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Boundary Conditions for Electron Distributions at Crystal Surfaces
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We derive a boundary condition (b.c.), differing signi6cantly from the well-known Fuchs b.c., for the
distribution function for conduction electrons at a crystal surface. The new b.c. reduces to the simple Fuchs
form under physical conditions which are not ful6lled in certain important cases. The Fuchs' reactivity
parameter is shown to differ in physical signi6cance and in magnitude from the kinetic specularity, with
which it is commonly associated. The connection between the b.c. and surface-scattering models is clari6ed.

I. INTRODUCTION

'HE effect of a physical surface on electron trans-
port in metals and semiconductors is usually

treated' by assuming Fuchs' simple boundary condition
(b.c.)' on the distribution function f=f,+fr at the
surface:

fr(I+A+) =P(1+,4+)fr( I+, 4+—); o&P&&, (&)

where p+,d+ are the angular coordinates of an
electron leaving the surface s=o (p=cos(k, s), cosd
=k,/(k' —k,s)'~'), and where P is a parameter which

interpolates between the assumption of complete specu-
larity, p=l, and complete diffuseness, p=O. It has
commonly been considered that p is simply the prob-
ability that an electron undergo a specular reAection
without scattering.

There does not seem to be in the literature, ' however,

any critical discussion of how such a b.c. might arise,
and when it would need revision. Furthermore, a deriva-
tion of the correct b.c. is needed in order to make clear
the connection with speci6c scattering mechanisms. We,
therefore, derive a b.c. for ft valid for a wide class of
metal, semimetal, and semiconductor surfaces. The new

b.c. has an integral form which reduces to the simple
Fuchs' form only in certain cases: e.g., for metal sur-

faces, but not for strong accumulation layers at semi-

conductor surfaces. When the Fuchs' form is valid, the
reflectivity parameter p can be expressed in terms of

scattering probabilities, and is shown to be physically
and numerically distinct from the kinetic probability
8 0 of specular re8ection. The status of the Fuchs' re-
Qectivity p for different kinds of surface scattering is
discussed.

II. NEW SURFACE-SCATTERING
BOUNDARY CONDITION

We will assume that each electron striking the surface
with direction p d, say, immediately leaves the surface
within some range of direction dp+dd+, with probability

R. F. Greene, Surface Sci. 2, 101 (1964).
s K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938).
' Ziman gives an equation LZiman, Ref. '7, (Eq. 11.2.6)g similar

to (2), but this subsequent development of (1) appears incorrect to
us. Ziman's treatment of p is concerned with physical roughness,
while ours is concerned with surfaces whose scale of roughness is
smaller than the electron wavelength.

w(II, ,rk (fj+rk+)dlr+drk+. There are ep+f(yak~) electrons
leaving the surface in direction p+d+ (v= velocity, and
we are assuming a scalar electron mass). The conserva-
tion of these electrons is expressed by

IJ+f (@+re+)= d4 ( ~ -f(—p 0-))--
&&~(1 A I.+ d-+),-(2)

assuming elastic processes only at the surface. Since (2)
must hold for thermodynamic equilibrium also, one has

ft(p+d'+) =

x(f,(p d )~.(—I+)
+f.( -d-)(~ —~.)), (3)

(4)

Since m is a probability, one must also have

dye dppte( I +)

and which can be used to simplify some of the relations
given below.

Let us now consider the kinetics of electrons at sur-
faces a little more closely. Some of the electrons leaving
the surface in direction p+d+ have been specularly re-

4F. G. Moliner and S. Simons, Proc. Cambridge Phil. Soc. 53,
848 (1957).' S. Simons, Phil. Trans. Roy. Soc. London 253A, 1024, 137
(1961).
68'7

These equations were given by Moliner and Simons"
without, however, any distinction being made between
to and its equilibrium form zv. [see Eq. (8) below). The
same authors have also proposed a 4 ' relation based on
microscopic reversibility and symmetry considerations
which, in our notation, is

—~-~.(~-4-I ~4+)
=~+~.(—~+, ~+0+I —u-, ~+4-) (6)
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fiected from the "image direction" —tt~p+ with some
finite probability 5"p, which we may call the kinetic
specularity. There must be a corresponding singularity
ln zo:

of course, the two contributions to the outgoing flux in a
particular direction: the particles provided by specular
reflection, and the particles provided by scattering proc-
esses from all incident directions.

(7b)0&8'p&1.

~(t- I~-+)=wo(~ +)&(t -+t -)~( ——+)
It may be noted that (6) now becomes

+(1 f(t—+~))~,( e I t+0+), (7a) t" —(t-& It-'+&-+)

=t+~.(—t+, ~+&+I t,—~+& ), -(13a)

Here m, describes scattering processes, which should dis-
appear at T=O'K for ideal surfaces, and (1—f) ac-
counts roughly for the exclusion principle. No (1—f)
factor accompanies S"p explicitly, because this term.
does not describe transitions into possibly filled states.
Of course, the normalization condition (4) will impose
exclusion-principle effects implicitly on lVp.

The idea underlying (7) is that the unperturbed elec-
tron states of a crystal with an ideal physical surface,
composed of a crystallographic plane, are really
standing-wave states: suitably phased combinations of
incident and specularly reflected Bloch waves

I
k) and

I
k). Scat tering mechanisms provide perturbations which

induce transitions, described by m„but do not, in
general, completely randomize the relative phase of

I k) and
I k). Therefore, the We term is, in general, pres-

ent.
I
A discussion of the development of (7) from a

specific surface-scattering model will be given in a forth-
coming publication. ')

We can apply (7) to (3) and (4), making use of

using the symmetry condition

Wo(t+4+) =Wo(t+ ~+4+) (13b)

which appears to be implicit in the derivation also of (6).

III. RELATION TG FUCHS' BOUNDARY
CONDITION ' REFLECTIVITY AND

SPECULARITY

The new b.c. (9) has a rather complicated form. Worse
than that, it has to be reevaluated for each distinct sur-
face transport problem because each array of external
fields produces its own distinct incident distribution
function. Thus, there is really no single I'"uchs' reflec-
tivity p which characterizes a surface precisely for all
surface transport phenomena. Ke shall see, however,
that the Fuchs' b c. does result from a certain
approximation.

Specifically, the Fuchs' form (1) is regained from the
general form (9) to the extent that the incident distribu-
tion function may be approximated by

~(t 4 It+0+)-~-.(t e —It+0+)--
ft(t+0+)—~.(t 4 It+0+)-, -(g)

fto=g(ss) cosP (1—tt s)rts (14)

W.(t +4+)=

and
&&( t lt+)~ (t & —It+&-+) (11)--

(ft( 4 ))=W.(t+4+) -'-—
p 2'

I~.(—I+)ft( -&-) (»)
E tt„&

(Note that our convention is to label p, Wo, and W,
with the direction of the rebounding electron. ) We regard
(9), together with (10), (11), and (12), as the basic
boundary condition to be used with the Boltzmann
equation to describe electron transport near a surface.
The two terms on the right-hand side of (9) represent,

' R. F. Greene and R. W. O'Donnell (to be published).

to get

f6+4+)=(1+f.W.(t+4+)) '(Ws(t+0+)ft( t+4+)—
+(1—We(t+0+))(ft(t -4-))) (9)

and
1=Ws(.+4+)+(1 f.)W.(t +4-+),

where

This is exactly the form of the bulk solution'

ery E(Bfo/Be)

of the Boltzmann equation in the relaxation time ap-
proximation, and in the absence of a magnetic Geld. It
is also the exact form~ of ft(tt p ) at a surface where, in
addition, the bands are Oat, and the bulk relaxation
time is used right up to the surface. (Under these condi-
tions the Boltzmann equation has a single space deriva-
tion so f&(tt p ) is obtained by integrating from the
bulk toward the surface. These incident electrons, one
might say, are still "unaware" of the surface and still
have a bulk distribution. ) On the other hand, ft(ts p )
usually does not have the simple form fts: e.g. , when
there is a magnetic Geld, ~ when the bands are not flat, '
and when the surface-scattering process sects the bulk
scattering rate of the incident electrons. ""

If we approximate fz(ts p ) by fzo, and note that to,

r J.M. Ziman, Eteotrorts and Phortorts (Oxford University Press,
New York, 1960).

R. F. Greene, D. R. Frankl, and J. N. Zemel, Phys. Rev. 118,
967 (1960).

E. H. Sondheimer, Advan. Physics 1, 1 (1952)."F.S. Ham and D. C. Mattis, University of Illinois Technical
Report No. 4, 1955 (unpublished).

"M. J. Baines, Proc. Cambridge Phil. Soc. 57, 606 (1960).
~ F. J.Blatt and H. G. Satz, Helv. Phys. Acta 33, 1007 (1960).
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must be an even function of Ag=P —P+, then (9)
reduces to the Fuchs' form (1), with

p(/+4+) = (1+f.W.) '{1—(1—Wo)

&&(1—cosA&(1—
/ -')"'/(1 —/+')"'&) (15)

This we regard as the best form for the reflectivity p in
terms of the specularity Wo. Clearly, p and Wo are
physically distinct, and the distinction comes primarily
from the extra weighting factor (1—cosA&g .),
which causes low-angle scattering events (measured
from the specular direction) to contribute relatively
little to p.

Scattering by localized surface charges' produces,
e.g., mostly small-angle scattering events, so that m,
is appreciable only for small values of Ap and of
A/i=/i +/J+=A cos8. Then

p= (1+f,W ) ' 1—(1—f,) dA/i

wave functions at a surface. The new b.c. is of integral
form and does not, in general, reduce to the simple
familiar Fuchs b.c. The conditions under which the
new b.c. reduces to the Fuchs' form are given and
discussed.

The connection of the new b.c. with perturbation-
theory treatments of surface scattering is discussed. It
is shown that, when the Fuchs' b.c. is valid, the Fuchs'
reQectivity parameter p is physically and numerically
quite distinct from the kinetic specularity probability
Wo, con trary to previous ideas. Comparison of p and Wo
is made for different kinds of surface scattering.
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APPENDIX: WHEN IS P) Wo?

dAyw, (—1+)(Ay'+3&8') In the nondegenerate statistics case, (9) can be
(16a) written

0
p + q~1 + $1/2

k+/ P EI—~')

The weight factor in (16a) is reminiscent of the
(1—cos$) -', P weight factor which is important for the
bulk momentum relaxation time against charged
impurity scattering. There, for a somewhat differ-
ent reason, small-angle scattering events are also
low-weighted.

As a further example, we may consider the case of
scattering which is isotropic with respect to the exit
direction. Then p and Wo are equal, provided that the
statistics are nondegenerate. Then we find, using (13),
(10), and (15),

Wo(/i+&+) = 1—(1—f,)2xm, (—/ti+, s.+&+1 ), (17a)

p(/+4+) = (1+f.W.)- Wo(.+4+) (17b)

IV. CONCLUSIONS

A general transport-theory boundary condition, for
the electron distribution function at a wide class of
crystal surfaces, has been derived from simple con-
siderations of Aux conservation and of properties of

X d&P cosA&ii/ (&—A4'
I &+A+) (A1)

When the medium and the scattering mechanism are
isotropic in the plane of the surface

so that, after some manipulation,

0 ( /i )(] p $1/2
p—Wo=2

&+ /i+) E1—/i~'2

m't2

X d 4/ cosh&(w, (&—,A41/i+)

—~.(/ - ~—A41/i+)) (A3)

Thus, a sufhcient (but not necessary) condition for
p)Wo is that w, (/i, Apl/i+) decrease monotonically
with increasing AP.


