shift when the Au
concentration passed through 609, strongly suggests
that the d band is in no sense being filled as the Au
concentration increases. Although Au was carefully
excluded from the above analysis because its d band
might be important in the alloying behavior, the work
of Roberts ef al. indicates that the d levels of Au do not
become part of the Ni ¢ band. If this is so then the
theory developed above can be applied to Ni-Au. The
theory then predicts 459, for the concentration at
which the saturation magnetization goes to zero com-
pared with 609, experimentally. Determining the
parameter 4 empirically for the three Ni alloys, thus
checking the 4 (v—n;)/3n; dependence, one obtains for
Ni-Au, Ni-Al) and Ni-Si, the values 1.36, 1.35, and 1.38,
respectively, for 4 demonstrating that the valence de-
pendence is correct. For Ni-Cu, on the other hand,
A=1.65. Thus, Au and Cu when alloyed into Ni reduce
the Ni magnetic moment by entirely different processes.

The process suggested should be reflected in the low-
temperature specific heat, through the density of states.
To emphasize this consider the difference between
Ni-Al and Ni-Cu. In the latter alloys the d band is
being filled so that the density of states should decrease
following the shape of the band. In Ni-Al, on the other
hand, the two d bands move with respect to one another
and even after the saturation magnetization has gone to
zero should still lead to a large specific heat. Because,
however, the alloys are only solid solutions for small (of
order 109,) solute concentrations, this last remark
cannot be verified from available experimental data.
Unfortunately, the densities of states in the transition
metals themselves are not unambiguously determined
by the experimental specific heats because of magnetic
effects.!®

1“1, D. Roberts, R. L. Becker, F. E. Obenshain, and J. O.
Thomson, Phys. Rev. 137, A895 (1965), L. D. Roberts and J. O.
Thomson, ibid. 129, 664 (1963). I am grateful to Dr. Roberts for
bringing my attention to these points.

15 If solid solutions could be obtained with solute concentration
much higher than the concentration at which the magnetization

L. BEEBY
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Any improvement over this numerical calculation
should be carried out by reference to Eq. (12) rather
than by patching up details of the foregoing. The im-
proved calculation would show some differences between
the middle and edges of the d band, since the effect of
admixture is only to smooth the middle of the band
while at the edges some considerable changes take place.
The above applied most nearly to the “edge” case; in
Fe, for example, considerably less rapid decrease in
magnetization would be predicted by Eq. (12) than is
suggested in Table I.

V. DIFFERENCES BETWEEN THE
LATTICE STRUCTURES

The interaction energy of Eq. (2) is the net gain in
energy due to the electron-electron Coulomb potential
after the wave functions have deformed to reduce the
energy so far as is possible. More accurately, it is the net
gain minus some average energy which was used in the
self-consistent one-electron calculation. The more the
wave functions must deform the larger is this net gain in
energy likely to be. Thus it seems reasonable that the
interaction energy increases rapidly as the (similar)
Bloch wave functions of the two electrons become more
localized in space. It will be indicated in this section
that from the point of view of localization the bcc and
fcc lattices are dissimilar and this leads to a natural
relationship between the Slater-Pauling curve and the
stable lattice structures. Tight-binding theory will be
used, the calculation nearest in spirit to the procedure
considered here being that of Asdente and Friedel.’® The
band structure is defined by’

det[<E_E0)Jal3(k)_hAB(k):l:0: «, B: 1) EEN

Here Eq is the bound-state energy in the cell potential
and J and % are overlap integrals of order zero and one,
respectively, in the potentials. For the bcc case calcula-
tions!®:18.2 have shown that the radial behavior depends
strongly on energy and rather less on other factors. The
general form is then that the lowest two of the five
bands thus defined are of bonding type and fairly
narrow, the upper two being again narrow but of anti-
bonding type. The middle band is broader and of mixed
type.!

This does not seem to be true to the same degree in
the fcc case, the difference being essentially that of the
geometry of the nearest neighbors. Consider %,4°:

hag= 3 | $a(r)U(r—R")g5(r)dr,

R’70

goes to zero, it might be possible to measure the density of states to
check this result. Professor Beck has suggested that it might be
possible to obtain some Ni alloys satisfying this condition.

16 M. Asdente and J. Friedel, Phys. Rev. 124, 384 (1961);
126, 2262 (E) (1962).

17 R. E. Peierls, Quantum Theory of Solids (Oxford University
Press, New York, 1956), Sec. 4.2.

18 . Stern, Phys. Rev. 116, 1399 (1959); J. H. Wood, ¢bid. 126,
517 (1962); L. F. Mattheiss, ibid. 134, A970 (1964).

1 J. C. Slater and G. F. Koster, "hys. Rev. 94, 1498 (1954).



141

where ¢,(r) are the bound d-wave functions in the po-
tential U(r). This may be regarded as a first-order
energy shift, which because of the increased angular
cancellation and (for the same density) larger nearest-
neighbor distance tends to be smaller in the fcc case. As
an illustration consider two lattices, bec and fcc, of the
same density, with the same potential in the unit cell.
Evaluate 7.0 for ¢,.(r)= (1/N)(xy/r®)re >, r outside
the unit cell. For nearest neighbor R’ the dominant
contribution will come from the region near R’/2 where
for (xy/7%)? one has (d=|R’/2]):

(1) bee a?=y2=22=(d/2)¥/3, 2y /ri=% (8-fold),

(i) fcc a?=92=(d/2)?/2, 22=0, a%?/r*=1 (4-fold),
2?=22=(d/2)?/2, 4*=0, 2%9%/r*=0 (4-fold),
yr=22=(d/2)?/2, x*=0, a%?/r*=0 (4-fold),

so that for the sum over all nearest neighbors

(i) bee 2 (x%y*/r)=8/9,
(i) fecc 2 (x2/rH=1.

In this approximation there are no off-diagonal terms in
either lattice and the two terms corresponding to wave
functions of (¥*—4?) type are zero for the bcc system.
Thus the greater number of fcc nearest neighbors is
almost completely offset by their angular distribution.
When A corresponds to a binding energy of more than
4 eV the bcc shift is already the larger when one allows
for the slightly greater nearest-neighbor distance in the
fcc case. Asdente and Friedel'® have drawn attention to
the band structure changes caused by these shifts. What
is happening is that in the bcc case the xy-type wave
function can gain considerable energy by spreading into
the neighboring sites; the angular distribution of neigh-
bors is helpful in this respect. The result is a well spread
out wave function and large /0. Conversely, the (x2—4?)-
type wave functions cannot be matched appropriately
at the cell boundaries and thus become more localized
than the original atomic functions. In the fcc case the
nearest neighbors are more spherically situated, the
deviations from atomic-like radial distributions being
much less than in the bcc lattice. Because of this the
bottom of the bce band is lowered with respect to the
bottom of the fcc band and the top stays above the fcc
band top. This effect therefore emphasizes any differ-
ence between the bands (which is most likely in the
same direction) caused by the rest of k.5 and suggests
that the bce band is the broader of the two. One must be
aware that the original self-consistent calculation is
sensitive to the sort of band structure differences just
discussed and could amplify them considerably.

For bce crystals one thus has at the bottom of the
band relatively flat Bloch wave functions (in a radial
sense) for which U(p,p) is small. As one goes further up
the band the interaction energy begins to increase until
at the top of the band it is very large because the radial
part of the wave function is strongly contracted towards
the cell centers. The Slater-Pauling curve for saturation
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magnetization as a function of the e/a ratio can then be
understood as follows. Because U is small for (say) the
bottom two-fifths of the band there is no magnetization
until there are already four d electrons per atom. After
this at some value of band-filling U will become large
enough for magnetization to be favorable. At this point
e/a—mn;>4. The electrons will then fill only one spin
band until it is fully occupied at which point ¢/a—n,>7
(5 electrons of one spin plus at least two of opposite
spin). A complementary effect here is that in Sc, Ti, and
perhaps even V the d electrons can not really be con-
sidered tightly bound, their band width is too large and
this helps suppress the magnetism for those elements.
After the maximum the extra electrons will go into the
empty band leading to a linear decrease in magnetiza-
tion. In other words, only between two and three fifths
of the electrons will participate in the magnetic be-
havior of the bce metals, hence the use of z=3 for Fe in
Table I.

The interaction energies and the energy shifts %,g° of
the band are so large (eV) that they will play a domi-
nant role in determining the stable lattice structure for
any given e/a ratio. The bcc and fcc lattices at a given
density are so similar that all differences other than
those which may be considered one-electron energies
may be supposed small. Thus, one assumes that the
self-consistent fields are similar and that the numbers of
valence electrons are the same so one need not worry
about multiple counting of interactions. The comparison
between the lattices is now possible by computing total
one-electron energies plus interaction energies. For low-
e/a values the bce system has no interaction energy plus
a very low band energy. The fcc system, even if it had
polarized bands, i.e., was ferromagnetic, to avoid the
interaction energy, has higher band energies. Thus it is
basically the low-band energy which stabilizes the bcc
system. (This low energy is, of course, enhanced in the
self-consistent calculation by the low total interaction
energy of the smoother wave functions.) When the d
band is nearly full, however, the bcc system is subject to
a very large interaction energy. This can be reduced by
ferromagnetic splitting of the band, but once the
second-half of the band starts to fill the lattice rapidly
becomes unstable with respect to the fcc. This is indeed
what happens, the bce range of stability stops just after
the peak in the Slater-Pauling curve. The hcp structure
can be included in this system by regarding the hcp
structure as intermediate between the bec and fec
structures, having roughly one-fifth of a band with
negligible interaction energy and a maximum interac-
tion energy intermediate between the other two.

The nonmagnetic situation implies that the interac-
tion energy can not be avoided because to do so would
increase the band energy by an even greater amount.
This depends on the ratio of the bandwidth to the
interaction energy. Now in the second and third transi-
tion series the bandwidth appears to be larger than in
the first series, reflecting the larger radius of the jonic
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d-wave functions. This also suggests a much reduced
interaction energy because of the greater volume occu-
pied by the electrons. From the outlook of this paper
this is the reason that the second and third series are not
ferromagnetic. But in the absence of ferromagnetism the
larger interaction energy of the bcc system enters the
total energy at much lower e/a values so that the lattice
becomes unstable with respect to the fcc system at much
lower e/a values, as is observed.

Figure 2 illustrates the behavior of the interaction
energy alone,denoted by E., for the magnetic and non-
magnetic cases. The model used is one in which for the
bec, hep, and fec lattices there are respectively 3, 4, and
5 fifths of the band with nonzero interaction energies
U(p,p)=U", U’, and U. The ratios U"”’/U’ and U’/U
are chosen so that the hcp phase is stable for e¢/a lying
between 7.6 and 8.1. It is then seen that both phase
changes occur at much lower e/e¢ values in the non-
magnetic case and that the hcp phase then has a larger
range of stability, as is observed experimentally. This
demonstrates that the general model of interaction
energies outlined at the beginning of this paper can be
made to give excellent qualitative agreement with ex-
periment by regarding such interaction energies as the
dominant features of the lattice structures.

VI. CONCLUSION

It has been shown that a model in which the satura-
tion magnetization of an alloy is dependent on the s-d
admixture can lead to reasonable agreement with ex-

periment. In order to calculate the changes in saturation
magnetization it was necessary to put forward a model
for the origin of the ferromagnetism. This model, though
very crude, nevertheless suggests important differences
between the bcc and fcc lattices, principally in the
behavior of the electron-electron interaction energy.
Regarding the interaction energy as being the dominant
effect in determining the stable lattice structure leads to
the correct ranges of stability for the lattice structure as
e/a varies for both the ferromagnetic and nonferromag-
netic series.

It is clear that an improved version of the itinerant
electron model calculation is necessary. This should
include the hybridization of the bands, both s and 4
bands being those for the alloy in question. Some model
of the exchange energy must be postulated, such as is
proposed in this paper; unfortunately, a better deriva-
tion of the exchange energy is a problem of considerable
mathematical complexity. Even in the absence of such a
first principle calculation of the exchange energy, it is
evident that the existing experimental data, especially
that concerning the alloys, contains a great deal of
information which can be used to resolve some of the
remaining difficulties concerning the d electrons.
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