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Precise Vibrational Frequency Distributions and. the Second-Order
Rarnan Spectrum and Specific Heat of NaCl
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Vibrational distribution functions are derived for the sodium chloride lattice for a series of increasingly
dense, evenly distributed points in the Brillouin zone. The rigid-ion and the deformable-ion models are
compared, and the effect of including next-nearest-neighbor repulsive interactions is considered. Calculation
of the Debye characteristic temperature On(T) and the moments of the distribution a as functions of
sample density indicates that for the densest sample used the On(T) curve is established down to 2'K and
the errors in the moments are insignificant for ns& —2.5. Singularities in the density-of-states and the com-
bined density-of-states distributions are related to critical points and crossover features in the dispersion
curves, which are also evaluated for high densities of points along certain symmetry directions. Comparison
is made with the experimental second-order Raman spectrum of rocksalt, and it is shown how these measure-
ments provide extensive indirect tests of the details of the theoretical lattice frequency spectra.
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where the superscript 0 refers to the equilibrium con-
figuration of the nuclei. The two extreme cases for which
such a calculation is most feasibl, e are alkali metals, in
which the valence electrons may be regarded as nearly
free, and the alkali halides, where these electrons occupy
orbitals which are highly localized on particular ions.
The first problem has recently been treated by Cochran'
following Toya, ' and our present concern is with the
second problem.

In two previous papers'4 we presented frequency
spectra and dispersion curves calculated for NaCl from
an approximate form of 42 very similar to the shell

~ W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).
'T. Toya, J. Res. Inst. Catalysis, Hokkaido Univ. 6, 161, 183

(1958).' J. R. Hardy, Phil. Mag. 4, 1278 (1959).
4 J. R. Hardy and A. M. Karo, Phil. Mag. 5, 859 (1960).

I. INTRODUCTION

'"I' we consider the dynamics of a perfect crystal, we
~ - know that the motion of the nuclei can be analyzed
into plane-wave normal modes each of which, to lowest
order, oscillates with a speci6c frequency &o(tl,j) where

q specifies the wave vector and j the branch to which the
mode belongs.

The relationship between ro(tl, j) and t1 is determined

by the interatomic forces in the crystal which are de-
rived from the effective potential function governing
the nuclear motion. To calculate this from first princi-
ples one needs to know the variation of the electronic
ground-state energy C (x„) with the nuclear configura-
tion x„, since the effective harmonic potential for the
nuclear motion is given by

model used by Cochran' to calculate dispersion curves
for the same salt.

More recently, measurements of dispersion curves by
inelastic neutron scattering have been published by
Woods et al. ' ' for NaI and KBr. Subsequently, Woods
et a/. ' published more extensive measurements, par-
ticularly on KBr.

The 6rst set of data were interpreted' ' in terms of
the same model as Cochran used for NaCl, and this
model was later extended and modified by Cowley et al.'
to produce the best possible fi.t to their experimental
data. The final agreement is extremely good; but, as they
point out, it is no longer possible to interpret their
parameters in terms of a simple shell model.

In view of these results, one is led to ask what, if any,
modi6cations of the original theory are necessary for
NaCl, which is closest in its properties to the "ideal"
crystal for which our original theory was developed.
Since we have no direct information about dispersion
curves for NaCI, we are compelled to use indirect tests
of our theory which provide information about the fre-
quency spectrum of the crystal such as the specific
heat, ' "" two-phonon infrared absorption, ' and) coIl-
ceivably the most promising of all, the second-order
Raman spectrum.

' W. Cochran, Phil. Mag. 4, 1082 (1959).
6 A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Phys.

Rev. 119, 980 (1960).
~ A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Bull.

Am. Phys. Soc. 5, 462 (1960).
'A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and

W. Cochran, Phys. Rev. 131, 1025 (1963).' R. A. Cowley, W. Cochran, B. N. Brockhouse, and A. D. B.
Woods, Phys. Rev. 131, 1030 (1963).

'v A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).
J. R. Hardy, Phil. Mag. 7, 315 (1962).

~ A. M. Karo, J. R. Hardy, C. Smart, and G. R. Wilkinson, in
Proceedings of the Internationa/ Conference on Lattice Dynamics,
edited by R. F. Wallis (Pergamon Press, Ltd. , London, 1964),
p. 387.
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In the present paper we do not propose to make any
modification of our original theory, but to test it as
stringently as possible by predicting the form of the
second-order Raman spectrum.

Previously we have only determined the eigen-
frequencies for the same sample of 1000 q vectors in
the first zone as Kellermann" used in his original work.
Unfortunately, this sample is too coarse to define the
frequency spectrum with any certainty. This uncer-
tainty, which is particularly bad for the NaC1 spectrum,
suggested to us that, before considering the Raman
spectrum, we should repeat the derivation of the fre-
quency spectrum with as fine a sample of q vectors as
was computationally practicable. The result of such a
calculation is of considerable interest, provided that it
can be carried to the point of establishing the frequency
spectrum unambiguously. It should be stressed that this
is considerably more diKcult to do for a realistic po-
tential function containing long-range components than
for any simple Born—von Karman model involving
force constants only between a few dose neighbors.

II. THE FORM OF THE POTENTIAL

The derivation of M(q), the 6X6 dynamical matrix
which determines or(iI, j), has been described in detail
in a previous paper" and will not be repeated here. It
is, however, worth repeating the basic ideas which are
used in constructing C». It is assumed that the crystal
is composed of charge distributions on the positive and
negative ion sites which are almost spherical when the
nuclei are in their equilibrium configuration. There is,
however, a slight cubic distortion produced by first-
neighbor overlap associated with the repulsive potential
V(r) which stabilizes the lattice.

When the crystal is distorted, the change in potential
energy contains a contribution from V(r) which one
assumes to be a purely two-body interaction between
6rst neighbors and Coulomb interactions between all
neighbors of which we retain only the dipole-dipole
term. In this form our theory is almost equivalent to
the shell model which Cowley'4 has shown possible to
derive from a quantum-mechanical treatment similar
to that given previously by Tolpygo. 5 '6 There is, how-
ever, a difference between our approach and that used
by Tolpygo in treating the dipolar interaction. In addi-
tion to the dipoles due to the displacements of the ions
as rigid spheres, which Kellermann included in his
original work, the ions are also deformed. This effect
can be described, to lowest order, by additional dipoles
placed at the ion sites. In Tolpygo's work these are
specified by the expectation value of the dipole moment
operators for the individual ions and chosen to minimize

"E.%'. Kellermann, Phil. Trans. Roy. Soc. London 238, 513
{1940);Proc. Roy. Soc. (London) A178, 17 (1941)."R.A. Cowley, Proc. Roy. Soc. (London) A268, 109 (1962)."K. B. Tolpygo, Zh. Kksperim. i Teor. Fiz. 20, 497 (1950)."K.B. Tolpygo, Ukr. Fiz. Zh. 4, 72 (1959).

the energy change C». It seems to us that there is a
Qaw in this argument as it stands, since the derivation
of C~ is carried out using zero-order wave functions
which are both localized about the ions and sPecifi&d
to be orthogonal in the crysta1. This last requirement
cannot be fulfilled for the distorted crystal simply by
orthogonalizing in the undistorted lattice, and Tolpygo
seems to have overlooked this fact. That it is of im-
portance can be seen by considering the effect of an
antiphase (optical) motion of the two sublattices. In
order that the ground state wave functions at different
sites remain orthogonal in the distorted lattice, it is
necessary for them to contain components of odd sym-
metry. The resultant distortion provides an additional
dipole moment which we call the "deformation" dipole
moment, and whose speci6cation involves three extra
degrees of freedom at each ion site. One should dis-
tinguish between this polarization and the field-induced
polarization, since the self-energy or work done in
creating the deformation dipoles shouM rot appear
exp]icitly in C» as it is already included in the short-
range repulsion.

In our calculation we treat the field-induced and de-
formation dipoles as independent and calculate the
first using the self-consistent crystal polarizabilities
derived by Tessman et al. ,'~ while the deformation
dipoles are assumed to be confined to the negative ions
and can be calculated from the relative displacements of
these and their nearest-neighbor positive ions. Our
neglect of any coupling between ionic polarization and
distortion can be justified by observing that, if this
effect were significant, it would be hard to explain the
existence of a unique crystal polarizability for each ion.
Moreover, we believe that the distortion takes place in
the region of maximum overlap at the periphery of the
negative ion, while the polarization takes place largely
within the ions.

HL FREQUENCY SPECTRA AND
DISPERSION CURVES

The true frequency distribution p(or) is defined by

p(or)Cor= lim L1V(or)/L')dor,

where iver'(or) is the number of normal modes with fre-
quencies between or and or+Aor. L' is the number of
primitive unit cells (each containing one Na+ and one
Cl ion) in tbe block of crystal under consideration
which is assumed to have edges (L,ai, La~, La3) where
a~, a~, and a3 are the basis vectors of the primitive cell.
Also, the allowed wave vectors q are required to satisfy
the Born—von Karman periodic boundary conditions
which specify that equivalent points on opposite faces
of the sample have the same displacements. This leads

& J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev.
92, 890 (1953).
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points along certain symmetry directions in q space
which enab)ed us to locate the Van Hove" singularities
in p(o~).

These occur at frequencies co =co such that
I Vao&(q, j)$„,. =0 and appear as discontinuous changes
in dp(oi)/Cko= p'(&o). We found that a number of these
were only revea)ed by the use of the smaller values of
6+, since they are relatively weak and lie close to much
stronger singularities. For comparative purposes we
carried out calculations for three models of NaCI:
(a) the Kellermann rigid-ion model, (RI); (b) the de-
formation-dipole model (DD); and (c) the deforrnation-
dipole model with next-nearest-neighbor Cl -Cl inter-
actions included (DDNNN). In every case the input
parameters were those appropriate to O'K.

FxG. i. The 6rst Brillouin zone for the fcc lattice. The principal
symmetry points and directions are noted following the notation
of Bouckaert, Smoluchowski, and Wigner /Phys. Rev. 50, 58
(1936)j.

to exactly L' nonequivalent I vectors which lie within
the first Brillouin zone shown in Fig. 1, where the
principal symmetry points and directions are indicated.
As one can only solve the eigenvalue equations for
o~(q,j) for a sample of q vectors, it is not possible to
reduce Ao& in Eq. (1) indefinitely, and one has to choose
a certain Qnite value whose size depends on the sample
density and then represent p(a) by a histogram. How-
ever, at some stage it should be possible to derive p(M )
unambiguously by smoothing a curve through the
histogram. A primary object of the present work was
to see if we could attain this stage. We considered
Kellermann's grid of q vectors as the starting point and
made a series of calculations halving the linear di-
rnentions of the grid each time. Thus we obtained results
for samples of q vectors (2")' times as dense as Keller-
mann's, where e= 1, 2, and 3. The last value of e is the
largest for which the computation was feasible as a
single run for the most realistic potential used took
about 20 hours on an IBM 7094 computer. Distribution
histograms were then plotted in each case for suitable
values of des. Again, following Kellermann, for a given
run and a given her, three series of counts were made
through the range of frequencies, the origins of the
second and third being displaced by Ao~/3 and 2Aoi/3
with respect to the first. The final histogram was con-
structed by superposing the three p1ots. In practice we
found that no single value of h~ revealed all the struc-
ture of the spectrum with equal clarity, even for our
6nest subdivision of q space. Thus for this run (1=3)
we constructed histograms based on several values of
hen, particularly those for Ace=0.06&(10" sec—' and
hco=0.03)(10' sec ' and combined them when inter-
polating the true distribution function. We were
guided in this by supplementary calculations of the
oi(q,j) versus q dispersion curves for high densities of

A. Rigid Iona

In this case the topology of the constant-frequency
surfaces in q space is at its simplest and the number of
critical points (c.p.) lea, st.

As Phillips"" has shown, a certain number of these
must be present: the minimal set. This number is con-
ditioned by the Morse" topological relations and may
be either greater than or equal to that implied solely by
crystal symmetry: the symmetry set. For the Keller-
mann model the two sets are almost identical, as one can
see from Fig. 2(a),which shows the dispersion curves
along all the principal symmetry directions. The only
c.p. implied by symmetry are those at F, L, X, and 8';
but there are additional c.p. along the lines Z and Q,
since a maximum or minimum along any of these
directions implies a c.p. Moreover, at the symmetry
points p, ro(q, j) may vanish if two branches cross, and
in this case too one has a discontinuous change in the
first derivatives of p(o&). Other c.p. , such as those which
occur when two branches cross along a symmetry direc-
tion, but not at a symmetry point, only produce dis-
continuities in the higher derivatives of p(oi).""

In Fig. 3 (a) the corresponding frequency distribution
is shown with the various c.p. indicated. The actual
spectrum is constructed from the histogram for the
highest density sample of q vectors, and the manner of
this construction is discussed more fully in the Appendix
where we compare the various histograms for diGerent
samples of q vectors. These comparisons show quite
clearly that while the general features of p(o&) are re-
vealed by a very coarse sampling of q space, the true
structure of this function is only apparent when we use
the maximum density sample of q vectors and combine
the results of several choices of h~. Moreover, for the
more reined potentials we shall now consider, a very

~' L. Van Hove, Phys. Rev. 89, 1189 (1953).
J. C. Phillips, Phys. Rev. 104, 1263 (1956).

~ J. C. Phillips, Phys. Rev. 113, 147 (1959).
2' M. Morse, FunctionuL TopoLogy and Abstract Variati onal

Theory (Gauthier-Villars, Paris, 1938),Monograph 92 of Memorial
Sciences Mathematiques.
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much finer sampling is necessary to reveal even the
general features of p(ce).

B. Deformable Ions

In this part of the calculation the repulsive inter-
action is still restricted to 6rst neighbors, but the
Coulomb interactions are calculated allowing for both
ionic polarization and deformation exactly as was done
in earlier calculations, ""and the resultant dispersion
curves are shown in Fig. 2 (b). The values of the various
input parameters are shown in Table I and are those
appropriate to O'K. However, the restriction on the
repulsive interaction implies that these parameters
should satisfy the first Szigeti relation":

6re/P =Mo~p'L(ep+2)/(e„+2)] .
In fact, there is a small discrepancy which can be re-
moved by changing eo. Since the required change is
small this procedure can be justified, as ~0 is the least
precisely determined of the input parameters. Thus, in
Figs. 2(b) and 2(d) we show the dispersion curves for
both sets of input, and it can be seen that the necessary
change in ee has very little effect. In Fig. 3(b) we show
the frequency spectrum calculated using the observed

value of eo and the highest density sample of q vectors
(ri= 3). As in the case of the rigid-ion model, construc-
tion of this curve is also discussed in more detail in the
Appendix; but the increased number of critical points,
also shown in Fig. 3 (b), as derived from Fig. 2 (b), makes
it necessary to use the highest-density sample of q
vectors to estab1ish the true shape of the spectrum.
Furthermore, as e is reduced through 2 to 1, the distri-
bution loses most of its definition, unlike the rigid-ion
spectrum whose general shape is estabJished even for
x=0. Perhaps the most important result of this part of
the calculation is the discovery that the two strongest
minima are rot true Van Hove singularities, but cross-
over points along the Z and Z directions. These produce
discontinuities in p" (o~) = d'p(oi)/~Eo~', but nof in p'(o~).

C. Deformable Ions Including
Second-Neighbor Interactions

The virtue of restricting the short-range interactions
V(r) to nearest neighbors only is that V'(rs) and V"(rs),
the first and second derivatives at the equilibrium
lattice spacing, are then immediately determined by the
equilibrium condition and the observed compressi-
bility. If one introduces second-neighbor interactions,
it is then possib/e to allow for the failure of the erst
Szigeti relation, but this alone will not determine the
derivatives: U++'(V2re), U~"(v2re), U '(%2re), and
U "(mrs) where U(r) is the second-neighbor inter-
action, which we assume to be a central potential, and
the sufFixes refer to the two types of second neighbor. In
order to include second-neighbor effects we have neg-
lected. U~(%2re) and its derivatives. It is then possible
to 6x the two derivatives of U (Are) from the first
Szigeti relation and the observed value of theshear
modulus C44, as was done during previous calculations
on RbI."In Figs. 2 (c) and 3(c) the resulting dispersion
curves and frequency spectrum are shown, and it can
be seen, by comparison with the curves in Figs. 2(b)
and 3(b), that the inclusion of second-neighbor inter-
actions has very little effect. This confirms our initial
choice of NaC1 as a test case for the simple nearest-
neighbor theory, but the results obtained by this last
refinement also represent an improvement on those
derived from the simpler theory.

IV. SECOND-ORDER RAMAN SPECTRA

As there is at present no direct test of the single-
phonon density of states p(&o), we are forced to consider
more indirect tests of the p(&o) curves that we have
derived. One such test is provided by the measurements
of Welsh et al.24 on the second-order Raman spectrum of
NaC1.

Because the ion sites are centers of inversion sym-

metry, NaC1 has no 6rst-order Raman spectrum, but

TABLE I. Input data for NaCl (O'I) lattice calculations.

Run Model

Lattice
constant

ra(10 8cm)

Compres-
sibility Screening

p(lp —u radius
cm'/dyn) p (10 ' cm)

Infrared
dispersion Ionic Elastic

"Effective frequency polarizabilities constant
charge" Dielectric constants, (l pu (10—s4 ~ (lp—r4 C (ipu

e% 60 e„sec ') cm') cm') dyn/cm')

I
II
III
IV

RI
DD
DD
DDNNN

2.7935
2.7935
2.7935
2.7935

3.8850'
3.8850
3.8850
3.8850

~ ~ ~

0.3104
0.3104
0.3104

~ ~ ~

0.7429
0.7542
0.7429

~ ~ ~

5.45b
5 545'
5.45

~ ~ ~

2.349'
2.349
2.349

~ ~ ~

3.277d
3.277
3.277

~ ~ ~

0.2550
0.255
0.255

~ ~ ~

2 9740
2.974
2.974

~ ~ ~

1.327a

W. C. Overton and R. T. Swim, Phys. Rev. 84, 758 (1951).
b M. Hass, Jr. (private communication).
& J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92, 890 (1953).

G. R. Wilkinson and C. Smart (private communication).
e ~p obtained by fitting to first Szigeti relation, 1/p =M(so+2)4002/6ro(&~+2). B. Szigeti, Proc. Roy. Soc. (London) A204, 52 (1950).

~ B. Szigeti, Trans. Faraday Soc. 45, 155 (1949); Proc. Roy. Soc. (London) A204, 51 (1950).
'3 J. R. Hardy and A. M. K.aro, Ref. 12, p. 195.
'4 H. L. Welsh, M. F. Crawford, and W. J. Staple, Nature 164, 757 (1949).
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X

(a)

0

(b)

FxG. 2. Single-phonon dispersion curves showing the group-theoretic identification of the various directions and symmetry points. Q'e
classify the phonon branches as optic and acoustic (o and o) and transverse and longitudinal (t and l) along h and 6, and at I., r, and
X. We can then label the critical points (c.p.) by the branch and direction, or point; e.g., lo(n) or lo(X). For other c.p. we use a similar
q vector identihcation with numerical subscripts labeling the extrema in order of increasing frequency, and superscripts denoting the
degeneracy; e.g., W& is the lowest frequency c.p. at W, and it is twofold degenerate. In a similar manner alphabetic subscripts are used
to identify crossover singularities.

second-order processes are allowed. In these, incident
photons are inelastically scattered by two-phonon
processes; and, at O'K, the only type of process which
can occur is the creation of pairs of phonons. Conserva-
tion of crystal momentum requires that the two
phonons of each pair have wave vectors q and —q. At
Gnite temperatures simultaneous creation and annihi]a-

tion and double annihilation are possible; but, even
though Welsh's measurements were made at 300'K, the
double-creation processes are clearly defined, and it is
the form of this part of the spectrum that we shall
attempt to interpret. To this end we have computed
combined. density-of-states curves p(co,+~p) versus
(v;+cop, where (u, = co (Z,j) and. cup =cv (—Il,j')= a& (tl,j').
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The resultant curves should show the maximum amount
of structure, some of which will not in fact be observa-
ble, owing to selection rules which forbid certain com-
binations at symmetry points. s' In Figs. 4(a), 4(b), and
4(c) we show the Raman combined density-of-states
(RCDS) curves for rigid ions, deformable ions with

"These selection rules are discussed in a review article by
Dr. R. London PAdvan. Phys. l3, 423 (1964)g to whom, together
with Dr. F. A. Johnson, we are indebted for helpful discussions and
reports of their work prior to publication.

first-neighbor repulsive interactions, and deformable
ions with erst- and second-neighbor short-range inter-
actions, in that order. Once again, as in the case of the
single-phonon densities of states, these are the "best"
curves obtained using the highest-density samples of g
vectors (n=3) anti several Aa& values. (As might be
expected, the optimum value of Ace is approximately
twice that for the single-phonon spectrum. ) A more
detailed description of the construction of these curves
is also included in the Appendix, but it is worth noting
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FIG. 3. Single-phonon frequency distributions showing the

various critical points inferred from the dispersion curves of Fig. 2
using the notation of that figure.
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here that in all three cases it is definitely necessary to
use the highest-density sample of q vectors to deQne
the spectrum.

In addition to the RCDS spectra the corresponding
two-phonon dispersion curves were also derived, and
these are shown in Figs. 5(a), 5(b), and 5(c). Although
we show these for the same directions as the single-
phonon dispersion curves, we shall concentrate our
attention on those singularities which lie along the h.
and 6 directions. Elsewhere, as one can see, the com-
bined dispersion curves are far more complex than the
corresponding single-phonon curves. This complexity,
together with the large number of nearly equal combina-

tion frequencies at which

makes it impossible to assign all the features of the
RCDS curves to speci6c c.p. in the two-phonon density
of states. However, Cowley et u/. ' found that in the
cases of KBr and NaI a potential function which re-
produces the A. and", 3 dispersion curves is probably
satisfactory for all p vectors. "Thus, in our present work
we have concentrated our attention on locating the A

26 This is probably an indication that noncentral forces are un-
important except between nearest neighbors, and possibly next-
nearest neighbors.



703

2la X
(to+la)(X),

go+ ta)(X)

DD

00000
CU

j a)(L) (to+1 a)h~)
(to+ ta)(X)-.

X)

-(Q.:ta)(L)

(ta+ ta)(b, i),.
(to+ ta)(X)-
(to+ ta)(L)--

0000
LA

+
3"

+ta)(L)

g4 ZOLL

,~7'&s
(to+la)(b, z)

~(to+ la)(X)

f(to+ to)(X)
2ta(L)-

000
8

{LLo+to)(X

00
(to+ ta)(I )

o(X)
to+to)(r)

2lo(L)j +2lo(r)
IO

o+ to)(r)
o(L) 2h(r)

IO I2
I I

4
aL(ld sec)

(b)

0
0O

0 6 8
cu(10 sec")

(~)

DDNNN

0000—0
(to+la)(hi)

a)(X)
L)

FIG. 4. Two-phonon densities of states obtained by combining
all pairs of phonons at a given g vector. We have identified all the
c.p. along h. and 6 using the dispersion curves of Fig. 5, and have
also traced the origin of any definite maxima left unassigned.
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and 0 c.p. and associated RCDS features; although we
have also invoked certain other c.p., principally along
the Q and Z directions, to give a complete assignment
of most clearly defined maxima.

On this basis we have made the assignments shown
on Figs. 4(a) to 4(c), some of which are ambiguous
since there are at least two c.p. sufFiciently close to one
another to be unresolved by our histogram technique.

In Fig. 6 we show the rigid- and deformable-ion two-
phonon distributions, together with the intensity dis-
tribution measured by Welsh et al.'4 It is evident that
the deformable-ion distribution reproduces the experi-
mental curve considerably better than the rigid-ion
distribution, as regards both positions and intensities
of the various peaks with the exception of the very

sharp peak at a&;+a&p = 7.5&(10"sec—'. This peak is due
to a superposition of two accidentally degenerate c.p.
along Q and Z. Both of these can be loosely classified as
longitudinal optic (l.o.)+transverse optic (t.o.), since
each of the two combined dispersion curves involved
continues into this combination; the Q branch at L and
the Z branch at X.

Since these combinations are not forbidden, they
should be observable. Unfortunately, the spectral
region in which the Raman scattering due to this peak
should occur lies close to a subsidiary line of the mercury
discharge source, and this may make its observation
dificult. Apart from this, it is quite likely that the peak
is genuinely absent. In the first place comparison with
the RI RCDS curve, where the corresponding Z and Q

PRECISE VIBRATIONAL FREQUENCY DISTRIBUTIONS



704 A. M. KARO AND J. R. HARDY

l2

IO

7 7

sn

O

3 5

0
r z

W X

(a)

IO=
DD

FIG. 5. Two-phonon dispersion
curves showing the c.p. identihed
in the densities of states of Fig. 4.
It can, however, be seen that very
many of these are nearly degen-
erate with other unassigned c.p.
Also, there are a large number of
crossover points, and it is certain
that many of the less prominent
peaks have two or more partly or
completely unresolved compo-
nents. Overtones and combinations
are illustrated by heavy and light
curves, respectively. An asterisk
is used to identify two-phonon
features where notation would be
ambiguous with reference to one-
phonon designations.
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singularities are nondegenerate, shows that any such strength of each singularity depends strongly on the
frequency splitting renders the individual peaks much behavior of the t.o. and l.o. branches at either X (Zc.p.)
less prominent. However, quite independent of this, the or 1. (Qc.p.). Since the neutron-scattering data for
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KBr and NaI' ' indicate that the theoretical l.o. fre-
quency at L and the corresponding t.o. frequency at X
may be too high, it is quite possible that both singu-
larities are absent, as relatively small reductions in
these frequencies will remove both c.p.

Apart from this discrepancy, the agreement between
theory and experiment is remarkably close when one
considers that no allowance has been made for any
variation of the Raman scattering cross section with
either q or j and j', or the temperature. With respect to
temperature it should be stressed that the true compari-
son is between our results and experimental results at
very low temperatures, rather than 300'K.

V. HEAT-CAPACITY DATA

In previous papers' ""we tested frequency spectra
derived for the Kellermann sample of q vectors by corn-
puting effective Debye temperatures O~z(T) and the
moment functions re~(m)=Ls(m+3)tt ]'t where tt
is the mth moment of a given spectrum. These were
then compared with the values derived by Barron
et at.' from the experimental speci6c-heat data of
Morrison and co-workers 9 This comp

' 'dis comparison provides
a test which is most sensitive to the details of the low-
frequency end of the spectrum and thus complementary
to that provided by the Raman spectrum. However, the
relatively coarse sample of q vectors used previously did
not allow us to make full use of this test, since the de-
rived values of O~~(T) and cdrt(m) were somewhat un-
certain at low temperatures and for m& 1.Thus, we have
re erived these quantities for our various"models of

150000t-

125000-
s+ 100000-

75000-

50000—

25000-

0
I 2

125 000-

's 100000-
+

75 000I-

50000

I

5 4 5 6 7 8 9 10 I I 12 15
0D

Ch
K
4JI-

IJIJ

I-
cf
tat
K

0 I

10 I I 12 13

EXPT

3 4 5 6 7 8 9 10 II 12 I3
FREQUENCY SHIFT (IOls ssc 'I

p&G. 6. Rigid-ion and DD two-phonon densities-of-states curves,
together with the observed second order Raman spectrum take~
at 300'K by Welsh et al. (Ref. 24).

NaCl using the present much denser samples of0
vectors. This is particularly worthwhile for the O~&(T)-
versus-T curves which were previously most subject to
computational uncertainty in the regions of greatest
interest.

We show, therefore, the Q~n(T) and ceD(m) curves in
Figs. 7 and 8, respectively, for the three models (rigid
ion, RI; deformation dipole, DDNN; and deformation
dipole with second-neighbor overlap, DDNNN) used
in our calculations. In each case the maximum-density
sample of q vectors has been used, and the experimental
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monic" data derived by Barron
et al. (Ref. 27).

300
hC

I-
O

290

RSO

+

+

+
+

270

I

80
I

I20
I

160
I

ROO
I

R40
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0&n (T) values are in a near constant ratio. This is obvi-
ously untrue for the RI 0~&(T) values in this region.
This suggests that the DD potential function is provid-
ing a better description of the effects of dispersion on
the low-frequency end of the vibrational spectrum p(r0)
where it can be written as
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FIG. 8. Comparison of the moment functions

can(m) = L-', (m+3)ttmg't

where p is the mth moment of the frequency distribution. Ex-
perimental results are taken from Barron et ot. (Ref. 27).

curves are shown for purposes of comparison. Moreover,
this comparison is now direct in the sense that both
theoretical and experimental results refer to O'K. In
the Appendix we also show how the derived quantities
change with the density of q vectors in the sample, and
it can be seen that the computational uncertainty in
both 0~~(T) and a&~(m) is negligible for T&3'K and
m& —2.5.

The main residual uncertainty in the theoretical work
lies in the input value of eo, the static dielectric con-
stant; but, if this parameter is adjusted to fit the erst
Szigeti relation the values of re~(m) and O~D(T) are
changed. by less than 1%. This suggests that any
further improvement of the agreement between theory
and experiment will come from re6nements of the theo-
retical potential functions, the principal shortcoming of
which is their failure to predict any violation of the
Cauchy relation between the elastic constants C» and
C44 (Cts ——C44). This constraint is responsible for the
discrepancy between the observed and calculated values
of 0~0 (0~0 O~D(T) at T=O'K).

Apart from this it is evident that below 60'K the RI
theory fits the experimental curve more closely than
the DD theories, exactly reproducing the observed mini-
mum in the Q~~(T)-versus-T curve. One can conclude
from this that the frequency of the lowest c.p. , t.a. (X),
may have been reduced too far by the modifications
and that the frequency of the strong t.a. (L,) singularity
has been increased too much. These discrepancies can-
not be very large or the agreement between the low-

frequency ends of the theoretical and experimental
Raman spectra would not be so close. However, if one
compares the shapes of the various O~~(T) curves below
20'K, it is possible to see from the present results that
the form of the DD curve is closely similar to that of the
experimental curve in this region, since corresponding

t (~)=Z &.~"
s=1

VI. SUMMARY

During the present work we have shown how
specific-heat data and measurements of the second-
order Raman spectrum can be used to provide extensive
indirect tests of the details of theoretical lattice fre-

quency spectra. In order to achieve this we have first
had to carry the theoretical work to the point of es-

tablishing the detailed structure of these spectra and
the associated phonon dispersion curves, a point which
has not previously been achieved in any calculations
for crystals in which the interatomic forces have a long-

range component. As a result we have found that the
simplest possible model which treats the dipole-dipole
interactions consistently reproduces the experimental
results surprisingly well. Such discrepancies as remain
are probably most marked at the low-frequency end of
the spectrum.

The calculations of the second-order Raman spectrum
seem to us to be particularly significant in the way that
they have revealed its true complexity. We feel that
high-resolution, low-temperature measurements could
well establish the existence of 6ne structure which is
obscured at 300'K. Also, the present results demon-

strate conclusively the validity of Born's contention"
that a continuous spectrum of lattice modes can give
rise to a second-order Raman spectrum containing very
clearly defined peaks.

APPENDIX

In the main text we have shown our distribution
tunctions as smooth curves on which we have indicated
fhe appropriate Van Hove singularities. As these were
constructed from histograrns, it seems worthwhile to
reproduce several representative series of these to
illustrate how the detailed structure of the curves
emerges as we increase the density of the sample of q
vectors. This will also show to some extent how reliably
the true form of any given feature has been established.
At the same time we illustrate the eGect of using various
frequency sampling intervals A~, since we have found
that no one value of Ace will yield all the information
about p(te) inherent in a given sample of q vectors.
Finally, it seems of interest to demonstrate the succes-
sive improvement and limits of error on the derived

"M. Born and M. Bradburn, Proc. Roy. Soc. (London) A188,
161 (1946).
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frequency for the upper transverse branch is responsible
for another weak singularity (see Figs. 3 and 9) slightly
above the first true c.p.

In Figs. 11 and 12 the behavior of the O~D(T) and
toii(m) curves as a function of q vector sample density
is demonstrated for the DDNN results. It is evident
that the O'ti(T) curve is established with virtually no
computational uncertainty down to T=2'K. Indeed,
the computed values are unchanged by the final sub-
division of q space (2sX 1(P to 2'&(1(P) for temperatures
above 2'K. Thus, since we can compute Os directly
from the theoretical elastic constants, we can construct
the whole curve.

The moment function is less well defined, but the
error is only significant for m& —2.5. Again, as we know
that the limiting value" for stt= —3 is kO~s/ps, we can

interpolate and fix the values of con(rrt) for sit= —2.& to
three figures with an uncertainty ~1 in the last
figure.
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Vibrational Spectrum of a One-Dimensional Chain with
Randomly Distributed Impurity Springs*f
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The frequency spectrum of a one-dimensional lattice containing randomly distributed impurity springs
has been evaluated to first order in the concentration g of impurity springs. It is shown that, with some
mathematical manipulation, the solution can be placed into correspondence with the solution of I anger
for the analogous problem of isotopic impurities. The virtual crystal approximation which yields the correct
elastic constants requires an effective spring constants which is given, in terms of normal spring constant y
and the impurity spring constant y' by the relation 1/y = ((1—q)/y$+q/p'.

I. INTRODUCTION

'N recent years, considerable progress has been made
~ - in the calculation of the vibrational properties of
solids with isotopic impurities. For a variety of reasons,
however, there has been less consideration of problems
in which the interatomic force constants are varied.

Such problems appear, at first, to be unrelated. to
actual physical situations. In the disordering of two
alloys of the beta-brass type, CuZn and CoFe, however,
the constituents have almost identical atomic masses.
The primary result of disordering appears to be a change
of force constants. Since the change of the vibrational
spectrum with ord.er influences the equilibrium state or
order, it will be necessary to understand these changes

*This work will constitute part of a Ph.D. thesis to be sub-
mitted to Harvard University by H.P.

t This work was supported in part by the National Science
Foundation under Contract No. GK-222, by the Advanced Re-
search Projects Agency under Contract No. SD-88, and by the Di-
vision of Engineering and Applied Physics, Harvard University.

~ For a review of the literature in this Geld, see A. A. Maradudin,
E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in
the Harmonic Approximation (Academic Press Inc. , New York,
1963), Chap. 5.

before a complete understanding of the order-disorder
process is possible.
&-- First steps in this direction have been made by
Woj towicz and Kirkwood2 as well as Oguchi and
Hiroike. ' In both cases, however, there are approxima-
tions which considerably limit the applicability of the
results. While it is highly likely that any solution of
these problems will be approximate, there is reason to
believe that more satisfactory approaches may be found.
For that reason, we have turned our attention to the
formal solutions of certain simplified problems. It is
hoped that these solutions will lead to some insight that
will, in turn, lead to better approximations. This first
solution of a one-dimensional problem has been solved
to develop useful mathematical procedure. Solutions of
problems of higher dimensionality have been obtained.
They will be presented when they are understood.

The problem which is treated here is that of a linear
chain of atoms with the same mass and nearest-neigh-

2 J. Wojtowicz and J. G. Kirkwood, J. Chem. Phys. 33, 37
(1950).

v T. Oguchi and K. Hiroike, Busseiron Kenkyu 33, 37 (1950).


