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Phonon Scattering by Lattice Defects. pl*
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This paper treats several aspects of phonon scattering using the t-matrix —Green's function method. We
erst prove an optical theorem and establish the orthonormality of the solutions to the scattering problem for
a quite general perturbation to the lattice. We then expand an earlier discussion of the representation of the
t matrix in terms of the eigenvectors of the matrix gy. Application of these results is then made to a "model
defect, namely, a substitutional impurity in a diatomic lattice with a changed mass and a changed force
constant to nearest neighbors. Expressions are derived, that are exact within the model, for the phonon
scattering rate and relaxation time. These are in a form suitable for calculations using good "model phonons. "
A rigorous expression is also derived for the relaxation time for phonon scattering by isotopes in a diatomic
crystal lattice.

I. INTRODUCTION

HE subject of phonon scattering by lattice defects
was erst treated by Lifshitz. ' It has subse-

quently been discussed by many workers, '—"including
the author. "In spite of these efforts, several important
aspects of the problem still require clarification or more
general treatment than has been given so far. Such is
the subject of this paper, the aim of which is to carry
derivations of formulas to the point where they can be
directly applied to calculations of the scattering by
simple, but not unrealistic, "model" defects of simple,
but not unrealistic, "model" phonons. An example of
model defects is given by substitutional monovalent
impurities in a diatomic crystal, perturbing the lattice
through a change in mass and a change in central force
constant to nearest neighbors. Example model phonons
are furnished by the phonon frequencies and eigenvec-
tors obtained from calculations based on a shell model
or deformation dipole model of an alkali halide lattice.

In Sec. II, we derive an optical theorem and prove
the orthonormality of the solutions given in I of the
scattering problem for a very general class of defects.
Such theorems are well known from the quantum
mechanical theory of scattering, but the proofs do not
carry over directly to phonon scattering, because when
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changes in mass are involved, there is also a change in
the effective metric tensor. " LSee Eq. (2.3) below. )
An optical theorem for phonon scattering has been
discussed by Thoma and Ludwig' in a less general
way than is done here. Similarly, the orthonormality
of the solutions has been indicated by Gunther for the
specifrc case of the mass defect approximation (MDA)."

In Sec. III, we examine some properties of the t
matrix, the matrix that uniquely describes the scatter-
ing from a single defect. In Secs. IIIA and 8 we expand
the discussion begun in I of the representation of t in
terms of the eigenvectors of the matrix gy and show
how consideration of the symmetry of the defect aids
in this task. Callaway has used symmetry arguments
in his treatment of scattering in crystals, ' but his
emphasis is somewhat different from ours. In Sec.
IIIC, we apply our general methods to a specific model
of a defect, namely, the one mentioned in the erst
paragraph of this introduction.

In Sec. IV, we apply these methods to phonon scat-
tering by two kinds of defects: a strongly perturbing
dilute impurity and isotopes. The phonon lifetime as
limited by defect scattering is calculated in Sec. IV.A.
The transition rates are calculated using the "golden
rule. "The optical theorem then yields the simple result
of Eq. (4.16) for the lifetime.

The suitability of the phonon lifetime for thermal
conductivity calculations is discussed in Sec. IVB. It
has been widely recognized that in the MBA the life-
time can be used directly as a thermal conductivity
relaxation time. "'3 We point out that this use is more
generally valid provided that a kind of interference
between even and odd parity phonon scattering fEq
(4.24)j can be neglected.

In Sec. IVC the earlier results are examined in the
long-wavelength weak-coupling acoustical limit, and
Rayleigh scattering is obtained. In the process we dis-
cover that care must sometimes be exercised in the
choice of a basis for the t matrix so that the correct

~ P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).
1'W. C. Schieve and R. L. Peterson, Phys. Rev. 126, 1458
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PHONON SCATTER I N 6

limiting behavior can be obtained in numerical
calculations.

In Sec. IVD we discuss phonon scattering by iso-
topes in a diatomic crystal. The result is expressed in a
form suitable for use with accurate models for the
phonons.

We shall rely heavily on the contents of I and on the
notation used there. A few changes in notation will be
necessary and will be discussed as we proceed.

where F is due to the change in mass

I" =—(AM)M 'cc', (2.10)

and Ff is due to the change in potential-energy matrix:

I'i ——M 'ls(AV)M '". (2.11)

Because of Eq. (2.10) we must consider F to be a func-
tion of s in an equation like (2.8):

r(s) =——Q M)M-is+r (2.12)II. OPTICAL THEOREM AND ORTHO-
NORMALITY OF SOLUTIONS

A. Introduction

The lattice dynamics problem of interest is a classical
"small oscillation" problem —the simultaneous di-
agonalization of the perturbed potential-energy matrix
V+hV and the perturbed mass matrix 3II+5M.' The
orthonorrnality condition for two eigenvectors, u(l) and
u(l') of V+hV, is usually written as

u(l')t(M+AM)u(&) =&iv, (2 1)

where the symbol t denotes the Hermitian conjugate.
If we introduce new dynamical coordinates by

The perturbation F can be quite general for the purposes
of this section; no assumptions about localization of F
or about random distribution of defects need be made.

B. Optical Theorem

Equa, tion (2.8) ca.n be solved formally for p
—(AM)M —syl' = T(s) t I G(s)T(s))—

(2 13)

We now write the transpose of this equation for argu-
ment s' and make use of the fact that Ff, T, and G are
symmetric and that hM and 3E are diagonal to obtain

r,—(~M)M-is'=
t I—T(s')G(s') j-iT(s') . (2.14)

e=M'I'I

LSee Eq. (5) of Ij, Eq. (2.1) becomes

s(l')t(I+M 'AM)s(l) =Sip. (2.3) where we have abbreviated T=—T(s), T'=—T(s')
Multiplying Eq. (2.15) on the left by (I—T'G') and
on the right by (I—GT) gives

(I T'G') AMM '(s' —s) (I GT)-
= T T' T'(G' —G)T—. (2.16—)

Here I denotes the unit matrix. We can assume that
the phonon eigenvectors v(B,) or

vs~i(L) =~-'I'e i,
ie'a' (2.4)

that diagonalize

We subtract Eq. (2.14) from Eq. (2.13) to obtain
(2.2&

&MM-' (s'—s) = T(I—GT)-' —(I—T'G') —'TI (2.15)

satisfy

~—1/2P~ —1j2 The erst important result is obtained by setting
s=oi'+is and s'=s*. Then as e —+ 0 we get the optical
theorem

(2.5)
ImT(cc'+is)

T(cps is)—ImG(~—'+is) T(ccs+ie) . (2.17)

v(kV)tu(k&) =4s 4~'
The eigenvectors for the perturbed problem

given by combining Eqs. (19) and (24) of I. They arise
in a well-dered way from the unperturbed eigenvectors
s(kX) of Eq. (2.4); therefore they will be labeled 8(kX):

8 (B)=jI G(ccsi,'+—is) T(ccsi,s+ie) fs(kX), (2.6)

This is a matrix equation. It has been derived by Lipp-
man and Schwingerfor quantum-mechanical scattering. '5

C. Orthonormality
where

G(s)—= (2 —sI) '

and T(s) satisfies the equation LI, Eq. (24')j
T(s)=I —T(s)G(s)r =r—rG(s,.)T(s) .

The perturbed dynamical matrix will be of the
(we set the coupling constant "cr" of I equal to on

(2.9)

(2 8) v(k'lt')t(I+ M 'EM)tl(yy)
= s (kV) t (I—T'G') (1+M—'gM)

X (I—GT)s(kX) . (2.18)

In Eq. (2.18) and in what follows we must set s= cod„s+ is
and s =~s i'—ie. By adding (I TG,)(I GT) to both——

I'=I' +I'r,

We now verify the orthonormality condition Eq.
(2 7) (2.3) for two expressions of the form of Eq. (2.6). We

start with

r4H. Goldstein, Classical 3fechaaics (Addison-Wesley Publish-
ing Company, Ine. , Cambridge, Massaehusetts1953), ,Chap. 10. "&.A Lippmann and J. Sehwinger, Phys. Rev. 79, 469 (1930).
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sides of Kq. (2.16), we obtain

(I T'G—) (I+M 'AM) (I GT—)
= (z'—s)-

t T—T'—T'(O' —G) T7
+I T'G—' GT—+T'G'GT. (2.19)

The right-hand side of this equation can be simplified
by use of the identity

III. PROPERTIES OF THE t-MATRIX

A. Reyresentation of the t-Matrix in Terms of
the Eigenvectors of gy

We consider a single defect and work in the localized
space of 7 dealing only with those indices for which
I'WO. Equation (2.8) becomes

G(")—G(z) = ("-z)G(")G(s), (2.20)
~= v —~gv= v —vg~. (3.1)

which makes the right side of (2.19) equal to

The functional dependence on s is implicit in Eq.
which follows by direc™niPulation of Eq. (2.7). (3.1).A solution of this equation by matrix inversion is
Using Eq. (2.20) one obtains

t=v(1+gv) ' (3.2)T'O'GT= (s'—s) 'T'(G' —G)T, (2.21)
We now consider the eigenvectors v(P) and eigenvalues

p(P) of the matrix gv:
(s' z) '(T —T')—+I —T'G' G—T. —

Our trial expression (2.18) now becomes

8(k'X')t(I+M 'AM)8(kX) =8gg, 8yg +v(k'X')t

XL("-.)- (T-T')-T'O' —GT7&(k&). (2.22)

gv (P)=.(p) (P) (3.3)

Eigenvectors belonging to different eigenvalues are
orthogonal in the sense

p(P')tv'(P) =0, unless p, (P) =p(P') . (3.4)

(3.5)(P')tvgv (P) =~(p) (P')'v (P)

This statement can be proved by multiplying Eq. (3.3)From Eq. j2.7j one sees that 6' is diagonalized by v ji~j:l db ~uX).

G v(kX)=G(Mp'g' 't6)v(kX) = (cvgg Mg'g' +zE) 5(kh)

and, similarly,

v(k'X') G=—v(k'X') G(cvyg'+is)
=&'(k ~)t(~1 z —~ax —i~)

Equation (2.22) then becomes

8(k X )t (I+M AM)8(kX) —8gy18gg~

= ((v g
'—(oI,),

'—2ie)
—'Lv(k'X')'Tw(kh)

—v(k'X') tT'v(B)7 —
(&oj,g' —~g, g'+is) '

Xv(kV)tT'n(kX) —((op g' —(ujg' —ie) '

Xv(k'X') tTe(kX) . (2.23)

It is clear that if co~q~co~. q one can set e=o, and the
right-hand side of Eq. (2.23) then equals zero. If &uqq

=coj,.z., the right-hand side is not literally zero, but it
is effectively zero for the following reason: Since one
never deals with a single state in a large system such
as a crystal, we should integra, te Eq. (2.23) over a small
region in k' space. It is then permissible to write

(cok'v cvItx 2zE) =P(Kg'g' Mph )
+~i&(~I ),

' ~~~'),

(a»x' —~a q +is) '= P(coq q' cue—x ) '—
7l Z8((vk'V coke ) &

(a&I'v &vI q ze) '= P(&—v@ly~ ——cvqy )
+7r&8(~1 z &A&, )~—

A similar equation with p and p' interchanged is

~(p)'vgv~(p') =t (P')~(p)'v~(P') (3.6)

Because g and y are Hermitian, the left-hand side of
Eq. (3.6) equals the left-hand side of Eq. (3.5). Because
7 is Hermitian, we have

~(p')'v~(p) =~(p)'v~(p')

Subtraction of Kq. (3.6) from (3.5) then yields

0= Et (P)—t (P')7~(p')'v~(p),

(3 7)

v(P')tvv(P) =0, unless P=P' (3.4a)

The eigenvectors e(p) diagonalize t, for we have

t (P) =v(1+gv)-"(P) =v (P)L1+.(P)7-'. (3.8)

We then multiply by v(P')t and use Eq. (3.4a) to obtain

(P')'t (P) = (P')'v (P)L1+~(p)7 '8~~' (3.9-)

We then obtain an explicit representation of the 3

matrix in terms of the e(P) and p(P):

from which Eq. (3.4) immediately follows. The same
orthogonality condition can be assumed to hold for
eigenvectors having the same degenerate eigenvalue
p(p), so that we can write

v~(p)~(P)'v
With these expression inserted, the right-hand side of
Kq. (2.23) vanishes, thus proving the orthonormality
condition for the solutions of the perturbed equations

(3.10)t=gp
L1+.(P)7L (P)'v (p)7

8(k X )t(I+M AM)8(k'A) =8pgi8ggi.
This representation is independent of the normaliza-

(2.24) tion of v(P). It is a corrected version of Kq. (33) of I.
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B. Symmetry Considerations

The matrix g will have the full symmetry of the
perfect host crystal, including the point symmetry of
the site to be occupied by the defect. The perturbation
matrix will have a point symmetry that may be lower
than that of g; we call its symmetry group the symmetry
group of the defect.

The eigenvectors v(P) form bases for irreducible
representations of this group. The vectors gv(P) and

yv(P) will be linear combinations of vectors in the same
irreducible representation as v(P). Two important cases
must now be distinguished. Case (1): If this repre-
sentation occurs only once, then v(P) diagonalizes both

g and y Lwith eigenvalues denoted by g(8) and p(P)7,
since no other vector can be mixed in. In this case,
v(P) can be determined by symmetry arguments alone.
It will be independent of the strength of y and of
s=&o'+ie. The contribution of this Pth term to the
«-matrix expansion of Eq. (3.10) will then be

«=&9)v(~) vQ)t/L1+~(~)7, (3.»)
if we assume that v(P) is normalized to unity. The
eigenvalue of the matrix tp is

(3.12)

Case (Z): When more than one representation of the
same symmetry is present, we have a small manifold
of vectors having the same symmetry that will be mixed

by application of g and p to any one of them. One must
then solve the eigenvalue problem of Eq. (3.3) within
this manifold. The mixing done by gp will be a function
of s and hence of frequency and will also be dependent
on the strength of y. An alternative solution is provided
by direct matrix inversion of the equivalent of Eq. (3.2)
with g and y defined only within the manifold.

C. An Example

To illustrate the above discussion and to prepare for
actual numerical calculations, we consider the example
of a monovalent substitutional impurity in a diatomic
crystal having the rocksalt structure. This is a slightly
more complicated example than that treated in I. The
impurity has a change in mass AM and a change in
central force constant hf to its 6 (100)nearest neighbors.
The symmetry of the defect is octahedral. The dynami-
cal coordinates of Eq. (2.2) can be expanded in the
space of p in terms of the following symmetry-adapted
coordinates that form bases for the irreducible repre-
sentations of the octahedral group.

An even-parity "breathing" motion of the nearest
neighbors having A1, symmetry is

q (A g,)—=6 '~'Lv'+ (al) —v'+(—al)+ v2+(a2) —v'+(—a2)
+v~(a3) —v'+(—a3)). (3.13)

Two degenerate even-parity "tetragonal" motions of

the nearest neighbors having E, symmetry are

qg(E, )
—= 12-'I'L2v'+(al) —2v'+( —al) —v'+ (a2)

+v'+(—a2) —v'+(a3)+v'+( —a3)), (3.14)

q2(&.)=kiev'+(a2) —v'+( —a2)
—v'+(a3)+v'+( —a3)7. (3.14')

Three degenerate odd-parity motions of the nearest
neighbors having F1„symmetry are

q2(j)—=2 '~'Lv~'+(aj)+vs+( —aj)7, j=1, 2, 3, (3.15)

and three degenerate odd-parity motions of the im-

purity itself having F1„symmetry are

qz(j)=—v' (0), j= 1, 2, 3. (3.16)

In Eqs. (3.13)-(3.16) we have used this notation v& (I.),
where j=1, 2, 3 is a Cartesian component, n= (+) or

(—) refers to the type of atom (the impurity is arbi-
trarily assumed to be located at a negative site at the
origin), &aj or 0 is the location of the atom in question,
a is the nearest-neighbor distance, and the j(j=1, 2, 3)
are unit vectors along the cube axes. The coefficients of
the e's in the above equations form the normalized
vectors to be operated upon by g and p. They will be
denoted by v(A &,), v&(E,), etc.

The two sets of E1„modes will be mixed by g and p
so that, for example, gyv2(1) is a linear combination of
»(1) and v2(1).

The mass-change perturbation matrix F of Eq.
(2.10) couples only to the»(i). It is diagonal in each
with eigenvalue —cu'6 m/ m where m is the unper-
turbed mass of the negative ion.

The change in potential energy can be written in
terms of the true atomic displacements u'"(1.) as

~V= -', Z, ' ~f(LN'+(a, i)—I'-(0))'

+Lu'+( —ai) —u*-(0))') . (3.17)

The I's are then converted to the v's by Eq. (2.2), and
the v's expressed in terms of the q's of Eqs. (3.13)-
(3.16). The result is inserted in Eq. (3.17) to yield

~I'= k~f (m+) 'Lq(A ~.)'+q~(&.)'+q~(~.)')
+l~f 2'(( +m')qm(i)'+2(m-) 'q~(i)'

i=1

2v2(m~—m ) 'I'qg(i)q2(i)7 (3.18).

The matrix yy is obtained from the coefficients of the

q s in this equation. It is diagonal in v(A qg), »(E,), and

v~(E,), with eigenvalue in each case of hf/m+. The
matrix y«mixes»(i) and v2(i) so that in this 1-2 mani-
fold we have

»(i) 'v»(i) =»(i) 'vr»(i)+»(i) 'v-»(i)
=2af//m cv'am/m, (3.19)—

v 2 (i) t rv 2 (i) = v 2 (i) t rfv & (i) =&f/m+, (3.19')

vm(i) ty»(i) =»(i) t7v2(i) =»(i) tyfvg(i)

v2hf(m+m ) '—I' (3.19).
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The Green's function matrix G(s) can be written as In the last term of this equation we have chosen direct

G ( ) Q (ky) (k) )t ( z ) j (3 2())
matrix inversion instead of the use of eigenvectors in
the 1-2 manifold.

s(k) ) ts(Atg) = (6N) '"2i P; sinkjaejgz+,

s(kX) tw (E ) =N ' 'zLsmkzaej, q'+ —smkzac'I, y +7
q

v (kX) t» (j ) =N '~'es&'—

s(k) ) ts (j)=N '"V2esq& +cosk,a. '

Here we have used Eq. (2.4) for s(k)i). The
elements of g(z) that we construct from Eqs.
(3.24) reveal that g is diagonalized by s(At, ),
and sz(E,) with eigenvalues

(3.21)

(3.22)

(3.23)

(3.24)

matrix
(3.21)—
»(E,),

g(A )=2(3N) 'g LP; i k, „„'+7'( „„'—)
—' (3.23)

RIll

gt(E, )=gs(E,) =N ' Q fsinksaep), '+

—smksacsg 7 (MA, y
—z)

For the odd-parity modes we have

t, (j)ts, (j')=0, for j Nj' and s, s'=1, 2;

&t(j)'»(j) =N ' 2 I:e»' 7'(»~' —z) ';

(3.26)

(3.27)

(3.28)

»(j)tg»(j) =»(j) g»(j) =N—'v2 g e»' e»~+—

The matrix elements of G(s) for g(s), since we are now
in the space of &7 in the basis defined by Eqs. (3.13)—
(3.16) involve the following inner products:

IV. PHONON SCATTERING

A. Relaxation Time

We assume a random distribution of scattering cen-
ters. The scattering from each center may be very
strong, but we assume the concentration of defects to
be low enough so that the average scattering throughout
the crystal is small. This is the strong-coupling —low-
concentration limit. There is another limit worth con-
sidering, namely, the weak-coupling —high-concentration
limit. An example of this will be discussed in Sec. IVD.

The rate of change of the phonon occupation number
N& for state k (k denotes k plus X) is given by the
"golden rule":

aN, /at=a- 2~ p, (~ m, ,
~

—
~
m,„,. Iz)

X&(~s —~s) . (4.1)

The average denoted by ( .) is over the positions of
the defects. In the strong-coupling case, the matrix
elements are given by'6

Mg, s =-',hv(k)tTz. ,(cozs+zs)v(k')(Ns 11)'is
XNdlz(~a~s ) "' (4 2)

MI, I.———,'As(k')tT. ..((oss+ze)s(k)Ns'iz

X (N~+1)'"(~a~s ) '" (43)
Here T&,& is the T matrix for the entire crystal obeying
the equation

Xcosk&a (coty —z) (3.29) Tz.z = I'z.z+I'z.zGTz.z, (4 4)
and

ss( j)tg»( j)=2N ' g (z,z&'+)s coszk;a(cej, zs —s) '. (3.30)
where I'&,& is the total perturbation to the dynamical
matrix. This latter quantity will be given by a sum

One then combines these matrix elements for y and g
via the equation

s.U)'gee"(j)=2" L"(j)'gs" (j)7
XLu" (j)"vs"(j)7 (3 31)

The eigenvalues p of gy for the even modes are

tz(A t,) =6fg(A t,)/nz+ (3.32)

where f(L) is a random variable that takes the value
unity with probability c (the fractional defect concen-
tration) and the value zero with probability 1—c; yz
represents the contribution of a single defect at site I..
Written out in components, yI, bears this relationship
to y=yo for the same defect at the origin:

7, - '-'(L', L")=~ - '-'(L' —L, L"—L). (4.6)

t t(E.) =t s(Eg) =~fgt(Es)lnz+ (3 33) Luttinger and Kohn have shown that for a resulting
scattering probability linear in c, one can write

The eigenvalues for the odd modes result from the di-
agonalization of the 2X2 matrix s, (j) g&u,.(j) of Eq.
(3.31).The t matrix then takes the explicit form

(6f/nz+)s(Atg)s(At, )t 6f/nz~

1+6f g (A to)/nz~ 1+6fgt (Eg)/nz~

(E,) (E,)'+ (E.) (E.)'7

+D Z'Z's. (j

Tz.z ——Qz tl,f(L), (4 &)

where t~ represents the t matrix for the scattering from
a single defect at L'z It is related to t (= ts) by an equa-
tion exactly like Eq. (4.6),

tl&' &' '(L', L")=t' &' '(L'—L, L"—L), (4.8)

s=l e'=1 g=l
)"(j)' "Justiiication of the use of T~& instead of Pt,z in Eqs. (4.2) and

(4.3) can be made along the lines used to derive Eq. (1.72) of
Ref. 15. See also Refs. 9 and 17.

XLs, (j)"y(1+gy) 'v, (j)7. (3.34) 'z J. M. Luttinger and W. Kohn, Phys. Rev. 109, 1892 (1958).
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and it obeys the equation

tL 'rL+rLgtL ~ (4.9)

We use the relation [derivable from Eqs. (2.7) and
(3.20)]

When we insert Eqs. (4.2), (4.3), (4.7), and (4.8)
into Eq. (4.1), we find that one of the terms to be
averaged becomes

(l~~-~l')=D'(N +1)N /(4~»'))Iv(k)'»(k') I'

XZ c """' ""(f(l)f(l')) (4 1o)
LL'

To lowest order in c, one obtains

(»~)-'~(~.—~v) =&(~~'—~")=~-' Im(~a' —~.'—«)
=v —' Imv(k')tG(~0 '+ve)v(k'), (4.14)

and the completeness of the v(k') to derive the result
cdirt',

' cN ——Qi, Im[v(k)tt(ori2 —ic)v(k'))
X [v(k') 'G (~d s'+is) v (k')][v (k') 't ((ox'+i&)v(k)]

= cN 1m[v(k) tt(a)i, '+is)G(cui2+ie) t((ai,'+ic)v(k)).
(4.15)

and hence
(f(L)f(L'))= ~-, The optical theorem (2.17) allows us to write this as

ardri,
' cN ——1m[v—(k) tt(cog+ie)v(k)). (4.16)

Zc '" "' "&f(l)f(l'))=cN
LL'

where E is the number of unit cells in the crystal. Thus
Eq. (4.10) becomes

(411) This expression is independent of N because of the
normalization of the v(k)'s given by Eq. (2.4). A further
rewriting follows by use of Eq. (3.10):

( ~
Mi p ~')=cNh'(Ni +1)Np/(4(oi~oi, .)

X i v(k) tt (cop'+i&) v(k') i', (4.12)

just cE times the contribution from a single defect at
the origin. A similar result holds for (~ Mq i

~

').
Equation (4.1) then becomes

BNi/Bt= ,'7rcN Pi, -~v(k)tt(cui2+ic)v(k') ~'

X (~.»v) ~(&i &i ) (Ni —Ni) ~ (4.13)

To obtain a phonon lifetime we set El, ——0 for k&k'
and define

[(k)'~ Q)l[ 0)"v (k))I ~Q)
=cN Qs {[1+R"Q)1'+[I ~Q)]'&[ (~)'v Q)1

(4.17)

Thus the "modes" P contribute additively to ri, '. A
sophisticated derivation of Eq. (4.16) has been given

by Maradudin' for the MDA where py
——0.

For our example of the substitutional impurity we
can use Eq. (3.34) to obtain

'=[ (A.)] '+L (&.)) '+[ (odd)] ' (418)

BNi/W =Ni—/r i, . — (4.13') where

N
I

(k)' (A .) I'(tlf/~ )' Img(A )
Mk[rk(A I )]

[1+elf

Reg(Ai, )/m+)'+ [6fImg(Ai, )/m+]'

cN[~ v(k)'»(~. ) I'+
I v(k)'»(&. ) I')(~f/~+)' Imgi(&. )

»[ri(E,)) '=
[1+5fRegi(E, )/m+)2+[6 f Img (Zi,/m~]'

&i [r&(odd)] '= —cN P [v(k) tv, (j)][v, (j)tv(k)][v, (j)trav, ~ (j)]Im[v, (j)t(1+gp) 'v, (j)].
I$,$,

(4.19)

(4.20)

(4.21)

B. Implications for Lattice Thermal Conductivity

The quantity r& can be characterized as the lifetime
of a phonon as limited by impurity scattering. For
thermal conductivity calculations this is not necessarily
the relaxation time to use, even if three-phonon proc-
esses and other processes can be neglected. In such
calculations" one sets the right-hand side of Eq. (4.13)
with Ni, =Ni, '+mq (Nqo ——(Nq)ih„, i, ni, ——first-order de-
viation) equal to

(AN)/at)~„i, = v~ ~rdNio/dz', (4.22)

All matrix elements of g in Eqs. (4.19)—(4.21) are to
be evaluated for s=oiP+ie as e —+ 0+. where v~&, =B~di,&,/Bk is the phonon group velocity. The

result is a Boltzmann equation:

v„~7'JNio/d2'= cN~(2(gi, ) ' Qp.
1 v(k) tt((ui+if)v (k)

~

X&(~a —~~) (~~ —~i) . (4.23)

It is well known that the only solutions of Eq. (4.23)
that are required are those of odd parity in k. The term
with m&. in this equation is necessary only if

~

v (k) ttv (k')
~

has an important part that is odd in O'. If the defect site

has inversion symmetry, we can break the sum over P
in Eq. (3.10) into even (g) and odd (I) parts, t= t,+t„,
so that v(k)ttp(k') is even in k and k', and v(k)tt„v(k')
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is odd in k and O'. Equation (4.23) then becomes

vt, vTdN/o/dT
—n/r/, '+cNv (2co/, ') '—g/, , {[v(k)tt (co~2—v'q)v(P)]

X[v(k')tt (M/, '+ie)v(k)]+[v(k)tt (co/,
'—ie)v(k')]

X[v(k')tt, (co/, '+is)v(k)]}8(co/, .—cop)n/, . (4.24)

If either t„or t, dominates t, the second or cross term
in Eq. (4.24) will be negligible compared with —e/rq ',
and v-I, will be a thermal conductivity relaxation time
as well as a lifetime. In this case, scattering from
k to k' is just as likely as scattering from k to —k', and
memory of direction is lost after one collision.

If t, and t are comparable in magnitude, the second
term in Eq. (4.24) will be important. For numerical
work it is perhaps best to solve this equation by
iteration starting with the equation (V T along s axis):

rc/, = r/, (dT/—ds) (dN/, /dT)vt„cNr/7r(—2co/2) "

XP/, . E(k,k')rc/, 8(co/, —co/), (4.25)

where E(k,k') stands for the expression in curly brackets
in Eq. (4.24). Such a procedure has been proposed by
Carruthers. "

C. Long-Wavelength, Weak-Coupling Limit

This limit for acoustical phonons should lead to
Rayleigh scattering where

(4.26)

"Weak. coupling" means we set the denominators equal
to unity in Eqs. (4.19) and (4.20) and set

[—Im (1+gv)
—']=Imgy

in Eq. (4.21). We also make use of Eq. (4.14) and note
that for small or

P 8 (cocy —co ) =P v'8(cocky~ co)/2co~—co.

Thus for small co we have from Eqs. (3.25) and (3.26),

gi(A ~.)-~',
gi(&.)-~', (4.27)

g2(g )~co

We also have from Eqs. (3.21) and (3.22) that v(k) tv(A ~,)
and v(k)tv& 2(E,) co. These frequency dependences
when inserted in Eqs. (4.19) and (4.20) yield the Ray-
leigh limit of Eq. (4.26) for rz(A&, ) and r/, (E,).

The odd modes are more dificult to treat in this
limit. The 1-2 basis of Eqs. (3.15) and (3.16) is not
suitable for estimates of this kind. Another basis, the
1'-2' basis, is more suitable. In the new basis the vectors
v2'(j) are equivalent to the vectors !0;) of I, and the
matrix pj couples only to them. The transformation
equations to the primed basis are

v, '(j)= (m +2m~) —'/'[ —(2m~)'/'v&(g)

+ (m )'/'vg( j)], (4.28)

v, '(j)= (m +2m+)-'"[(m )'/'v&(y)

+ (2m+)'"»(j)] (4 28a)

The coefficients in these equations define an orthogonal
matrix S.

In the new coordinate system the matrices p' and g'

are given by equations of the type p'=S&S '. Thus in
the 1'-2' system we can derive these results,

Vf
0 0

0 ~2j/ m+~j'/ mi
(4.29)

—(2m,m)' )/

i, (4.30)
2m

Emco /m m
Vm =

m +2m~ (—(2m m+)"'

from Eqs. (3.19), (3.19a), and (3.19b). The inner
products that are needed to calculate g' are determined
directly from Eqs. (4.28), (4.28a), (3.21), (3.22), (3.23),
and (3.24):
v (kP) $v & (j)—N—1/2 (m +2m+) —1/2[(m )1/2p&&2-

+2 (m+)'/2 ac/, J+ cosk,a], (4.31)

v(B,)tv2'(j) = (m +2m+) '/'N '/'(2m+m )' '
X[—(m ) '"e/, /,

' +(mp) "e +c/cask, a].
(4.32)

Note the limiting behavior of Eqs. (4.31) and (4.32)
for small k acoustical phonons

v(B.)'v, '(j) ~ const, (4.33)

v (kX) tv&'(j)-k'. (4.34)

The last relation follows from the fact that the relative
physical displacernents of the positive and negative
ions must tend to zero like k' as k tends to zero which
means that

(m ) '/'e/, y+—(m ) '/'s/, /,
k' (4 35)

The matrix elements of g in the new basis can now be
calculated from Eqs. (4.31) and (4.32)

(4.36)

(4.37)

v, '(j)tgv~'(j) =N '(m +2m~) ' Q [(m )'/'c/, /,
' +2( )m' +e /'+ /c/osk;a]'(co/, x' —s) ',

v2'(j)tgv2'(j) =iV '(m +2m+) '(2m+m ) g [—(m ) '/'e/, z' + (m~) '/'v/, z'+ cosk;a]'(co/, z —s)

v&'(j)"gvs'(j)=v2'(j)tgv&'(j)=N '(m +2m+)(2m+m')'/'g [(m ) '/'v/g~ +—2(my) c//, coskja]

X[—(m ) '/'ctx' +(m+) '/'e/), &'+ cosk;a](cocy —s) '. (4.38)

The weak-coupling limit of Eq. (4.21) in the 1'-2' basis is

a»[r/ (odd)] '= cN Q [v (k) tv, '(t')][v (i)tv (k)][v,'(j )trav;. '(j )]Im{[v,-'(j)tgv, -.' (j)][v,.-'(j)tvv, '(j)]}.
(4.39)
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From this equation one can conclude, with the help of
Eqs. (4.29)—(4.38), that in the small k limit for acousti-
cal phonons [ra (odd)] ' indeed goes like &ua4.

The quadratic behavior of w(k). )"n2'(j) in Eq. (4.34)
is not shared by v(kX) tv2(j), which tends to a constant
as does rI(B)tm&(j). When the proper combination of
v~(j) and e&(j) is taken to form s2'(j) in Eq. (4.28),
cancellation of the constant )imits occurs, leaving the
second-order limit. In actual calculations using the 1-2
basis this cancellation will have to occur in numerically
computed quantities, and the numbers may not be
precise enough for this to happen. With the 1'-2' basis,
on the other hand, the proper small k behavior is guar-
anteed by the functional form of the expressions fed
as input to the computer.

D. Isotope Scattering in a Diatomic Crystal

The naturally occurring isotopes will furnish addi-
tional scattering of phonons beyond that taken into
account in the t matrix of Eq. (4.23). Isotopes occur in
high concentrations, but the over-all scattering is
weak; they thus provide an example of the "weak-
coupling —high-concentration" limit mentioned in Sec.
IVA. In this limit it is appropriate to calculate the
scattering to first order in ((5m/m)').

A pure mass change will involve a perturbation y
that couples only to odd-parity configurations of the
type in Eq. (3.16). The g-I cross term of Eq. (4.24)
is therefore missing, and the phonon lifetime 7.I, is the
thermal conductivity relaxation time. The derivation of
the expression for rg, in this case parallels that of Sec.
IVA. We start with Eq. (4.1) but use r&,& instead of
T,.4 in Eqs. (4.2) and (4.3), where now we have r4,4

=F;, and

r;,~~'-'(L, L') =—(m ) '6nz (L)8 &QJ'&;;.~', (4.40)

where 8m (L) is a random variable representing the
deviation of the mass of the ath atom at site L from the
average mass m . We postpone the averaging, but
otherwise follow the earlier derivation to obtain the
result [similar to Eq. (4.15)]

~a[ra(is)]-'= Im[n(k)'(r;. G((oa2+ie)r;, )v(k)]. (4.41)

The matrix product appearing in this equation can be
written explicitly as

Im(I';,GI';,)»' ""'(L,L')

=Im( g g P (m ) 'coa48m (L)
jll jill 4$llotlll I llL III

&(8~~ bz, r, Sly G"""' " "'(L",L'")(ma ) ~

)& &n ~ (L"')b 5r, z, 5p. p). (4.42)

The average can be performed before the su1nmations

to give to lowest order in ((Snab/m)')

Equation (4.42) then becomes

Im(I';,GI';,)"' '(L,I.')
= Imara4((Snab /m )')G&&' ~(L,L)err, 5~„

= vr(oaa4((bm /m )') Q 1V-'ea a &"ea a "
X&(~a v' —~aa)4r, . (4.44)

We have used Eqs. (3.20) and (2.4) to write the ele-
ments of ImG.

The relaxation time is then given by inserting this
result in Eq. (4.41) and using Eqs. (2.4) and (4.14)

Sit;), 1S

= m (2E)-'oraa' g [((8m+/m+)')
~

eaa+ ea v+~'

+((&~-/~ )')
~

san .ea v ~']&(~a v —~aa). (4.45)

Because of the relation (4.35) the term in square
brackets in this equation has this small k acoustical
limit
(~)-'j eaa+ ea v+~'((8m +8m )')

= (I )
—'~eaa+ ea.v+~'(g(m~+m )]'). (4.46)

One should also note the co4 Rayleigh dependence that
follows from

P ~(~a v —~ax)

Equation (4.45) represents the generalization of Eqs.
(5.13) and (5.14) of Carruthers's article. "Because iso-
topes and any strongly coupled impurities will not be
correlated, the respective scattering from the two types
of defect will not interfere, and one should add the
scattering rates or reciprocals of the relaxation times in
the Boltzmann equation.

V. CONCLUDING REMARK

If one is to use realistic expressions like Eqs. (4.18)
through (4.21), Eq. (4.25), and Eq. (4.45) to describe
the contribution of defects to the scattering term in the
Boltzmann equation for the thermal conductivity, one
has to come to grips in a fairly realistic way with the
role of three-phonon processes in modifying the result-
ing expressions for mI,. This has not yet been
accomplished.
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