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CONCLUSIONS

In summation, we suppose that gold impurity can
take both substitutional and interstitial positions in
lead. Substitutional gold migrates by a "deviated-path"
vacancy model, and interstitials migrate interstitially.
At low pressures both mechanisms operate simul-
taneously with inseparable activation energies, the
former mechanism being more efIective than the latter.
At high pressures only interstitials keep migrating,
while the contribution from the vacancy mechanism
becomes rlegligible.

In our experiment the temperature interval of the
diffusion measurements has been extended to very low
values: The experimental point at 60'C in the 4000

kg cm s plot (Fig. 1), perfectly 6tting the same
Arrhenius straight line as all other points at the same
pressure, rules out the contribution, once postulated, '
of diffusion along internal surfaces, at least in the
gold-lead system.
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The Kubo expression for lattice thermal conductivity is analyzed by the method of the double-time
Green s function. The usual relaxation-time formula of kinetic theory can be obtained from the Kubo
formula by suitable approximations only.

1. INTRODUCTION

kPE=-
3Q p

dt dX(Q. Q(t+iX)),

~ 'HE Kubo formula for the thermal conductivity
1S

branch, and e&;=a» a» is the number-density opera-
tor of the phonons in the second-quantized form. Thus,
by the works of Luttinger and Choquard, it is possible
to compute lattice thermal conductivity from the gen-
eral expression

where Q(t) is the energy-flow vector operator at time t

and the brackets ( ) stand for thermodynamic aver-
aging, namely, for any operator 0

30 k, j q.,i' p

dt DVk; V;

Xco~;co, ;F~,;;,, ;, (t+,i&), (3)

(0)=Tre e~O/Tre ~~, where

Fg, ;,„'(t+iX)=(rtj„(0)rt„'(t+iX)).
where II is the Hamiltonian of the system, and
P= (kT)

Recently Luttinger' has given a "mechanical" deriva-
tion of this expression by introducing a varying gravita-
tional Geld. In principle, Eq. (1) is more general than
any transport equation. For a lattice, the energy-Row
vector has also been rigorously deduced by Choquard'
and for the spherically symmetric dispersion formula,
it is the usual Peierls expression

Q(t) =P v~;co~,st~;«&, ,

k, j

in units with Ig=1; v&,j——V'&~» is the group velocity,
co» is the energy of the kth normal mode in the jth

J. M. Luttinger, Phys. Rev. 135, A1505 (1964).
2 Ph. Choquard, Helv. Phys. Acta 36, 415 (1963).

Essentially one has to calculate the correlation func-
tion of two number-density operators at different times.
In this paper we shall discuss an approximation scheme
which leads to the relaxation-time formula of kinetic
theory for thermal conductivity as it has been reviewed
and discussed by Carruthers. '

2. RETARDED TWO-PARTICLE GREEN'S
FUNCTION

The correlation function Fq, ~, (t) is an integral over
the Fourier transform of the associated Green's function

G», ,(t—t') = —itt(t —t')(L~, (t),n, (t') ))
=—(( (t) .(t)))

3 P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).
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For simplicity in notation we shall omit the branch
indices from here onwards. The relationship between
correlation functions and Green's function and their
properties have been discussed by Zubarev. 'Following

Ref. 4, we shall dedne the Fourier transforms as

dot e '"'f((o)

Then

FI,q(t) =i dqq e '"'LGl, u, q(at+is) —GI,s, q(a) —ie) 7/(ee" —1) .

Substituting this in Eq. (3) for the thermal conductivity, we obtain

kP de
pv—s vqotj, toq lim (G» q(at+is) —G» q(&—i

„(ot—ib)'
(7)

This expression looks badly divergent in view of the factor (qq i8) —' How. ever, we shall show that symmetrized

GI,s,q(qq+ie) —Gssq(to —ie) is an odd function in to. To prove this we note that

i +™
GI, I, q(to+is) GI.k—q(tq , ie)—= —— dt e'"'(I n(t), nq(0) j),

27r

and
(Ln.(t),n. (o)3&= (Lns(0), n, (—t)3)= —(Ln, (—t),n~(0)]& (9)

Because of symmetry of summation over k and q, Eq. (7) can also be written as

kP
E=—P vg 'vqtoI„.toq

30& e
6 ~0

+ dG)

,'[GI,I, -,(qq+ie) GI,I„—(tq ie)+—k ~ qj.
((o—zb)'

(10)

From Eqs. (8) and (9) it follows that
+00

-', LGI k, ,(to+is) —GI, y„,q(to —ie)+k ~ q j= sincot(Lng, (—t),nq(0)])dt,
2'

and this js an odd function of cv. Hence the expression for thermal conductivity reduces to

kP i~
E= Pv, vqqqI, Mq

———[G&1,q(qq+ie) —G„&„(qq—ie)+k+-+ q] ~

30& q 2 Bco

1kp
Q vy' vqqqstoq

430 &, v

(13)

Equation (12) is a very useful exact form for actual
calculation of thermal conductivity. It is generally
believed that the correlation function dies out ex-

ponentially. From Eq. (13) we note that the commuta-

tor of the number-density operators at different times
should decrease as t

—'~ with 8)0 for calculating a
finite thermal conductivity. To put it more explicitly,
there may exist dissipative forces in nature which do not
lead to an exponential decay law, but they are still re-

sponsible for observable effects. Such processes can be
easily discussed using the formulation of Kubo.

3. APPROXIMATION TO THE GREEN'8
FUNCTION

Gqs, q(t) is a two-particle Green's function. One can
write an integrodiBerential equation for it and relate it
to still higher order Green's functions. It is not possible
to solve these chains of equations and so one is forced to
make approximations. Ke shall try to relate the two-

particle Green's function to the one-particle Green's

function by an approximation method. This scheme

essentially follows from the observation that the com-

mutator Lns(t), nqj can be written as
q D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :

Soviet Phys. —Usp. 3, 320 (1960)j. Ln&(t) n )=gst(t)Lg@(t) g t$g +Lgst(t) g tfg&(t)g
'W. C. Schieve and R. L. Peterson, Phys. Rev. 126, j.458

(1962).
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The commutators on the right-hand side of this equa-
tion in general contain creation and annihilation opera-
tors besides a c-number part. We ignore the operator
part of the commutator and assume that the contribu-
tion from these operator parts is negligible. In such an
approximation, since the commutator equals its thermal
average, we can write

([nk(t),n, ])=([ak(t),a,t])(ak t(t) a,)
+([ '(t), "])( (t) .)+( " '(t))([ (t) .])

+(~Jok(t))([okt(t), o.]) (15)

The method of decoupling the correlation function' ~

(abed)=(ab)(cd)&(ac)(bd)+(ad)(bc) also yields Eq.
(15).The correlation function of Eq. (1) can be directly
decoupled in this way to yield the final result, which will
be shown in an Appendix. The purpose of going through
the commutator argument is to emphasize that there
exists at least one physical system, e.g. , the isotope-
defect system, where Eq. (15) can be shown to be exact.

We define the one-particle Green's functions and the
associated correlation functions as

and from Eq. (15),

G,(t—t') = (( (t), ,t(t'))), „,(t—t') =(,t(t') (t)),

D'.(t—t )=(( "(t) "(t ))) ~'.(t—t')=( ."(t') '(t))

E.,(t-t') = (("(t),"(t'))), ",(t-t') =(~,(t')"(t)),

G, r, ,(t)=Gk, (t)n, k(—t)+Dk, (t)e,k(—t) —E,k(—t)dk, (t)—G,k(—t) nk, (t) .

(16a)

(16b)

(16c)

By taking the Fourier transform of Eq. (15), we get from Eq. (8)

Gkk(q~+ z)eGkk—q(~ ze) =—z

+ dc02'
([G.,(-.+-+')-G.,(-.+--')][G,.(-.+')-G,.(-.-' »—.(c"-1)

+[Dkq(orz+M+ze) Dkq(orz+or ze)][Eqk(orz+ze) Eqk(orz ze)] [Eqk(orq or+ze) —Eqk(orq or ze))

X [Dk,(~z+ze) —Dk, (~z—ze)]—[G,k(~z —~yze) —G,k(M —~—ze)][Gk, (~ +ze) —Gk, (Mz —ze)]) . (1g)

This is easily seen to be an odd function of ~. After some manipulations, we get

[Gkk—q(or+ze) Gkkq(—or ze)] I

—=q
dGO

dc'
[(Gk (or+ze) —Gk (or —ze))

e&"—1 den

X(Gqk(or+ze) Gqk(or ze))+(Dkq(or+ze) Dkq(or ze))(Eqk(oO+ze) Eqk(or ze))]—
=2iP dor {[Gkq(or+is) Gkq(or —ze)]-

(csra 1)s
&& [Gqk(or+ze) —Gqk(or —ze)][Dkq(or+ze) —Dk, (or —z )]e[E (qk+orz ) eE( qk—ozre)]} . (19)

We have assumed that the Green s function vanishes for c0 —+ &~.This approximate expression (Eq. 19) is used
in Eq. (12) to obtain a fairly good estimate of the thermal conductivity.

In most normal processes the functions Dj„andEI,„which depend on the correlation between two creation or
two annihilation operators, are negligibly small (in superconductivity' or superRuidity they are no longer so
negligible). Coniining ourselves to normal matter we write the one-particle Green s function as

Gk, (or) = bkq[2rr(or —ork+Mk(or))]-', (20)

where Mk(or) gives the effect of perturbation on the self-energy of one particle. The real part of Mk(or+is) is the
shift in energy of the kth mode, and the imaginary part is interpreted as the haU-width of the mode. We can write
approximately

Gkq(or+ ze) bkq[2rr(or —ek+zT k)] (21)

' C. Bloch and C. Be Bominicis, Xucl. Phys. 7, 459 (1958}.
q L. P. Gorkov, Zh. Eksperim. i Teor Fiz. 34, 735. (1958) /English transl. : Soviet Phys. —JETP 7, 505 (1958)g. D. N.

Zubarev, Dokl. Akad. Nauk SSSR 132, 1055 (1960) )English transl. : Soviet Phys. —Doklady 5, 570 (1960)j.
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F 21) in Eq. (19) "'g"mok h de Substituting Eq
2

where Qp is e perturbed energy

(22)
+ e3'"

( p 1)q f((g—qp) +1k 3

ip
LG, (~+iq) —GI a, q(~

/GO

int g

P~k m'p g k

( yiq) —GpI, q(M iq) j I
=q

q (gPqq —] )q 21 k4M

f irly accurately representund += ~I, an we caE (22) is peaked aronnhe e r»d'n qF small values oj. Ic&

Therefore t e erh thermal conductivity is given by

kP' es'" 1
(23)

es 1) 2g30 ~

enc s i, , en taken intoenc shift, however, has beenThe effect of the frequency s ition-time expression. e e
the revious authors.

h
'

the familiar relaxa ion-
'

satisfactory than that o p
whic is

ider this derivation more satis acaccount. Ke consi er is

APPENDIX

norin, for simplicity, the correlations'n sc erne a = d ac)(bd)+(ad)(bc) and ignoring, for simp ici y,gt opng
between two creation and two anni i a ion

kP
E=lim—

30 0

d ',aI,~( t ip')—aI,(—t ip')—a,~—aq)8 8 ' p Mgqqqvk'vq dp « ——$ y
— "G

kP—lim—
' '30 0

P

dP'("t( —i—'P'), )("(—~—4 8 ' Q MgMqvg' Vq
k, q 0

We have further

and

"(~—i)=( "(~) (t))= dao e '"'or
—'"~'—"G (a)+iq) —Gpq(u) —qq)],

et'"—1

(«(&)~"(&'))= i

n ' wegetes and erforming t e in ees an e h tegration over t and p,Substituting these values an pe

E=lim' O30
d(dydMq Q copMqvy vq

k, q

eIBco1—eP~2

LGxq(~q && —
aq

' —G (~q iq) jLGq»— »q —
q

—i& ~co i6)—Gqg(My —'M)).
ps~i ])(gp~q ])co —0)2—zt My —602 eCO]—

't the above expression as+-+ co2 we can also wri eInterchanging ~&~ ~2,

K= lim
' 030

k q q ~ «GqI(~x iq)jdqqqduq g cokuqvt, ~ vq[Gqs(cox+qq—

gP~I gP~Q f—+')—G ( —:)3/H'"'—1

of the variables. To integratete rate over one o t e
Green's function as

'
hover the remaining variable, we ma e e

and get Zq. (23) of the tex .


