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frequency for the upper transverse branch is responsible
for another weak singularity (see Figs. 3 and 9) slightly
above the first true c.p.

In Figs. 11 and 12 the behavior of the O~D(T) and
toii(m) curves as a function of q vector sample density
is demonstrated for the DDNN results. It is evident
that the O'ti(T) curve is established with virtually no
computational uncertainty down to T=2'K. Indeed,
the computed values are unchanged by the final sub-
division of q space (2sX 1(P to 2'&(1(P) for temperatures
above 2'K. Thus, since we can compute Os directly
from the theoretical elastic constants, we can construct
the whole curve.

The moment function is less well defined, but the
error is only significant for m& —2.5. Again, as we know
that the limiting value" for stt= —3 is kO~s/ps, we can

interpolate and fix the values of con(rrt) for sit= —2.& to
three figures with an uncertainty ~1 in the last
figure.

ACKNOWLEDGMENTS

One of us (A. M. K.) would like to acknowledge the
support of the U. S. Atomic Energy Corrilnission. Part
of this work was carried out by one of us (J. R. H.) at
Michigan State University. The generous hospitality
of Professor D. J. Montgomery of the Department of
Physics is gratefully acknowledged.

In addition we wouM like to express our appreciation
to Ira Morrison of the Computation Division of the
University of California Lawrence Radiation Labora-
tory for designing and carrying out the computational
assistance without which this work could not have been
done.

P H YS I CAL REVI EW VOLUME 141, NUMBER 2 JANUAR Y 1966

Vibrational Spectrum of a One-Dimensional Chain with
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The frequency spectrum of a one-dimensional lattice containing randomly distributed impurity springs
has been evaluated to first order in the concentration g of impurity springs. It is shown that, with some
mathematical manipulation, the solution can be placed into correspondence with the solution of I anger
for the analogous problem of isotopic impurities. The virtual crystal approximation which yields the correct
elastic constants requires an effective spring constants which is given, in terms of normal spring constant y
and the impurity spring constant y' by the relation 1/y = ((1—q)/y$+q/p'.

I. INTRODUCTION

'N recent years, considerable progress has been made
~ - in the calculation of the vibrational properties of
solids with isotopic impurities. For a variety of reasons,
however, there has been less consideration of problems
in which the interatomic force constants are varied.

Such problems appear, at first, to be unrelated. to
actual physical situations. In the disordering of two
alloys of the beta-brass type, CuZn and CoFe, however,
the constituents have almost identical atomic masses.
The primary result of disordering appears to be a change
of force constants. Since the change of the vibrational
spectrum with ord.er influences the equilibrium state or
order, it will be necessary to understand these changes
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mitted to Harvard University by H.P.
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before a complete understanding of the order-disorder
process is possible.
&-- First steps in this direction have been made by
Woj towicz and Kirkwood2 as well as Oguchi and
Hiroike. ' In both cases, however, there are approxima-
tions which considerably limit the applicability of the
results. While it is highly likely that any solution of
these problems will be approximate, there is reason to
believe that more satisfactory approaches may be found.
For that reason, we have turned our attention to the
formal solutions of certain simplified problems. It is
hoped that these solutions will lead to some insight that
will, in turn, lead to better approximations. This first
solution of a one-dimensional problem has been solved
to develop useful mathematical procedure. Solutions of
problems of higher dimensionality have been obtained.
They will be presented when they are understood.

The problem which is treated here is that of a linear
chain of atoms with the same mass and nearest-neigh-

2 J. Wojtowicz and J. G. Kirkwood, J. Chem. Phys. 33, 37
(1950).

v T. Oguchi and K. Hiroike, Busseiron Kenkyu 33, 37 (1950).
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bor interactions. Randomly positioned springs are re-
placed by springs which have a different force constant,
and the spectral distribution function is calculated to
first order in the concentration of the impurity springs.
The mathematical techniques used are almost identical
to those of Langer' who obtained an exact solution, to
first order in the concentration, for the spectral density
function of a one-dimensional chain of identical atoms
into which isotopic impurities are randomly placed.
Indeed, we proceed by showing that the problem con-
sidered here can be placed in the same form as the
problem which Langer considered, and then use his
results.

The corresponding order-disorder problem is both
simple and uninteresting. Consider a chain consisting of
two distinct chemical species, A and B,of the same mass,
which alternate in position in the ordered ground state.
Let the ordering process and the vibrational spectrum
be controlled by nearest-neighbor interactions, such
that the spring constant between A-B pairs is different
from that between A-A and B-Bnearest-neighbor pairs.
Let the force constants between A-A and B-Bpairs be
identical. Such a situation would be obtained from the
polar model of Mott' or Harrison and Paskin' if their
interactions were of suKciently short range (which they
are not) and if the repulsive interactions were all the
same. The first configurational excited state of such a
system is one in which there is an A-A or B-B pair
somewhere along the chain, but perfect short-range order
elsewhere. That is, there is a simple antiphase boundary.
The corresponding vibrational spectrum would be one
for an isolated single-impurity spring constant placed at
random in the chain. The next excited state which main-
tained the composition would consist of two such anti-
phase boundaries. One would be between an A-A pair
and another between a B-Bpair, so that they would be
separated from one another by more than a nearest-
neighbor distance. (This restriction can be lifted by the
choice of a suitable grand canonical ensemble. ) It
follows that the randomly placed impurity-spring-
constant problem can be brought into close analogy
with the one-dimensional order-disorder problem where
the concentration of impurity springs is analogous to the
decrease of the short-range order parameter from unity.

It should be noted that the choice of randomly posi-
tioned impurity springs makes this solution applicable
to the order-disorder problem, rather than the impurity
problem. That is, one might be concerned with the
effect of randomly distributed impurity atoms on the
vibrational spectrum. The major feature of these im-

purities might very well be the changing of force cori-

stants, rather than the changing of the mass. To treat
this problem, however, one would be obliged to con-
sider randomly distributed pairs of impurity springs on

4 J. S. Langer, J. Math. Phys. 2, 584 (1961).
5 R. J.Harrison and A. Pasquin, J.Phys. Radium 23, 613 (1962).' N. F. Mott, Proc. Phys. Soc. lLondon) 49, 258 (1937).

the sides of the impurity atom, rather than randomly
distributed single springs.

1 ~is (2~ikl
X$- Q exp

ply)rl& s—srfs ( & ) (3)

where S is the number of atoms in the chains. Substitu-
tion of Eq. (3) into Eq. (2) yields

(~"—~')Q.= —Z @s.s Qs, (4)

where

and
rap ——cc„(sin(~k/N) ~, ro„=(4y/m)'I',

(—2i) sin(s k'/N)
g exp [2m i(k' —k) l/Ã]E

)& [(y( (+t—y) exp(s.ik'/Ã)

—(y~, ~ &
—y) exp( —haik'/E) j. (6)

Equation (4) is identical in form to Langer's Eq. (4).
The entire difference between the two problems is con-
tained in the explicit form of the CI, ,q, as expressed in
Eq. (6).

For a particular configuration of springs, we can write

[D-'(~') js,v =(~s' —~')4,s +Cs,s, (&)

such that Eq. (4) becomes

Z(D ')A„s Qs =0

Following Langer, the spectral distribution function for
this configuration, defined by

2'
g(cd) = lim —Q 8(Q„'—ro'),

N~~ g

II. FORMULATION OF THE PROBLEM

The formulation of the problem presented here is
similar to and, whenever possible and practical, identical
to that presented by Langer. 4 We consider a very long
chain in which every atom has the same mass. There are
two types of force constants present in the chain, p and
p'. The concentration of impurity force constants p' is
q, where q((1. The unperturbed chain has q=0.

For a particular distribution 'of springs y and y' along
the chain, the equations of motion are

mxr = pl, l 1(xl —1 xl—)+pl, l+1(x~+t x~) .— (1)
Here x~ is the displacement of the atom at the site E,
and y~, E ~ is the force constant acting between atoms at
site 1 and / —1. The equations of motion can be re-
written as

mx( —y(xr t—xr) —y(xr„,—xr)

=(vz, s—x
—v)(xz t—xz)+(xi, z+t —7)(xr+t —xr). (2)

The transformation to the normal coordinates Q& of the
unperturbed lattice is
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where the Q„are the exact eigenfrequencies for the par-
ticular configuration of springs, is given by

2M

g(o)) =—lim —Im TrD(o)'+~a) ."S
g -+0

(10)

III. CONFIGURATION AVERAGE

Following Langer, we obtain from Eq. (7), for a
particular configuration,

To obtain the spectral distribution function for the
random distribution of springs g(a&), we must average
over all configurations which are consistent with a fixed
value of q. As shown by Langer, it is sufhcient to take
the configuration average, D(co'+is), of D(&o'+is).
This average D(co'+i )kis diagonal in k, so that

2'
g(a)) =—lim —Im Q Dk(a)'+ is) .~&-"S

e -+0

The average over configurations is performed at this
point. Since the cok's are properties of the unperturbed
lattice, it is only necessary to obtain configurational
averages of the products Ck, k,Ck, ,k, - Ck k.. We pro-
ceed to obtain these averages. The first, (C k k & may be
obtained in the same manner as Langer obtained his
Eq. (19).We get

(—2i) sin(~k'/N)
(C k, k') (P exp[2~i(k' k)—t/N]

2V

X [(yi, i+i—y) exp(im. k'/N)

This expression is evaluated by keeping l fixed while
summing over configurations. We get zero contribution
from any configuration in which p«+& or p«z ——p.
Since p&, &+&

——p' with frequency q, one obtains

and

which may be iterated to yield XP expL2~il(k' —k)/N]

Dk, k (~') = — Z @k,k-D', '(~'), (12) 4 sin'(~k'/N)
COk

—
CO GOk

—0) (4'k, k &= q(V' —V)
Em

Dk, k (~') = 1
4,k—

2 ~2 ~ 2 ~2 where

=g+k ~~k, k & (16)

C'k, kIC'kI, k'

+
COk,

2—CO2 COk' —CO2

~ (13)
Next consider the second-order term,

(17)

(C k, k,Ck, , k )= (—4/1V'm') sin(gorki/1V) sin(wk'/1V)

X (Q fexp(2~i(ki —k)li/N) exp(2vri(k' —ki)4/N) L(pig, iy+i y) exp(tiki/N) —(&4,&, i—y) exp( —tiki/N)]

XL(yi, , i,+i—y) e p(x~ik'/N) (yi, , ik i——y) exp( ~ik'/N)]—) &. (18)

Terms which are first order in q appear in the configuration average of the four terms represented by the product,
of the square brackets whenever the two springs of one of the four terms are identical. That is, when l2 ——l&, l2 ——l&—].,
or l& ——ii+1. This complication distinguishes the problem considered here from that of Langer, in which only the
terms l&= l2 contribute to first order in q. This extra complication forces us to use a slightly diGerent approach in
the evaluation of the general product of the C 's. For the second-order term, however, it is easy to sum the appro-
priate terms.

For terms with l~ ——l2, we obtain

(—4/Nm') sin(n ki/N) sin(m k'/N) 6k, k q(y' y) '(exp[vri(ki+—k')/1V]+ exp) —n i(k i+i')/1V]) .

Terms with l2= l&—1 yield

(4/Nm') sin(n. ki/1V) sin(7rk'/N) 8k kq(y' 7)' .exp$m—i(ki —k')/N],

while terms with E&——ii+1 yield

(4/Nm') sin(ski/1V) sin(mk'/1V) bk, k q(y' —y)' exp) vari(ki k')/—1V]. —

Summing the contributions from (19), (20), and (21), we obtain

(C k,k,c k, ,k &
= (~k"~ki'/N)qlw'4. k +o(q')

(19)

(20)

(21)

(22)
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It should be noted that although the intermediate steps are different, the result is identical to Langer s equation
(22).

%e now proceed to evaluate the configuration average of the general product,

(—2i)" (m.k~) (n.k~) (mk x) (~k '))

(C /, ,/„e/„, /„.C ~„,, /,„)= sinl
I

sinl
I

sinl
I

si
lV-m- EiV] EX) E lV i

(2')
X P P g exp~ ~((k,—k)l,+(k2—k,)l2+ . .+(k„—k„,)l„]

/1 LR lee klV /

XL(y~, ~,+~—y) e xp( haik&/N) (y—~„,~, , y)—exp( —~ik~/E)]

XL(y~, ,~~~—y) exp(~ikm/X) —(yJ, , $ —j 7) exp( —xik2/E)]

XL(er„,i„ee—e) exp(ee)e /N) Lee, e &
——e) exp( —eek /Ã))), (28)

where k =k'. Equation (23) can be written in the form

( 2i)"— (~k;
(ck,), c). , ):.)=

N"m" ~=i

27ri e
X r. E 2 eep LL)e —k)4+ +L)t.—),.-i)4) II Le;Lee.ee.;—e) eePL eel/Ã)) ). (24)

&I ~ le o'i=21 Om ——kl E j~l

Let us 6x our attention on a particular 1&. For oq=+ 1, Eq. (24) will yield terms of order q only if, for all values of
s= 2, 3, , n, l,= l) and 0,=+1,or l, = lq+1 and o;=—1. Similarly, for 0q= —1, terms of order q will be obtained
only if l, =/z and 0.,=—1 or l, = i&—1 and 0,=+1.These restrictions are summarized by the condition that

l.=l)+-,'(0),—o,) . (25)

Thus, we may obtain all the terms of order q in Eq. (24) by substituting Eq. (25) into it, dropping the summations
over all l; but l;=l~, but retaining the summations over the r;. The result is

(—2i)" — (~k;q—
(C)), )„C~,), )= q(7' —y)" II sin~

~
Xg exp

1V"m ~=i E lV/

27ri
(k„—k)lg

Ã

(Al 0'gk g) ee )ri
X g ".~ ~expl III~ exp —(»—»-~)( &—;)+o;k; . (26)

~i=+X r =+i ( Q /) g=2

The summation over l& in Eq. (26) can be performed immediately. This leaves the summations over the ~ varia-
bles. The coefficient of k, in the exponents which remain are

{i+Log—(og—02)]/1V}= (ix-02/1V),

{urL(o),—0,)+0,—(0g—0,+g)]}= (isa,+g/cV),

{iver((op 0„)+o„]/lV—}= (pro g/JV ),
Therefore, Eq. (26) can be rewritten as

(—2i)" —
(~k q-

(Cg,p, .@.„,.„&= II »n~
~

X4,.„q(y' —y)
1V" 'm" i

for s= i ~

for s=2, ~, n- j. ,
for s=e.

(27)

n X'$

(II 0;)",exp —(oak)+03k'+ ~ ~ +g„k„q+o~k„) . (28)
OI" Oe g'-i . g

Since the 0; are equivalent variables of summation, Eq. (28) can be rewritten as

(—2i)" ( ~k;) (~i~;k;~('- )"III '
I & II plQn —1m' . Ej 1 lV) aery'' eee j~l

(29)
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In this form, the sums can be performed readily. Using
Eq. (5), the average becomes

(C 2,2, C'2„,, 2„)

p n& 2& 2. . .~ 2/Qn —1 (30)

Equation (30) is completely equivalent to the term
which is linear in q in Langer s Eq. (25).

O.I

0.3

0.2

FIG. 1. The func-
tional form of I'I, for
the case of a = -'„
/= io.

IV. THE VIBRATIONAL SPECTRUM

Because of the equivalence presented above, it is
possible to use Langer's results directly. He finds vibra-
tional modes associated with each value of k, and with
frequency given by

~2+~k zTk ~

Here,

gq —((g2/2)LqK((g 2—(g„2))/L(g 2—cg/, 2(1—K )) (32)
and

p2 —(&&/2)LqK2&&(~ 2—&&2)1/2j/p& 2—~&2(1—K2)$, (33)

where
K= X/(1+ X) = 1—(y/y') . (34)

In these expressions, I'I, is a measure of the width associ-
ated with each phonon of wave vector k due to the lattice
disorder.

In addition, the density of states is given by

2qK(~ 2 ~2) 1/2- —1/2

g(o)) =—Re a„2—ra2+
(10 2 ~2)1/2+ZK~-

(35)

Since Langer has discussed his results extensively and
carefully, we shall only draw attention to certain as-
pects of the results which were not, apparently, of pri-
mary interest to him, or are unique to the problem
considered.

It should be noted, however, that it is 1/y and 1/y'
in this work which correspond to Langer's 3XI and 3f',
respectively. This correspondence becomes obvious
when the diferent definitions of X are examined.

In the long-wavelength limit, and with y'=y,

(2') 1 q+2=4 sin~ —
~

M (1—q)
—+— (36)

1 (1—q) q+—.
7 7 7'

(37)

The frequency spectrum is, in this limit, identical to
that which would be obtained if all the springs were re-
placed by the correctly averaged spring.

It is important to note, however, that this correct
averaging, to obtain a virtual crystal approximation, is
of 1/y, rather than y itself.

Thus, in the elastic limit, an average spring constant
can be defined by

0.2 0,1 0.8

+I =&m2= 2
(1+SK2) 1/2

2(1—K')
(38)

for all possible values of z2. The functional form of Fl,
is shown in Fig. 1. The maximum is quite evident. In
the paragraphs which follow, an attempt is made to
explain this behavior.

The mathematical origin of these widths is discussed
by Langer. Each rnernber of the ensemble is not periodic,
and k does not label an eigenvector. Thus, a measure-
ment which fixes k will yield a spread in frequencies.
Although k becomes, in a certain sense, a good label for
the ensemble average, the spread in frequencies must re-
main. Mathematically, we see the spread in the form of
the average spectral distribution function,

2'
g((o) =—lim —Im g D2(aP+ie) .

k
e ~0

For the unperturbed chain,

(39)

D2(aP+i2) = 1/(O)22 —ra2 —i2) . (40)

The poles of D2(&o2) occur at the eigenvalues associated
with k. Langer's results may be paraphased as follows.
For the perturbed problem, there are a number of fre-

While this result might be expected, its application as
an approximation to a two- or three-dimensional system
is highly suspect. The obvious reason for this is as
follows: When the linear chain is placed in tension, the
atoms adjacent to the impurity springs are constrained
to move along the line of tension. The analogous situa-
tion in three dimensions is one in which tension is
applied in a manner which corresponds to the limit of a
pure longitudinal mode of the unperturbed lattice. When
the impurity springs are introduced, however, equili-
brium may be reached by displacements which have
components normal to the direction of the tension. In
this case, Eq. (3.7) is not valid.

It is also of some interest to examine the form of r„
as given in Eq. (33). It is easily seen that I'& ——0 for
coI, =O or coj,=so . Since I"I, is positive, it must have a
maximum somewhere in between these two points. That
maximum occurs for
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quencies, denoted coI,„., which are positions of the poles of
each Ds(o&'+is). These poles lie at the solutions of

Ga™)

ros, P+Gs(ops, P) =O
&

where, from Langer's work,

( Koi 1
G&(~s) = quoi&s I

1+
&' oi .' o&')—

(41)

(42)

Fin. 3. Gs (aP) and
(cps—auq') versus car for
~(2~(y 2

to erst order in q.
The contribution to g(s&) from any one of the fre-

quencies associated with k is proportional to the residue
at the corresponding pole of Ds(oi'), which is

Res„„„,.{Ds(ce') )
2o—is„+(8/r)oi)Gs(oi')

i „„,,7 ' (43)

As indicated in Fig. 2, this residue is largest for col, ,; in
the vicinity of coI, and diminishes rapidly on either side
of this point as

becomes large.
With these results of Langer, the mathematical origin

of the form of Fig. 1 is readily visualized For each k, I'I,.
is proportional to the range in co over which the ~J, ;

Fin. 2. Gs (~') and
(co'—cess) versus cas for
~k ++~trs ~

2 2

have appreciable residues. Let m~ be the number of
modes for which the residues associated with the co~;
are appreciable, and p& be the density of modes of the
unperturbed system. Then

I s ~ res/ps ot-

'mrs�(&~

—&s ) ~ . (44)

Thus, it is the singularity in the density of states which
causes the vanishing of FI, for aoI, = co . That is, although
eI, may be large for k =k, the infinite density of states
causes the total energy spread to be very small.

It is evident that FI,——0 for k=0. The form of the in-
crease of I'~ with increasing k, up to the maximum, is
shown more explicitly, however, by an examination of
Figs. 2 and 3. In these figures, Gs(oP) and (o~'—ops')
are plotted versus co'for the cases orA, '«co '

andcool,

'=or '.
The intersections of Gs(~') with (co'—res') occur at the
values of cv' equal to the co&, . The residue associated
with these ~~, are appreciable, however, only at those
values of ros, , such that r)G/r)oi is small. In Fig. 2, only
the central ~1,,; satishes this condition, while in Fig. 3,
there are a number of terms for which the residue is
appreciable. Thus, in the form of Eq. (44), the maxi-
mum in I'& may be pictured as a competition between
the slowly increasing nj, and the p~ which increases more
slowly for small k, but increases rapidly near k


