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Nuclear Dipole Field Quenching of Integer Spins*
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For magnetic dipole-dipole coupling among integer nuclear spins in an asymmetric electric Geld gradient,
the coupling is partially reduced by the asymmetry, and the coupling between integer spins and any non-
resonant spins is highly reduced in first order. This "spin-quenching" mechanism is analogous to the quench-
ing of electron orbital angular momentum of paramagnetic ions by low-symmetry crystal Gelds. These re-
ductions in coupling are demonstrated by an examination of expectation values for the dipole-moment
operator and, more formally, by calculating the Van Vleck second moment for a collection of identical
spins I=1 in both axially symmetric and non-axially symmetric electric Geld gradients, with and without
applied magnetic fields. The contribution to the second moment of an unlike set of half-integer spins by spinsI=1, and its converse, is calculated as a function of applied magnetic field. The normal Van Vleck result is
obtained, except that it is multiplied by a factor s'/(1+s'), where s is proportional to the applied magnetic
field, and is inversely proportional to the amount of asymmetry. The quenching effect is confirmed from
CP5 spin-echo double-resonance measurements of BaC10g D20, where the deuterium spins have I=1, and
couple to the Cl'5 spins which serve as a probe to measure the interspecies coupling.

I. INTRODUCTION

'HE dipole-dipole coupling interaction occurs as an
important mechanism in a majority of nuclear

magnetic resonance phenomena. In solids the magnetic
dipole-dipole interaction broadens the resonance line,
allows spins to couple to lattice modes of vibration,
provides the mechanism for maintaining a spin tempera-
ture, and provides the coupling between different spin
species which accounts for cross-relaxation and double
resonance effects. In this investigation we deal with an
effect, analogous to the quenching of electron orbital
angular momentum of paramagnetic ions, ' which can
apply as well to nuclear quadrupole moments of integer
spins coupled to crystalline electric field gradients of low
symmetry. In zero or weak dc magnetic Gelds, the mag-
netic dipole-dipole coupling of any foreign spin species
with an ensemble of such quadrupole coupled spins
exhibits a quenching or a reduction far below that
coupling predicted by the usual second moment calcu-
lations' for nuclear moments in a rigid lattice in high
magnetic Gelds. Stevens' was the Grst to show that the
second moment of interaction, formulated for differently
oriented paramagnetic electronic ions, each with $=1,
disappears as the external magnetic Geld is reduced to
zero. In this paper we consider examples of coupled
nuclear spin ensembles which are quite different from
the ion-coupling case treated by Stevens. Our examples
are chosen to be pertinent to nuclear quadrupole reso-
nance spectroscopy experiments. Although the phe-
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nomenon of angular momentum quenching is well
known in electron magnetism studies, the quenching
effect upon zero-magnetic-Geld nuclear quadrupole
spectra of integer nuclear spins has been studied little
or overlooked in those cases where crystalline electric
Geld gradients have a symmetry lower than axial.

The nuclear spin-quenching effect was reported earlier'
in the case of coupling between C13' and D' spins, as
measured by double resonance methods in BaC103-D20.
In this case, the effect occurs because the deuterium
nuclei have spin I= j., and each deuterium nuclear
quadrupole is coupled to an asymmetric crystalline
electric Geld gradient. Anomalously narrow nuclear
quadrupole resonance lines for N'4 (I=1) have been
observed in CO(NHs)s by O'Konsio and Torizuka' and
in thiourea by Cotts and Smith. '

II. THEORY

The spin-spin coupling either within a single spin
species, or between different species, will be evaluated
in terms of the second moment of the nuclear resonance
line shape. It will Grst be done for a collection of identi-
cally oriented I= 1 spins in axially symmetric and asym-
metric electric Geld gradients, with and without an
applied magnetic Geld. Also the contribution of a collec-
tion of I=1 spins to the second moment of I=—,

' spins
as a function of magnetic Geld is calculated; and the
converse case, the contribution of I=-', spins to the
second moment of I= 1 spins, is also obtained. However,
before entering into a formal second moment computa-
tion, it is instructive to consider Grst some physical
properties regarding the nature of quadrupole coupled
integer nuclear spins, and some elementary properties
of the dipolar coupling.

4 C. J. Gabriel, G. W. Leppelmeier, and E. L. Hahn, Bull. Am.
Phys. Soc. 9, 733 (1964).

4 C. T. O'Konski and K. Torizuka (private communication);
R. Cotts and D. Smith (private communication).
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ho= K 3I,' I(I—+1)+ (Ii'—+I ')
2

where K= e'qQ/4I(2I —1), eq=
I
V., I, Q is the nuclear

quadrupole moment (in cm'), and the asymmetry
parameter is

Double subscripts of V signify second derivatives of the
electric potential, evaluated at the site of the nucleus.
The coordinate axes are defined such that

I
V„

I
&

I V» I

&
I
V„I. In the principal axes system, all oR-diagonal

elements of the tensor V are zero.
The eigenstates of the above Hamiltonian h@, for any

integral spin, are such that the expectation values (or
diagonal matrix elements) of all three components of
spin angular momentum, I, I„,and I„are zero for all
eigenstates. Fundamentally, this lack of an invariant
component of angular moment associated with the
quenching effect, whether it occurs for electrons or
nuclei, arises when the spin Hamiltonian is invariant
under time reversal, and is applied to a problem where
the effective particle spin is integer rather than half-
integer. It follows, moreover, that if the system also
interacts significantly with an external dc magnetic
field which is not invariant under time reversal, then
the quenching effect is reduced.

It is easily seen that the above remarks regarding
complete quenching apply to the case I= j., such as
deuterium, where the eigenfunctions f and correspond-
ing eigenvalues E of the Hamiltonian of Eq. (1) are

f =—(u+g+u g), E =K(1+g);

Its= —(u+~ —u ~), L~'s=K(1 g);—(2)

/~=up, E — 2E

and I+~, I ~ and No are the eigenfunctions of the oper-
ator I,.We shall have occasion to refer to this particular
example in later discussions. As a general rule for any
integer spin, the quenching effect arises when the actual
eigenstates of the pure quadrupole Hamiltonian are
expressed in terms of eigenstates of the operator I„
which differ from one another in their characteristic
quantum number mI at least by hm& =2. For complete
quenching, these eigenstates of I„when linearly com-

'T. P. Das and E. L. Hahn, Solid State Physics (Academic
Press Inc., New York, 1958), Suppl. 1.

III. PURE QUADRUPOLE HAMILTONIAN

The pure nuclear quadrupole moment Hamiltonian in
the principal axes system of the electric Geld gradient
exclusive of dipolar coupling is given by'

bined to form a given quadrupole state, must be present
in equal amounts. This is indicated explicitly by con-
sidering the Hamiltonian of Eq. (1), first when g=O. In
this situation the states &m& are doubly degenerate.
Since the asymmetry term in g connects only states
which differ in m~ by dmz =2, it will lift the degeneracy
for integer spins I, as shown in the example for I=1
I Eqs. (2)j.However, if I is half-integer the asymmetry
term does not lift the degeneracy because the initially
degenerate states +mr and —mr diRer at least by an
odd integer. When the degeneracy is removed by the g
term, and the quadrupole Hamiltonian h@ contains only
even powers of the angular momentum operator, the
time-reversal argument shows in general that a linear
expansion of the eigenfunctions of hq, in terms of the
eigenfunctions of I„will have only terms even in mz or
odd in mr, but not both. The time reversal of ho of
Eq. (1), which is quadratic in the spin operators I, does
not change hq by reversing the sign of I. If h „ is a
matrix element of h@ in the representation diagonal in
I„then h „=h „.This last property can be used to
show that if an eigenfunction of hg if given as

Pa=Km +mum)
then

4'a =pm +—mum

is also an eigenfunction of hg with the same eigenvalue,
where the u are eigenfunctions of I,. This is possible
only if there is a degeneracy, when g=0. For q~0, the
degeneracy is removed and the condition f '=P e*"

(or a =a e'~) applies to a given eigenstate, where &p

is a phase factor. In this interesting situation, with the
g term present, the eigenfunctions of h@ for an integer
spin have either the form

pa=Gpup+Gpup+Gpu p+ ' ' '

or the form

=Gyug+8'+guru y+Gpup+8 +cpu p+ ' ' ' .

The expectation values of I„I„,and I, in any of the
eigenstates It above are all zero. Therefore, in zero-
magnetic field the magnetic dipole-dipole coupling of
any integer spin with any nonresonant neighboring spin
is zero in Grst order when the dominant quadrupole
interaction is asymmetric. It will be made clear later
that this quenching eGect is reduced by a modiGcation
of the above eigenstates by a magnetic Geld. Such a
magnetic field could be externally applied, or could arise
from the neighboring unlike spin itself. This unquench-
ing effect of neighboring spins would occur in second
order and is a dificult problem which is not treated in
this paper. Only the effect of an externally applied Geld
on the quenching will be handled in a rigorous fashion.

IV. EFFECT OF A MAGNETIC FIELD

The case of integer spin I= j. will be analyzed ex-
plicitly. Extensions of the following analysis to higher
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integer spins can as well be carried out. Previous in-
vestigators' have treated the NQR Zeeman splitting for
I=1 by using the asymmetric rl term of ho LEq. (1)j
and the applied Zeeman interaction as a perturbation,
or conversely, by considering the entire quadrupole
interaction as a perturbation upon a larger Zeeman
interaction. A preferred approach here is to evaluate
exactly the eigenfunctions and eigenvalues of the com-
bined total quadrupole interaction and ouse of the com-
ponents of an applied external magnetic field. Therefore,
at most one need consider only two of the components
of magnetic field as perturbations.

Consider the eigenfunctions, Eq. (2), of the quadru-
pole Hamiltonian Eq. (1). If one inspects the matrix
elements of I„I„,and I, in this representation, one finds
that the only nonzero elements of I, connect the states
a and y; the only nonzero elements of I„connect P and

y; and the only nonzero elements of I, connect n and P.
Obviously if a magnetic field Ho is applied along a
principal axis, one of the states n, P, or y is unaffected,
and the other two are mixed. Consequently„ the
Hamiltonian

hp ——hq —yhI Hp (3)

where

E 2E

s= yhH, /Erl.

The corresponding eigenfunctions are

=%+I COSg+B I SIIlg

fp =N~r sing —I I cosg,

with

p=lp)

can be diagonalized exactly for Ho either along the x, y,
or s directions. For example, with Ho along the s direc-
tion, the eigenvalues are

E~=EL1+rl (1+s') 'I'j
Ep ——EL1—rI (1+z')'I'7,

Similarly, for Ho along the x axis:

(I„)= (I,)=0 for all eigenstates,

(I,),r = —(I,) =x/(1+x')'"
(I*)us= o,

where

x= 2yhH, /E(3+ rl) .
And for Ho along the y axis:

(I,)=(I,)=0 for all eigenstates,

(I.)Vv= (I.—)P8=3/(1+3')'",
(I.)-=0,

where

y= 2yhH„/E(3 —rl) .

(7)

V. EVALUATION OF SECOND MOMENTS

The finiteness of certain (I) components given above is
induced by the magnetic field in given directions, and
signifies a removal of the dipolar field quenching. For a
given spin which undergoes a transition from one eigen-
state to another, a corresponding change in the static
dipolar field will occur at the neighboring site of a
different spin S. The coupling Hamiltonian between I
and S is given by

&is=yiysh'r '[I S—3(—I r)(S r)r-']

where r is the vector distance between the two spins.
If ~hp~ given by Eq. (3) is much larger than ~%is(, then
X&z may be regarded as a perturbation. With this
assumption, each term of ~Mrs~ can be evaluated as
products of matrix elements of S and I operators sepa-
rately, in the diagonal representation of ho. It is easily
seen, therefore, how the effective magnetic dipole-dipole
coupling between I and S is turned oR or on, depending
correspondingly upon whether Ho is zero or finite. Of
course, for Hp ——0, or Hp=h. =y,Sh/r', where h, is the
dipole field of spin S, the field h, will remove the quench-
ing to some extent. This intermediate case cannot be
evaluated by the assumption of products of independent
spin states.

cosg= [1+z'+s(1+—.s')'I'$ '~',
A knowledge of spin eigen and state functions is not

explicitly required if the technique of diagonal sums is
used to evaluate the second moment of the magnetic
dipole-dipole interaction. The second moment of a sym-
metric line-shape function f(&v) centered at frequency
coo, in the high-temperature approximation, is given by

1
sing= —L].+s' —s(1/s')'I'j '~'.

v2

The eigenfunctions of hp, Eq. (3), for Hp along the s axis
determine spin-operator expectation values as follows:

dpp(M Mp) f(M)(I,)= (I„)=0 for all eigenstates,

(I.)-=—(I.)us =—z/(1+s')'"
(I,)r,=0.

= —Tr (LOCI', P$')/Tr(I") . (10)

This is the most general form for the trace evaluation of

'D. H. Smith and R. M. Cotts, J. Chem. Phys. 4y, 2403 M2. BCq' is that part of the total dipolar perturbation
(1964); P. A. Casabella and P. J. Bray, ibid 28, 1182 (1958).. HaIIliltonian KI which commutes with the dominant
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zero-order Hamiltonian 3Cp, where

3I's= Z ho~+2 &ok,
j

BCr=p h;k,
j&k

(12)

VI. SECOND MOMENT OF A
SINGLE SPECIES I=1

Abragam and Kambe' have calculated the simplest
case for nuclear quadrupole coupled nuclei of spin I with

g =0 and Hp ——0. In their result, as well as for other cases
to follow in this paper, it is assumed that all sites of I= 1
spins are equivalent with respect to electric field gradient

' A. Abragam and K. Kambe, Phys. Rev. 91, 894 (1953).

with hs and h, k given by Eqs. (3) and (9), respectively.
The index k may pertain to a spin species different from
the species referred to by index j; or in case of a single
species, k pertains to a neighboring spin of j, and the
sum over j and k is in pairs. The term hj& is written as

h, ,=~,~kasha, ;[I.,I„(1—3X,, )

+I„;I „k(1 3F k'—)+ I„I,k(1 3Z; k')—

+3 (Igj Ivk+IvjIzk)XjkYjk+3(IkjIgk+Izj Ivk) FjkZj k

+3(I.'I*k+I.,I*k)Z;kXgk], (13)

where X;~, Y„A,, and Z;~ are direction cosines of rj~. P is
the sum of radiation spin operators P; I„,P; I», .or
P;I„used to the extent that they connect pairs of
eigenstates of hpj that differ in energy by h~p.

Any term h;k of Eq. (13) which commutes with
hp~+hpk in Eq. (11) will be denoted by h;k'. Such a
term will commute because

[hP;,h;k'] = [hsk, h;k'] =0,
or because

[hp;, h;k'] = —[hpk, h;k'] =a hreph, k'. (15)

Other noncommuting terms of h j~ are of course dropped
because they would include spurious contributions to
the second moment from higher order resonance lines
not being measured. The condition (14) implies that h;k
represents components of j and k spin orientation which
cause static dipolar broadening. The condition (15)
arises when energy is conserved for a mutual spin fiip of

j and k spin pairs, and therefore signifies a contribution
to dynamic line broadening. Therefore, hj&' connects
eigenlevels of hpj which differ in eigenfrequency by cop,

and similarly for hp&. The + and —signs signify that
hj&' acts for example as a raising operator for a j spin
and a lowering operator for a k spin.

For any particular second moment calculation, the
eigenstates of the dominant Hamiltonian must be
examined. By rewriting the perturbation 3C& in terms of
proper linear combinations of operators, the pertinent
hj~ terms can be identified as the proper static or raising
and lowering operators which must be retained in the
calculation of M2.

and magnetic Geld axes, as viewed from the laboratory.
We first rederive the second moment Ms (g= 0, Ho= 0)
for the simplest case because the form obtained for BC~'

is needed for treating the less simple cases to follow. It is
not logical to evaluate at first the most general result
Ms (rIWO, Hp/0) because the most general useful form
of K~' reveals itself only for the p=0, Hp ——0 case.

Case of g =0, Hp ——0

When &=0 and Hs ——0, Eq. (2) reveals a degeneracy
(E Es), and there is only one resonance line at Ace =3E.
Now consider, for example, the first term I„I,~ of the
dipole-dipole Hamiltonian h, k in Eq. (13).We would like
to express it in terms of raising and lowering operators,
and select those terms which satisfy Eq. (15).Obviously,
I jI ~ does not contribute static terms, according to
Eq. (14), as seen from an inspection of the eigenstates
[Eqs. (2)]. Making use of the commutation relations,
one can write

I~jIzg = IzjIyjIzgIyg IyjIgjIygIzg

+Is~I*~I.kIwk+I. ~Iv~IukI k (16)

The matrix algebra for a spin I=1 gives commutators

[I,',I,l„]=I,I„; [I,',I„I,]= IvI„—
[I,',Ij,]=I,I„. and [I,',Ig,]= —Ig„

which are of the form given by Eq. (15).Consequently, in
terms of the eigenstates of Eq. (2), I„I,lowers the state
n to the state y (n ~ y), and I,I„raises the state y to
the state n (y ~ rr). Similarly, I,I, lowers P to y(P —& y),
and I,I, raises y to/ (y —+P). Using Eq. (15) it is easily
seen that hpj does not commute with the first two terms
of Eq. (16) because the j and k spins are both raised or
lowered together in energy. The third and fourth terms
are, however, products of raising and lowering operators
and commute with hs;+hsk. Therefore, in truncating
Eq. (16) we drop the 6rst two terms and retain the last
two terms as hj~' terms. In this manner, the secular part
of hjg, becomes

h; k' y'0'r; k '[(I„;I—„—I,kI„k+ I„I„,I„kI,k) (1—3X;k')

+(I„I„I,kI,k+I„I„I,kI,k) (1 3Y;k)—
+ I „I,k(1 3Z,k')+ (l„I„;I—,kI,k+ I„,I„I,kI, k

+I,I„I,kI„k+I„I;I„kI,k) (3X;k Y;k)] . (18)

The second moment of the line at hers E E„[see-— —
Eqs. (2)] will be determined so that E=P; I„is the
operator to be used in Eq. (10). This particular I' only
connects a with y states. Therefore,

Ms(rI=O, Hp ——0)

Z~» Tr([»'', I.~]')

P;Tr(I„')
=P,y'O' Pk r, k

—'[8(1—3X,k')'+4(1 —3Y,k')'

+8(1—3Zyk')' —8(1—3Y;k') (1—3Z k')

+108X;ksYy']. (19)
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With the fact that X;~'+F;q'+Z;&' ——1, this result is
identical with that of Abragam and Kambe. ' The second
moment of theP~~y transitionis evaluatedif P=g;I».
is used instead of I'=P; I;. This has the effect of
interchanging X;& and F,& in M2 $Eq. (19)j.

Case of g&0, HO=0

Referring to Eqs. (2), the degeneracy of the n and P
levels is now removed for y/0, HO=0. There are three
possible resonance lines, u+-+ 7, P~y, and n~P. The
6rst four terms of h;z', Eq. (18), (operator coeScients
of 1—3X;q2 and 1—3V;q') still commute with ho;+ho~,
because these terms act as raising and lowering operators
which conserve energy for transitions involving the same
levels of j and k spins. However, a noncommuting term
like I„.I»I &7,& is dropped because it raises the jth spin
from the state y to n, and lowers the kth spin from the
state P to y, which does not permit energy conservation
It is assumed that geqQ is sufficiently large compared to
the dipolar broadening so that the transitions o.~y
and P ~ y do not overlap. Since I, is no longer diagonal,
the I„I,~ term in h;&' now connects the states n and. P.
Now I, can be decomposed into raising and lowering
operators:

where the binary operators connect states as follows:

I.I+ b.~P); I I-.:(P~v) 'I*I :(v-~~)
and

IP*:(~~v).
The dipole-dipole Hamiltonian )Eq. (13)j is rewritten in
terms of the above operators, and the truncation pro-
cedure is carred out as outlined previously. Therefore,

h~''=v'&'r~' 'I3(1—3X~~')(I*I+~I ~I.~
+I-;I„I.dye+I.;I;IpsI.a+I+;I.gI*aI a)

+g(1 3l;7 —)(I.;I+gI xI*~+-IpgI*~I*d a

+I;I„I,gI+g+I„I;IpgI, p)

+(1—3Z;p')I„I,pj. (24)

The second moment expression of Eq. (10) for the
u~y transition here will utilize 8 =P; I,/, wher. e
I,'= ', (I+I, I,I—),as —seen from Eq. (23). Therefore

Mq(g=0, O', WO) = (5/4)y'h4 Pq r;q
—'(1—Z ')' (25)

For a Zeeman interaction alone (ho=0) the coeKcient
5/4 above is replaced by -'„which shows that if the
n+-+ y and P ~ y transitions are the same in frequency
and therefore couple to one another, the extra dynamic
broadening effect increases M2 in Eq. (25) by a factor
of 6/5.

where I+=I +iI„.The new operators I,+ and I, carry
out the transitions P ~ n and a —& P, respectively. Use
is made of Eq. (20) to make I„I,& function as a dynamic
confutative term. Now that h, &' of Eq. (18) will have
missing from it the term in X;qV;q, and using Eq. (10),
the second moment of the 0, ~ y transition is

M2(g/0, Po ——0)= ~', y4h'Qp r g-'(8(1—3X A,
.')'

+4(1—3F,yP)'+4(1 —3Z;g, ')'j. (21)

This result also gives 3II2 for the P+-+ y transition if
X;~ and F;~ are interchanged, and gives the 3f2 for the
a ~ P transition if X;q and Z;q are interchanged.

Case of q=O, H, WO

The energies and states of Eq. (3) are now

Ig= ——',I+I,+-',AI I, :

I2= ,'I,I +,'AI.I+.—--
I3 ', IM,+,'AI+I, :———-
I4 ,'I,I++,'AI, I——;—-
I.+=

2(1+z')

A A
I,——I~'+ —+z I ' (P —+m).

2 2

(26)

1
I, = I,+I —+z I ' I ': (n P).——

2(1+z') k 2 2

Case of g/O, H, /0
The eigenvalues and eigenfunctions for this case are

given by Eqs. (4) and (6), respectively. The appropriate
raising and lowering operators are

E =E+yhII„
Ep=E—pe„
E~=—2E,

fa=N X&-
A =N+&i

4'~=go.

(22)
Relevant identities are given by

)1+2 1—A—(6+I2)+ (I3+I4),
It is assumed that H, is much larger than the dipolar
broadening so that the n~y and P~y transitions
cannot overlap. By examining the matrix elements of
I, and I„in this case, it is advantageous to write them as

I =2(I,I++I I,—I,I —I+I,),
where

)1+A 1—A
Iy

I
(I4—I8)+ I(I&—I~),

1ga~)
I,=I„+I,++I, ,

(27)

1
I„= (I,I+ IM,+I,I I+I,)—, — —

2i

(23) S2 S
A=L(1+z')'~' —z] I = I — (I '+I ')

1+z' 2(1+z')
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2 jg2

h~l'=
(1+A )2 (1—A

(1—3»") I I
(IuI»+I»I'~)+ I

(I»I4~+I4~I»)
r;I,' 1+A'1 (1+A'

—)1+A q' I1—A
+(1—3I'~")

I
~

(Is~I4a+I4iI3.)+
~

(I„I~~+I2;I,„)
(1+AV (1+A'

and parameter s is defined by Eq. (5).I„is the part of I, which commutes with (h@ y—rH,I,), and hence will
make a static broadening contribution to the second moment. Selecting only secular terms of X&, Eq. (12),
the truncated dipole-dipole pair interaction becomes

+(1 3Zjjt; )tIzsjIzai+IzyjIsy+I-z jIs+y] —~ (28)

The part of I, of Eq. (27) which connects the n and y states is [(I+A)/(1+A') j(Ii+I2), and therefore

1+A
IZ(I,+I ).

1+A'l i
(29)

One again takes the commutator of Eq. (29) with h;I, ', Eq. (28), and follows the prescription of Eq. (10). The
result is

y464
M2(&WO H, WO) = p r, I, (1+A') '((1—3X,&')(1+A)'+(1—3V;I,'(1—A)'j'

6(1+A') &

—SA2S2

X [(I—3X i')(1+A)'+(1—3F'.i')(1—A)'j(1—3Z.g')
(1+A')'

2(1+A ') (1+2z')
+ L(1 3X, 2)(1 A)2+(1 3P' 2)(1+A)gj2+ (1—3Z ') . (30)

2(1+A') (I+s2)2

Note that Eq. (30) reduces to Eq. (21) for H, ~ 0, and
reduces to Eq. (25) for g ~ 0. All of the results for M2
so far have pertained to the o.~ y transition. Again, in
this last case the appropriate permutations of the direc-
tion cosines in Eq. (30) must be made to give the M~
expressions for the other two possible transitions.

It is interesting to compare the relative magnitudes
of M2 for the diferent cases obtained so far, except the
last one which is too complex to consider. Arbitrary
expressions for M2 are computed by performing lattice
sums over the k spins for a simple cubic lattice, assuming,
unrealistically of course, that a spin j has a quadrupole
interaction at a noncubic site. With d as the lattice
spacing,

3Ig(g=O, Ho ——0)=28.4y4h4d '

M2(iI/0, Ho ——0) =17.8y4h4d '

3f2(g=O, Ho ——0) =16.7y4h4d '
and

F2(I =0, IIO ——0) =20.0y4h4d '

The most significant difference occurs between the first
two M2 values above, which shows how the line narrows
because of partial spin quenching when q/0. The
quenching can never be complete because the dynamic
broadening mechanism is always present among like

spins. It can be nearly complete in the cases considered
next where the line broadening due to unlike spins is
considered.

Second-Moment Interaction between I= 1 and
S=-', Species {q/0, Hp/0)

The most important case of dipolar field quenching
occurs between unlike I and S species, where the I spins
now sum over the j index, and the S spins sum over the
k index. The difference in resonance frequencies of the
two species is taken to be extremely large compared to
the linewidths. From the expression h;I,

' given in Eq.
(28), only the static terms apply here, so that

h;~'= psych'r, a-'(I —3Z,a')

S2 S
(I+~'+I ~') 5'.~ (31)

1+s' 2(1+s')

And using P=g; I„', the same as used for M~ (iI&0,
H, WO) previously, the contribution of the 5 spins to the
second moment of the I spins is

3IIg(I) s= ~~yr'yq'h4 — g r,i '(1—3Z,&')'. (32)
1+s' i

To find the contribution of the I spins to the second
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moment of the 5 spins, one uses P= Pi, S,i„which gives

Has(5) r ———s'yr'y8'fi' P r;„—'(1—3Z,„')'. (33)
1 S22-'

1.0

0.8—

0.6—

77oK

If the magnetic 6eld is applied along the x or the y axes,
then the parameters s and Z;I, are replaced by x and X;I„
or by y and I;& respectively. We do not treat any case
where H, is varied for a given spin polarization due to a
6xed H or H„.

The expressions (32) and (33) are almost identical to
those obtained by Van Vleck for the second-moment
contribution to a magnetic resonance line by unlike
spins. The only difference here is the factor s'/(1 jz'),
where s=yrhH, /Erf. The first-order calculation shows
that the second-moment contribution disappears as
H, ~ 0. In second order the local dipolar Geld of the
5 spins themselves would play the role of unquenching,
similar to the effect of H, . A second-order calculation

might plausibly express s' as s' = (pr &/&rf) '(H'+ He, '),
where H~' is some expression of the mean square local
field. A fourth-moment calculation not carried out here
may or may not show an entirely different behavior
from that of the second moment. We cannot make any
assertions about its variation because of dipolar field
quenching, as H, is varied.

VII. EXPERIMENTAL EVIDENCE OF
SPIN QUENCHING

A thorough and rigorous experimental study of the
spin-quenching effect remains to be carried out. The
effect is strikingly shown by the double resonance spin-
echo study of Cl" coupling with D in Ba(C10s)s Dso.
Although the Cl" nucleus has spin —,', it qualitatively
plays the role of S=-', , in the cases of Eqs. (32) and (33),
because the transitions ~~ +-+ ~~ are very similar to
those of the two leve15= —', case. The Cl" echo amplitude
Ep is observed in a two pulse 90—180 echo experiment
in the absence of double resonance. If the D nuclear
quadrupole transition is excited by a 180' pulse during
the time of the 180' Cl" pulse, the Cl" echo amplitude
E» is measurably reduced only if a magnetic 6eld Hp
is applied to the sample. As Hp is reduced in magnitude
the echo amplitude change Ep—EDR reduces toward
zero, as seen in Fig. 1.

The model which explains the spin-echo double reso-
nance effect has been discussed previously. ' The local
dipolar fields at C13' sites are made up in part by the
contribution of D nuclei. A maximum Cl" spin echo can
be obtained as long as the local fields remain essentially
static within the time 2~ of echo formation, where ~ is
the time between 90' and 180' pulses. If the D nuclear
spins are inverted at time 7- by a 180' pulse, their local-
field contributions at Cl" sites become scrambled and

M. Kmschwiller, E. L. Hahn, and D. E. Kaplan, Phys. Rev.
118, 414 (1960).

Eo —EI1

E 0.4—

0.2—

the Cl" echo amplitude is correspondingly reduced. I.et
the normal echo from the 5 spins (CP') be expressed as

~
—C(hor2) 72

) (34)

where C is a constant of order unity, and

(face')

is the
second moment of the 5 spins due to all species of
nuclear neighbors. When a 180' pulse is applied to the
I spins (D), the echo signal is

&n =«PL —C((~~')+(~~»'&)"3 (35)

where (heirs') =Ms(t)AO, H, AO) of Eq. (32) is the con-
tribution of I spins to the second moment of the 5 spins.
Using Eqs. (34) and (35) one obtains

where

(E& En&)/gs 1 e—st". 1(1+x i

5= ', Cr'yr'ys'f14 P;-r i, '(1 3Z s')'. -—
(36)

The parameter 5 can be determined experimentally
from the maximum double-resonance eGect in high
magnetic field (He 50 G), when s))1. The theoretical
expression Eq. (36) can then be plotted for various
values of s or II,. All three plots in Fig. 1 use a value of
5=1.514, obtained from the data at 77'K, which is
determined by1 —e s=0.78= (Ep—Ena)/Ep. Forsingle-
crystal BaC103 D20, nuclear quadrupole resonance
measurements yield ii=0.091, K=61.8 kc/sec, at 77'K;
and tf = 0.98, K= 30.6 kc/sec at 298'K. All the data in
Fig. 1 were taken with the magnetic field Hp perpendicu-
lar to the 180' symmetry axis of the D20 molecules, and
nearly, but not quite, parallel to the D-D direction. The
maximum electric field gradient (s direction) is along the
0-D direction, and therefore there was an angle of about
45' between the z direction and Hp. Thus H, 0.7IIp at
77'K. H was also about the same size, but can be safely
ignored, because the denominator in x PEq. (7)) is about
16 times larger than that in s LEq. (5)j. The DsO
molecule is static at 77'K, but at 298'K it undergoes a

I l I I I

10 20 30 40 50 60 70

H, (gaussj

FIG. 1. Deuterium double resonance effect for spin-echo double
resonance in Ba(CK)3)2 D,O as a function of applied magnetic
Geld Ej,. Data points are from Ref. 10 (C. J. Gabriel, thesis).
Curves are theoretical expectations as explained in the text.
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hindered rotation" about the 180' symmetry axis which

does some averaging of the electric field gradient. In
this case the direction of maximum field gradient is
along the D-D direction. "Since Ho is nearly along this

direction, H and H„are small and shall be ignored. Two
theoretical curves are plotted for 77'K: one with H, =Ho

(short-dashed curve), and one with H, =0.7Hs (long
dashes). The obvious preference for the latter shows that
it is the component of field along the direction of maxi-
mum Geld gradient that is lifting the quenching, and not
the total applied magnetic Geld. For H, Gelds below

40 G, the transverse field components H„and H yield
parameters y'/(1+y') and x'/(1+x') LEqs. (8) and (7)j
which are negligibly small. In the region of H, 40 to
50 G, agreement of the 298'K data with Eq. (36) is not
good. This may be possible with g=i, and with some

H, and H„present, because then the parameters in-

volving y and x should not be neglected.
Our second-moment calculations indicate that the

deuterium double-resonance line (interpreted in terms
of the Clss echo amplitude versus deuterium NQR fre-

quency v) should be anomalously narrow. In fact the
observed lines are anomalously broad (Av 10 kc/sec).
The source of this broadening is attributed to the pres-
ence of a 10/o dilution of the deuterium by protons in
our sample. The protons, having a diferent mass, have
a thermal-vibration spectrum different from the deu-
terium nuclei. The random-site proton distribution will

alter the temperature-dependent electric Geld gradient"
at various deuterium sites, and a broadening of the line
results, similar to crystal-Geld strain broadening. The
broadening at 77'K is observed to diminish at 20'K,
but it does not disappear because the zero-point motion
is mass-dependent.

"T. Chiba, J. Chem. Phys. B9, 947 (1963); C. J. Gabriel,
thesisUniv, ersity of California (unpublished).

' H. Bayer, Z. Physik 130, 227 (1951).

VIII. CONCLUSIONS

In pure nuclear quadrupole resonance the dipolar
coupling of integer spin nuclei to neighboring like and
unlike spins is reduced or quenched if the quadrupole
interaction is significantly asymmetric. If the energy
5'@ of the asymmetric component of quadrupole inter-
action exceeds by a large margin any nuclear magnetic
interaction energy 8'~, the dipolar Geld of the integer
spin is electively quenched for coupling to unlike spins,
and partially reduced for coupling to like spins. These
effects are shown by linewidth second moment calcula-
tions and by spin-echo measurements of the coupling
among unlike spins. The usual second moment is re-
duced by a factor (2Wlr/W@)'/(1+(2W~/Wo)'$ for
coupling to unlike nuclei of half-integer spin. In the limit
of a high externally applied field H, where 2WIr/W@))1,
the dipolar interaction is fully restored.

With a quadrupole asymmetry parameter of appropri-
ate size, the quenching effect should make possible the
high-resolution NQR spectroscopy of integer spin nuclei.
The variation of line broadening as a function of external
and internal magnetic fields is a behavior which should.

yield additional information about the asymmetry of
internal crystalline fields. With these features, the D'
and N" nuclei with I= 1 are particularly attractive for
NQR studies of organic compounds. At low tempera-
tures particularly, where NQR spin-lattice relaxation
times are long, any measurable magnetic spin-lattice
relaxation rate should also be quenched for asymmetry
field coupled integer spins. The relaxation rates should
be restored in the limit of high applied magnetic field.
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