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[113]-directed open orbits supported by the model CU
VI traced out in the compilation of the data for Fig. 10.
This orbit lies just inside the shaded region at a relative
k.,=0.15 and at an angle 12° between the field and [1107]
axis.
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Based on the above arguments, we find that Roaf’s
phenomenological FS model CU VI is in good accord
with our galvanomagnetic measurements with respect
to Hall constant values and angular extent of various
one- and two-dimensional regions.
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Core-Polarization Contribution to the Knight Shift in Beryllium Metal*
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(Received 1 June 1965)

Direct and core-polarization contributions to the Knight shift in beryllium metal were calculated at a
number of symmetry points near the Fermi surface. The direct contribution was evaluated using wave func-
tions for the conduction electrons by the orthogonalized-plane-wave method. The contribution of the core
electrons was determined using the moment-perturbation (MP) method developed in an earlier paper. The
accuracy of the MP method was rechecked by calculating the core contribution to the hyperfine coupling
constant in the 3P, state of the beryllium atom. Good agreement was obtained with the result of an earlier
self-consistent-field calculation by Goodings. For the I';~ level, the direct and core contributions to the
Knight shift are 0.01536 and 0.00258%, respectively. For the two degenerate levels of H;, the direct con-
tributions both vanish while the core-polarization contributions are —0.00061 and —0.00001%,. These re-
sults lead to the conclusion that core-polarization effects alone can not explain the near-vanishing Knight
shift observed experimentally in beryllium metal. Some other contributions such as those from various
orbital mechanisms would therefore have to be considered.

I. INTRODUCTION

NUMBER of recent papers'—* have dealt with the

theory of the Knight shift in beryllium metal.
Earlier measurement by Knight!:5 showed that the
Knight shift was less than 0.0029,; that is, essentially
zero within experimental error. The theoretical investi-
gations, on the other hand, while they differ quantita-
tively in their predictions, all lead to finite values of the
Knight shift which are beyond the range of experimental
error.

Since beryllium is a light metal with only one core
state, one would expect an analysis of the Knight shift
to be relatively easier compared to heavier metals. In
heavier metals the spin-orbit and other relativistic
effects and the problem of orthogonality to core states
lead to complications in the calculation of the wave
functions for conduction electrons. It is therefore im-
portant to understand the reasons for the disagreement
between theoretical and experimental results for Be.

* Supported by the National Science Foundation.

t Present address: Department of Physics, University of
Rochester, Rochester, New York.

1C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev.
77, 852 (1950).

2 M. Pomerantz and T. P. Das, Phys. Rev. 119, 70 (1960).
( 3 \g.)E. Wood and F. J. Milford, J. Phys. Chem. Solids 23, 160

1962).

4W. Schneider, L. Jansen, and L. Etienne-Amberg, Physica
(Netherlands), 30, 84 (1964).

5W. D. Knight, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2.

The first source that comes to mind is possible inaccura-
cies in the wave function employed to make the theoreti-
cal estimates of Knight shift in earlier papers. Wood and
Milford® employed augmented plane-wavefunctions
based on earlier calculations by Jacques.® They as-
sumed a spherical Fermi surface and found that the
Knight shift is appreciable. A spherical Fermi sur-
face was also assumed by Pomerantz and Das? who used
an orthogonalized-plane-wave (OPW) calculation and
found the Knight shift to be substantial. Townes,
Herring, and Knight! obtained their Knight shift result
from Herring and Hill’'s OPW calculation.” Herring and
Hill determined the energy levels at a number of points
and lines in k space but did not include many OPW
functions in their calculation owing to the lack of com-
puting facilities at the time. The most recent calcula-
tions on the band structure and Fermi surface of Be
metal are due to Loucks and Cutler® and Loucks,® who
made a careful study of the potential to reach a certain
degree of self-consistency and obtained energy levels at
a number of points using fairly high order secular equa-
tions. They found quite good agreement with the availa-
ble de Haas—van Alphen data!® and soft x-ray spectro-
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scopic data.!*'2 One would therefore expect wave func-
tions obtained from their potential to be reasonably
accurate and reliable. We have computed the energies
and wave functions at a few points in k space using their
potential and found the convergence in both energies
and wave functions to be very good. The Knight shift
at the I' point where a substantial part of the Fermi sur-
face is located came out of our calculation to be appre-
ciable. One therefore has to look for causes other than
error in the direct Knight shift to explain the experi-
mental data. One explanation that has been proposed by
Sondheimer and Das®® is a Landau-type diamagnetic
shielding. Sondheimer and Das have made a semi-
quantitative estimate of the diamagnetic shielding using
the effective-mass approximation and showed that it is
possible to get a diamagnetic-shielding term comparable
in magnitude to the direct Knight-shift term. In addi-
tion, one could also get an orbital contribution to the
magnetic shielding which is analogous to the Lamb and
Ramsey!* type of contribution in molecules and non-
metals. Hebborn and Stephen!® have worked out elabo-
rate expressions for Bloch electrons which incorporate the
Landau and Lamb and Ramsey type contributions.
However, these expressions are rather difficult to use for
quantitative estimates. The other important mecha-
nism which could contribute significantly to the Knight
shift is the core-polarization effect which has been dis-
cussed by a number of authors.’# In the case of Be
this effect would correspond to a contribution from the
core 1s electrons due to their spin polarization by ex-
change interactions with the conduction electrons. In
this paper, we have carried out a calculation of this
core-polarization effect for Be metal using the moment-
perturbation (MP) method developed in an earlier
paper.'” It is found that the core polarization is in the
wrong direction to remove the discrepancy between the
computed direct contribution to the Knight shift and
experiment.

In Sec. IT we have used the MP method to compute
the contribution from the core-polarization effect to the
hyperfine constant for the 3P, term of the Be 15?2s2p
state. Our result is very close to that from Goodings’
unrestricted Hartree-Fock (UHF) calculation.’® The
total hyperfine constant is found to be in good agree-
ment with experiment.?
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In Sec. ITI the wave-function calculation in Be metal
is described. Convergence tests are carried out both for
the energy and wave function.
In Sec. IV the core-polarization calculation is de-
scribed and the significance of the results is discussed.

II. RESUME OF THE MP METHOD AND
APPLICATION TO THE TRIPLET P
STATE (°P,;) OF THE Be ATOM

In an earlier paper,” the theory of the MP method
was developed and it was applied to study hyperfine in-
teraction in the Li atom and Li metal. Actually, the Li
atom is the least favorable case for a perturbation ap-
proach because of the small number of electrons in-
volved. However, we found in the case of Li that both
perturbation approaches, the MP' as well as the
EP! (exchange-perturbation) method gave answers
only about 159, different from the unrestricted Hartree-
Fock approach of Sachs* and Goodings.!® Since Be
involves one more electron, we would expect the pertur-
bation result to be even better and in closer agreement
with the UHF method. To test this point and also to
obtain a check on the perturbed wave function to be
used subsequently for the core polarization calculation
in the metal we have performed a MP calculation on
the 3P, Be 152252p state. The result of this calculation
will be described in this section. For the sake of com-
pleteness we start with a brief resumé of the theory of
the MP method.

Suppose we have an unperturbed system governed by
the zero-order Schrédinger equation

HO\I’():E(]‘I/() . (1)

We are interested here in the second-order change
E.x® in the energy of the system, due to its combined
interaction with two first-order-perturbing Hamil-
tonians Hyr and Hy. It can be shown!’ that to first
order in either Hg or Hy, the order of application of Hg
and Hy is immaterial and E x® is given by either of the
following two expressions.

Ex®=26Vg|Hy|Ty), @)
En®=28¥y|Hr| %), A3)
where 6% is the solution of the first-order equation
(Hy—E)6¥ g=—(Hz—E.)%,, 4)
with
(0¥ 5| W0)=0,
and
Eo=(W|Hg|¥0), )
and 8Py is the solution of the equation
(Ho—Eo)a‘I’N= —(HN—EN)‘I’O; (6)
with
<6‘I’N [ ‘I’o) = O

2LT.. M. Sachs, Phys. Rev. 117, 1504 (1960).
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and
Ex={(%|Hx|¥,). )

The fact that E.xy® can be obtained from either
Eq. (2) or Eq. (3) leads to two different approaches for
obtaining E.y®. In the problem at hand Hy describes
the Fermi contact interaction of the nuclear moment
with the core electrons and Hg, the exchange perturba-
tion potential produced by the valence electrons at the
site of the core-electron. For the exchange-perturbation
method!® one determines ¥z by solving Eq. (4) and
obtains E.x® using Eq. (2). On the other hand, for the
second approach or the moment perturbation method!”
0¥y is determined by solving Eq. (6) and E.x‘® is subse-
quently obtained from Eq. (3). In principle, these two
methods are entirely equivalent. However, the MP
method has some practical computational advantage
and is more flexible in its application to the solid state
than is the EP method.

The perturbation Hamiltonian Hy due to the nuclear
magnetic moment is given by

167
HN:Z. —é—rerNhZI-S,-é(ri) y (8)

where 7. and 7y are the magnetogyric ratios of the elec-
tron and nucleus, respectively. I is the spin of the
nucleus, S; and r; are the spin and position vectors of
the sth electron. The summation extends over all elec-
trons in the core states. The perturbation Hz can be

written as
Hp=3% i H@)=2: 2k air, )
where a;;, is defined by

2

€
o) = V() / L

— (10)
1= 1k

The summation over & extends over all valence electrons
whose spin is parallel to core state ¢; and a; vanishes
when operating on a core state j whose spin is not parallel
to valence state &.

For the ground-state wave function we take a deter-
minant built out of all the core states with spins both
up and down. Since we are interested in effects linear in
Hy we assume, as in previous work,!” that the down-
spin core states are not perturbed while the up-spin core
states are perturbed by Hg. The perturbed wave func-
tions ¥y+6¥yr and ¥o+6¥y are obtained from the
zero-order wave function ¥, by replacing the unper-
turbed one-electron wave functions in the determinant
by perturbed one-electron wave functions and keeping
terms up to first order.

Remembering that we have only one core (1s) for
the Be atom and following the adaptation'” of Dalgarno’s
procedure for perturbed many-electron systems to the
present problem, we obtain

Y1, v=AbP1s,n, (11)
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where
A=16w/3)rernh*l ms (12)
with m,=1 for up-spin core states and m,= —% for the

down-spin state, and 8¢1,,v is given by the solution to
the following equation

V2§[/ls
('— VZ"I‘ )5¢ls,N

1)llls

= —[8(r)— (W1 8(0) [Y1) Wons. (13)

This is a second-order linear inhomogeneous equation
for é¢p1.n, and can be solved by standard numerical
techniques. However, in the present case since y1, does
not have any nodes and d¢1s,» has the same angular
dependence as 1, one can use an especially simple pro-
cedure which requires only the evaluation of some in-
tegrals. This procedure is detailed in the Appendix.** It
only applies to problems in which the ground-state wave
function is nodeless and the perturbation in the wave
function has the same angular dependence as the zero-
order wave function. Writing

Py, 1
Y1.=R1. Y *(0,¢)=— ———

(14)
r +/(4)
and
Sb1s v=0OR Y0(0¢)=6P“’N (15)
1s,N 1s,NL 0 ) , \/(47'.).

The expression for d¢1,,y obtained by this procedure is
then the following:

a¢ls,N=;(i47r—) P:s{ /w "Foryr

" /: Put(r)dr /«, r F(r)dr} , (16)

where F(r) is given by
W80 [Y1s) [
r)=—— 12(r)dr . 17
FO=— [ P an

361, was then solved numerically from Eq. (16)
using Goodings!® calculated restricted Hartree-Fock
wave function of the Be atom for ¢1,. A plot of the wave
functions 8Py, y and Pj, is given in Fig. 1. The general
behavior of 8P,y is very much the same as that ob-
tained?!” for Li as is to be expected.

Having obtained d¢1,,5 one can calculate E.x® from
Eq. (3) with Hy defined as in Eq. (9). In the Be atom
152252p(3Ps) state with two unpaired valence electrons,

2 This procedure is similar to a general method developed by
P. J. Price [Proc. Phys. Soc. (London) A67, 383 (1954)]. We have
presented this procedure in the Appendix to make it understanda-
ble in the present context.
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TasiE I. List of contributions to hyperfine constants in Mc/sec for the 3P, term of the Be 1522525 state.

Core-polarization contribution Direct 2s Total contact Dipolar
a% al?  a.=a2+a’? contribution contribution contribution Total
Goodings? —14.7 —98.8 —113.5 —8.8 —122.3
This paper —21.1 8.0 —13.1 —98.8 —111.9 —8.8 —120.7
Experimentalb —124.54

a Reference 19.
b Reference 20.

H contains two parts, one from the 2s electron and the
other from the 2p electron. Specifically, we have

Hyp=Hy,+Hy, (18)
where
Yas(r1) e’
25 = — f¢2s*(r2)—'—¢ls(r2)d7'2 (19)
Y1s(r1) 712
and
'Pzp(l'l) e’
Hyp=— Yap* () —Y15(r2)ds. (20)
Y15(11) 712

In Egs. (18), (19), and (20), the operators Hg, Hss,
and H,, are one-electron operators. Using Egs. (11)
and (18), one gets

E x®=2A40¢1s,5| Has [¥15)
+24(8¢10,5 | Hop|¥1s). (21)

To evaluate Eq. (21), we apply the usual technique of
expanding 1/71, in various spherical harmonics and per-
forming the proper angular integrations. The final radial
integrals to be evaluated are then

0

(15,5 | Has |¥15)= —2/ Poy(r1)0P1s,w(r1)dr1

0

1
X{—/ Poy(r2) P1s(re)drs
0

71
@ P2s(72)P13(72)
+ / ———drsp (22)
r1 ¥a
and )
(8155 | Hap|1s)= —g / Poy(71)0P1s,n(r1)dr1
0
1 1
X {—/ 72 P2y (72) P1s(72)dr2
r1?J o
® Pop(r2) P1s(72)
+1’1/ —w—df’z . (23)
71 8

After performing these integrals, we obtained the
numerical results

2(3¢ 15, | Has [¥1:)=2X (0.067314) = 0.134628,
2015, | Hap|¥1s)=2X (—0.02545) = —0.0509,

(24)
(25)

where the zero-order radial wave functions pi,, pas, and
p2p Were taken from Goodings’ restricted Hartree-Fock
calculations.®

The total contribution to E.n® is therefore E®
A(0.08373). This compares very favorably with
Goodings’ value® of 4(0.094) obtained by the UHF
procedure.

The contribution a., in cycles, to the magnetic hyper-
fine coupling constant from the core polarization can be
obtained from the formula

ae=E®/IJH,

where J is the total angular momentum quantum num-
ber. From our results we found for beryllium,
a.=—13.1 Mc/sec.

In Table I we have listed for comparison the core-
polarization contribution to the hyperfine constant ob-
tained by us as well as Goodings’ UHF results. For the
sake of completeness we have also listed the direct, con-
tact and dipolar contribution from the 2s and 2 states.

From Table I and Egs. (24) and (25) it can be noticed
that the core-polarization contribution from the 1s
state is the difference of two numbers, one arising from
the influence of the 2s polarizing electron and the other
due to the 2 polarizing electron. It is therefore gratify-
ing that the net a. is within about 129 of the UHF re-
sult. This observation bears out our expectation that the
perturbation approach would be better for Be than for
Li. It would be interesting to compare the individual
contributions from the 2s and 2p polarizing electrons for
the MP and UHF methods. Unfortunately, Goodings
has not presented these numbers for the UHF method.

From a study of the results in the two states of the Li
atom (15?25 and 1522p) and in the Be atom (1s2252p), it
appears that the 2s valence electron produces a positive
core polarization when interacting with the 1s state
while a 2p electron produces a negative core polariza-
tion in the 1s state. A similar observation also applies
to the Li metal where it was found that the s and p parts
of the conduction electron produce positive and nega-
tive core polarization, respectively. The d part of the
wave function produces a relatively small and negative
core polarization. The opposite behavior of the s and p
electron can be understood from the sign of the product
of the valence and core wave function in the important
region where they overlap significantly. It is this region
that makes the most important contribution to the ex-
change potential Hg which ultimately determines the

(20)
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F16. 1. Plot of unperturbed wave function P, and first-order perturbed wave function 8Py, » as function of »
for the Be atom 15?252 configuration,

core polarization contribution. Since the 2s wave func-
tion has a node while the 2p does not, the difference in
the signs of their core polarization contribution is un-
derstandable. These observations seems to be borne out
also by our calculation on Be metal in Sec. IV and permit
us to arrive at some significant conclusions about the
Knight shift in Be metal.

III. CONDUCTION-ELECTRON WAVE FUNC-
TIONS FOR BERYLLIUM METAL

In order to calculate the Knight shift in Be metal, a
knowledge of the wave functions of the conduction elec-
trons and the Fermi surface is needed. As mentioned in
the Introduction, earlier band-structure calculations of
Be metal by the orthogonalized-plane-wave method,
particularly the most recent one by Loucks and Cutler,?
have led to fairly good agreement between observed
macroscopic properties and theoretical predictions. We
therefore chose the OPW procedure, to determine the
conduction-electron wave functions.

One of the important objections that has been leveled
at the OPW method in the past has been its slow con-
vergence. However, as Heine?® has emphasized, the
slow convergence was found in many cases to be due to
a poor choice of core wave functions which were used in

# V. Heine, Proc. Roy. Soc. (London) A240, 354 (1957).

the construction of the OPW function. Heine has shown
that a considerable improvement in the convergence of
the OPW method can be attained if one chooses the
crystal-core wave functions which are lower energy
eigenfunctions in the conduction-electron potential.
This choice of crystal-core states was used by Loucks
and Cutler® as well as by earlier workers” in the OPW
calculation on Be. Loucks and Cutler, however, went
one step further and made the conduction potential
self-consistent with respect to the crystal-core function
using single OPW wave functions in the computation of
the potential. The problem of making the calculation
self-consistent with respect to the conduction-electron
wave functions at different points of the band is com-
putationally formidable and has not yet been done. Since
we were not interested in improving upon the
energy-calculation of Loucks and Cutler but in
determinging wave functions for the conduction elec-
trons and studying the convergence properties of the
energies and wave functions, we have made use of
the conduction-electron potential that Loucks and
Cutler obtained in their last iteration, starting with the
potential determined by Pomerantz and Das.?

The one-electron potential seen by the conduction
electron can be written as

Vt)=3%, V([r—R]), 1))
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Fic. 2. Plot of the
radial parts of the crys-
tal-core wave function
Pisc and the atomic
wave function Pj, as a
function of » for Be
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where V(r) is taken from Loucks and Cutler.8 To con-
struct the OPW we require crystal-core wave functions
¥.(r) which are the lower energy eigenfunctions of the
conduction-electron Hamiltonian. Thus,

H‘pc:Ec‘I’c ) (28)
where H is the Hamiltonian for conduction electrons.
H=—V4-V(r). (29)

For the crystal-core wave functions, it is convenient
to use the Bloch functions

1
=T ‘k' Rv 1s\I— Rv )
bom s B ek R R)

where R, is the position vector of the nucleus at the »th
lattice point and » goes over all the lattice points in the
crystal. If the potentials V(|r—R,|) on adjacent sites
do not have significant overlap and also if the functions
U1,(r—R,) on neighboring ions do not overlap apprecia-
bly, one can then write

(30)

[=V24+V(#)]Ur(r)=EU1(r). (31)
On writing
Uss=(P1:e/1) Y (6,0) (32)
Equation (31) reduces to
[—d%/dr*+V(r)]Proo(r)=E.P1.(r).  (33)

Equation (33) was then solved numerically for both E,
and Pi,.(r) by standard technique. We have made use
of the program originally written by Cooley?4 and modi-
fied by Zare and Cashion? for this purpose. The results
so obtained were in close agreement with those of
Loucks and Cutler.

2 7. W. Cooley, Math. Computation 15, 363 (1961).
% R. N. Zare and J. K. Cashion, University of California Radia-
tion Laboratory Technical Report No. 10881 (unpublished).

We like to remind the reader that the crystal-core
wave function Uy, as obtained from Eq. (32) is quite
distinct from the actual-core wave function which is an
eigenfunction of the potential seen by the core electrons.
This distinction is important in Sec. IV dealing with the
core-polarization calculation where we have used both
crystal-core and the actual-core wave functions. The
actual-core wave function is very close to the 1s wave
function 1, for the Be atom. A comparison of the radial
parts of the crystal-core wave function P,..(r) and the
atomic wave function Py,(r) is presented in Fig. 2.

Once the crystal-core wave function is determined,
one can obtain orthogonalized plane waves of the
form?®

exp(tk:r) 1

Xyo=———————A1,(k)
VINQ) /N

XZ eXP(ik' Rv) Uls(r_Rl') ’ (34)

with
A\ (112) po
A 13(13) = ('5‘) / TP]sc(f)jo(kr)df N (35)
0

where Q is the volume of the unit cell and N is the num-
ber of unit cells in the crystal. The symbol jo(kr) refers
to spherical Bessel function of order zero.

To obtain the conduction electron wave function one
has to take a linear combination of OPW'’s.

Viria1(k) =2_; BiXs,

where k;=k+K;, K; begin a reciprocal lattice vector.
The coefficients B; can be determined after solving the
requisite secular equation. A sufficient number of re-
ciprocal lattice vectors should be included to obtain
convergence. Twenty-three reciprocal lattice vectors

(36)

26T, O. Woodruff, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1957), Vol. 4.
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TasLE II. Convergence tests of energy eigenvalues and variational parameters of the wave function at the
symmetry points of I' and H of the brillouin zone in Be metal.
Order of Variational parameters a; defined in Eq. (37)
No. of  secular Eq. a al parameters a; deline a
Represen- OPW’s (No. of a1 12} as
tation  involved SLCOPW’s) Energy® Real Imaginary Real Imaginary Real Imaginary
3 1 0.9538 1.0723 0.0000 ‘e ‘e
Ve 9 2 0.9477 1.0659 0.0000 —0.0500 —0.0289 e ‘e
23 3 0.9464 1.0642 0.0000 —0.0498 —0.0288 0.0115 —0.0198
1.0000 0.0000
6 1 0.9387 {1.0000 {0.0000
0.9979 0.0000 0.0652 0.0000
H 12 2 0.9313 {0.9979 {0.0000 {—0.0652 {0.0000
18 3 0.9158 0.9948 0.0000 0.0676 0.0000 0.0384 —0.0666
: 0.9948 0.0000 —0.0676 0.0000 0.0384 —0.0666

= Refers to the bottom of the band which is at —0.1893 Ry. The Fermi energy obtained by Loucks and Cutler (Ref. 8) is Er =0.901 Ry.

were included in the summation by Loucks and Cutler?
in their energy band calculation in Be. They made no
use of group theory to factor the secular equation per-
haps because group theory is of no help at general
points in k space. Also they did not determine the B/’s
since they are only interested in the energy bands. In
our calculation, however, we are more interested in
assessing the importance of core-polarization effects
than in their exact quantitative evalaution; we have
therefore performed our calculation at a few points of
symmetry. At these points group-theoretical factoriza-
tion has considerable merit not only because it reduces
drastically the amount of work involved in computing
matrix elements and solving a much lower order secular
equation but also from the point of view of accuracy.
For example, regarding the I';~ level of the I' point,
with the help of group theory, one only has 3 coeffici-
ents to solve instead of 23 B/’s. The other twenty co-
efficients are determined in terms of the calculated three
using exact ratios between the coefficients which are
determined from the group of k. Since there is inevitably
some error involved in the numerical methods for solv-
ing the secular equation, a third-order secular equa-
tion would naturally involve less inaccuracy than one
of 23rd order.

Thus we set up the trial wave function built out of
symmetrized linear combination of orthogonalized plane
waves (SLCOPW) which are adequate for the irreduci-
ble representation at the symmetry points in which we
are interested

Yiria1= 21 aSi*U 37

where the a/’s denote the variational parameters of the
trial wave function and S;'¥! is the proper (SLCOPW)
for a fixed |k;| value.

Sl'kl)=qu qulxkql (fOI' all kq that qul = Ikll ) y (38)

where the Cy,’s are the symmetrized coefficients de-
termined by the group theory and X! is the usual
one-OPW expression as given in Eq. (34).

The secular equation requires the calculation of the
matrix elements (S¢/,HS;) and (Sy,S:). Following the
usual procedure, we obtain the following results:

(Sv,HS))= 3 Cirp"*Ci;!
ka'kq

X[ l kq [ 26qq’+{ Vqu’ _EcBl'Bz}

4
XE‘{I‘*‘CXPi(kq—kq')"’} (39)

]

and

S,S)= 20 CapV*Ct

ko'kq

I: | kq|28,q

4
——BpBl—S-;{l—I-expi(kq—kq:)-ﬂc}:l, (40)

where
Vo= [ V) snkekelir, @D
= S —_ ’ 5
R kol /s r kg |r)rdr
1 00
Bi=—— [ Pu.(r) sin(| k;|7)dr, (42)
[ki| Jo
1 00
By=——| Pu(r) sin(| ke |7)dr, (43)

|k |

and < is the distance (nonprimitive translation) be-
tween the two atoms contained in a unit cell. We have
made use of the symmetrized coefficients Cy,! tabulated
at six symmetry points of the Brillouin zone by Falicov?
for his band-structure calculation on magnesium.

The secular equation

det| (Su,HS)—E(Sw,S1)| =0

0

(44)

% L. M. Falicov, Phil. Trans. Roy. Soc. A255, 55 (1962).
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was then set up and evaluated for the I';~ representa-
tion at the I' point and the two degenerate representa-
tions of H; at the H point. The resulting polynomials
were then solved for the lowest energy eigenvalues be-
cause these were close to the Fermi energy. The selec-
tion of I'y~ and H, representations also provide a good
sampling of the Fermi surface since the former is s-like
and the latter non-s-like. The corresponding eigenvec-
tors (the variational parameters a;) were then obtained
by solving a set of simultaneous equations. All these
numerical calculations were complicated by the fact
that = is a nonprimitive translation vector and conse-
quently one has to deal with complex algebra and com-
plex numbers. The results obtained together with the
convergence tests are given in Table II.

From Table IT we notice that both the energy value
and the variational parameters in the wave function
showed extremely good convergence with increasing
order of secular equation and consequently increasing
number of OPW’s involved. The convergence of the
variational parameters have particular importance in
the evaluation of the Knight shift which will be dis-
cussed in the next section.

IV. KNIGHT SHIFT AND CORE POLARIZATION
IN BERYLLIUM METAL

The usual expression for the Knight shift due to the
conduction electrons is by

(AH/H)direcbz (87['/3)va< I‘I/F«)) l 2>EV b (45)

where X, is the spin paramagnetic susceptibility,
{|¢#(0)|2)av is the average electron density at the nu-
cleus from the electrons at the Fermi surface and V is
the volume of the crystal in which ¢ is normalized. A
convenient expression for (|¥#(0)|2)s for purposes of
computation has been given by Callaway??

( ] Yr (0) I 2>av= [47"3”(74)]_1
x [ W0 wiEass, )

where n(«) is the density of states on the Fermi surface
and the integral extends over the whole Fermi surface.

From Eq. (46) it is clear that an accurate evaluation
of (|¢r(0)|2)ay requires (i) a knowledge of the Fermi
surface, (i) the variation of E with respect to k, and
(iii) the variation of the conduction-electron wave func-
tion ¥, with respect to k as one traverses the Fermi
surface. Our aim in this paper is not an accurate evalu-
ation of the Knight shift but rather an investigation of
sources of error in the direct Knight shift and the under-
standing of the role of core polarization to determine if
the core-polarization contribution can possibly counter-
act the direct contribution to the Knight shift so as to

28], Callaway, Energy Band Theory (Academic Press Inc.,
New York, 1964).
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give the vanishingly small total Knight shift observed
experimentally. We have therefore considered the lowest
level of the I'y~ representation and the two degenerate
representations of H;. The I'y~ representation has pri-
marily s character and therefore contributes a sub-
stantial direct Knight shift. The H; representations on
the other hand, have no s character, and therefore pro-
duce zero direct Knight shift. Any other points, on or
close to Fermi surface, will lie between these two cases.
We therefore feel that for an understanding of the direct
and core-polarization contributions to the Knight shift
the study of the I';~ and H, representations is most
informative.

In the calculation of the direct Knight shift using Eq.
(45) we need a knowledge of the spin susceptibility X,.
Feher and Kip?® obtained a value of X,=2X10"7 cgs
volume units from the area under the electron-spin-
resonance signal in Be metal. This value is about a factor
of 3 smaller than the calculated value using the result of
the density of states at the Fermi surface obtained by
both Loucks and Cutler® and Herring and Hill” by means
of the following expression®

Xp=ps*n(u),

X,=6.86X10"7, cgs volume units.

This value is in exact agreement with the result one
gets from the experimental value of the low-temperature
specific heat v in Be metal? using the relation between
X, and v in the one-electron approximation

y=mk*n(u)/3.

The disagreement between the spin-resonance value
of X, and the theoretical value from the density-of-states
calculation is somewhat disturbing. It could arise either
out of some uncertainty in the evaluation of X, from
the spin-resonance measurement or from the neglect of
correlation effects in the calculation of X,. In the
absence of definite information on this point we have
tabulated our results on the Knight shift using the spin-
resonance value.

Xp,=2X10"7 cgs volume units. To obtain the re-
sults for the Knight shift pertinent to the choice of
X,=6.86X10"7 cgs volume units, we only have to
multiply the tabulated results by a factor of 3.43.

The question of convergence in the predicted direct
contribution to the Knight shift will be considered first.
In Table III we have listed the calculated values of
¥r%(0) and the direct Knight shift for different numbers
of SLCOPW used for the I's~ representation. It can be
seen that the direct Knight shift for 3 SLCOPW’s is
only about 69 less than that for 1 SLCOPW. While we
have not demonstrated the convergence for a general
point, it is not unreasonable to expect that the calcu-
lated direct Knight shift would be quite rapidly con-

2 G, Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).
% R. W. Hill and P. L. Smith, Phil. Mag. 44, 636 (1953).
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TasLE III. Convergence test of (AH/H)girect for T's~ level
at symmetry point T' in Be metal.

Order of AH
secular No. of OPW'’s —_
Eq. involved ¥r?(0) H ] direct
1 3 102.3758 0.017159,
2 9 95.6305 0.016029,
3 23 95.1694 0.015959%,
91.6885% 0.01536%,2

a After being corrected for the normalization to the real-core states.

vergent with respect to the number of OPW’s. This re-
sult is in contradiction with the conclusion arrived at by
Schneider et al.*in recent work. These authors concluded
from their results for 1 and 3 SLCOPW’s that the
calculated Knight shift was very poorly convergent (see
Fig. 2 of Ref. 4). Our result for 3 SLCOPW’s agrees
quite well with their result but our 1 SLCOPW result
disagrees with theirs. The origin of this disagreement is
probably due to a numerical error in their calculation.
The good convergence we have obtained for the direct
Knight shift leads us to believe that the OPW method
does in fact give us a good representation of the
conduction-electron wave function near the nucleus in a
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tight-binding and OPW method proposed by Schneider
et al.* may therefore be desirable in those cases. For
beryllium metal, we feel that the necessity for such a
modification of the OPW method has not been
demonstrated.

The last row in Table III gives the direct Knight
shift after correcting for the lack of orthogonality be-
tween the conduction-electron wave function Yeena and
the real-core wave function. This point has not been
considered in earlier investigations so we shall explain it
here briefly. The real-core wave function ¥, , is not ex-
pected to be significantly different from the atomic ¥,
wave function. The overlap integral between the 23
OPW’s and the real-core function was found to be

(We,1s | Weona) = —0.0027833.

Whenever one has two nonorthogonal states and
needs the expectation value of one-electron operator it
can be shown that one gets the same expectation value
if one uses orthogonalized orbitals which have been
orthogonalized by Schmidt’s procedure.® In the present
case we found it convenient to orthogonalize the con-
duction wave function Yeena to the real-core wave func-
tiOIl 1#0,18

good metal. This conclusion will perhaps be inapplicable Yortho=2_1 @151, ortho! ™!, (47)
to semimetals and semiconductors and a combination of  with
Sl, ortholk”=2k¢ qulxkq, ortho® (fOI‘ all kq that lkq[ = |kl|) ) (48)
where
SN L) T explik R~ R) ———As/() T explik- RWa(e—R),  (49)
qu’ ortho =~ ———4is €Xp k- p) UL X —INy) ———A s explzK-,)y1,(r— ),
V(NQ) /N g VN ’
with
4,". 1/2 © 0
A (k)=(3) f rP15(r) jo(kr)dr— A1.(k) / P1yo(r) P1s(r)dr. (50)
0 0

Using Yortno We obtained the Knight shift as listed in the last row of Table III. The lack of orthogonality between
conduction-electron wave function and the real-core function is thus seen to be minimal in its effect on the direct
Knight shift.

It should be noted that this type of nonorthogonality contribution to the hyperfine interaction does not occur in
atoms because the core and valence functions are orthogonal either owing to their angular parts (s and p states,
for example) or when the angular part is the same, owing to the orthogonality condition imposed on the radial
parts of the wave functions when solving the Hartree-Fock equation.

It is now clear that the vanishingly small Knight shift observed experimentally cannot be explained by errors
in the direct Knight shift calculation. We therefore proceed to an investigation of the core-polarization contribu-
tion to the Knight shift. The procedure that will be followed is the MP method which has already been used for the
Be atom in Sec. IT and for the Li atom and Li metal in an earlier paper.!” In a similar manner as was done in Ref.
17,32 the core-polarization contribution to the Knight shift is given by

AH 8
<_) =—X,V (2 Re(3¢0,1:| Hr|¥e,15)) 1)
H 3

cp

3L B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957).
# A negative sign was left out on the right-hand side of both Egs. (43) and (47). The results in Table II are of correct sign.
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with
Yeona(r1) ?
=— s ¢cond*(r2)_e_¢c-ls (7’2)(1"‘2 ’ (52)
Ye,15(r1 712

where Re(d¢.,1s| Hr|¥.,1,) means the real part of (8¢ 10| He|¥e,1s)-

In the calculation on Li metal the normalization was performed over the Wigner-Seitz sphere and the integral in
Eq. (43) of Ref. 17 was also confined to the Wigner-Seitz sphere. In our present formulation, however, the integrals
in Egs. (51) and (52) extend over the whole crystal.

Introducing Bloch functions for the real-core and the perturbed wave function in the tight-binding approxima-
tion, we have

1
c,1s = 7 k'Ru’ 1s _Ru‘ 33
Ye,15(r) \/(ZN)§ expi(k- Ry )¢1:(r—Ry) (53)

and

1
8¢pe,15(7) =\/(2N) Z,,: exp(ik:R,)é¢1,, ¥(r—R,), (54)

with ¢1, and d¢1,,x defined as in Sec. II.
Making use of Eq. (37) for conduction-electron wave function Yeomna and Egs. (53) and (54) we get

(6pe,1s| Hi|We,16)=—— Z aar* 3, CrlCrp¥ // Zv exp(—iky R,)d¢1s ¥ (11— R))

N v gk’

1
KXk (r1) X V¥ (re)— 2 exp(tky « Ry )Y 1s(t2— Ry )dridrs.  (55)

712 V'

In Eq. (55) we have two types of integrals: one in which all the localized orbitals are centered about the nucleus
in question and another in which orbitals about adjacent centers are also involved. An examination of the order of
magnitude of the contribution from the latter type of integrals indicates that they make a negligible contribution;
we can therefore simplify Eq. (55) to the following form

1
(8¢e,1s| HE|We,15)=—— Z aar® 3 CplCrpV //5¢1s,N(h)F(h)—‘F(f’z)¢1s(1’2)d7'1dT2 , (56)
QL kqkq’ 712
with
F(r1)=exp(ikq 1) — (47) 2 Bas1s(r1) 57
and
F(?’g)=€Xp(—1:kq"l'2)—‘(47!')1/231/%13(72) ) (58)

where B; and By are given in Eqs. (42) and (43).
One can now make use of the expansion:

1 L
—=dr 3 —— Z V¥ (01,61) Y™ (02,2) (59)
712 1=0 241 1 m=—y
and o . .
ek r=A4g Z 1l]l(k7) Ylm(0h¢r) Ylm*(0k7¢k) ) (60)
l.m

and group the terms in Eq. (56) according to the values of /. These terms arise from the corresponding ! parts of the
Yeona and may be referred to as contributions from the s, p, d,- - - parts of the conduction-electron wave function.
Thus, the s(I=0) contribution to (5¢n_1sIH 2| We,15) 1S

(3¢c ls[HEh[/c 1s> = Z (lzaz'* Z qu qu //5¢ls N*(7’1)F(7’1) ( ) r(f’z)skhs(f’z)dﬁd‘rz- (61)
N 712

L Kok’ s
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After carrying out all the angular integrations, Eq. (61) becomes

8w
(0,15 HulYe1s)s=———2 aar* 2 Ci'Cip"
NQ

1,1 kqkq’

*® sin(|kq|71)
* / 5P13,N(r1){ ]kq -1_——B,Plsc(r1)}d71
0

al

1 71 1 ’ .P13(7’2) sm(|k I?’g)
Xl:-—/ Pls(7'2){—*J”—~Bzrp1sc<fz)}d72+/ { Bl'Plsc(rz)}d72j| . (62)
71J0 lkq'l lkq’l
Similarly, the p(I=1) contribution to (8¢.,1s| Hr|¥e,15) is
2 1
<5¢c,1s[HE|¢c.1s>p—-—— S aar* Y quzckq,z'*//5¢18_N*(r1)F(71)p(——) F(rs)pas(re)dridre. (63)
NQ v kqkq’ 712/ P
After making use of the following relation:
47
Pi(cosyqq)= Z Y™ (Okgsbrq) Y™ (Org D7) » (64)

2041 m=—1

and carrying out the angular integrations, Eq. (64) becomes

&
(8pe1s| He|Yeps)p=——2 mar®* X Ci'Crp¥*(cosyqq)

Qur kqkq’

® §P1s, *
X / ——I-V—(—I){SIn(lkqln)—lkqlnc05<lk«'“”d”[ /
0 "

+7’1/

WL

lkq| ’r1

ls( 2)
kg |?

{sin(|ky'[72)— | ky'| 72 cos(| Ky’ |72) }dre

P, (7’ 2)

{sin(|kq | 7o) — | kg’ | 72 cos(| kg’ [72)}d72] . (65)

Similarly, we obtain the d(!=2) contribution to (8¢ 1s| Hr|¥e,1s) as

2
(0¢c,1s| HE|We,15)a= —— Z aar® 3 CrlCrpV

Q. kqkq’

/ / 5%,N*(n)F(rod(fim)dF<r2>d¢ls<m>dndn,

(66)

4
(8¢pc,16| Hr|Ye,15)a= Yo > war* Y CrllCrp*(3 cos?rgy—1)

Qur kqkq’

® 6P
3/

o |Kkq|?ri?

1
|

r®Jo

1s,N (1)

— (G-

Pls(r2)
k'] ®

{3—

© Pis(rs)

qu[ r1%) Sin(lkql”l)—slkql"l cos(|kq|71) }dre

kg | *r2?) sin(|ky [72) —3[ky |2 cos(| kg |72) }drs

[ O ) sin[ K 17 =3 k| cos e [} |~ 61)
1 q’| 72

Equations (62), (65), and (67) were then evaluated for
the I's~ representation and also the two degenerate
representations of H; using 6P1,,x*(r1) obtained in Sec.
II. The core-polarization contribution to the Knight
shift was then calculated using Eq. (51). The results
together with the convergence test are listed in Table IV.

V. DISCUSSION

From Table IV it can be seen that for the I';~ repre-
sentation the core-polarization contribution to the
Knight shift is only 1879, of that due to the direct con-
tribution. For one of the H; representations the core-
polarization contribution is 4%, of the direct Knight
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TasLE IV. List of contributions to the Knight shift for the I'y;~ representation and the two degenerate
representations of H; for Be metal.
Core Core Core
No. of  Order of Direct polarization polarization polarization
Represen- OPW’s  secular contribution s part p part d part Total
tation  involved Eq. (AH /H)direct (AH/H) s (AH/H)¢p (AH/H)ca (AH/H)total
3 1 0.01715%, 0.00301% 0.00000% —0.00002% 0.02014%,
Ty 9 2 0.01602%, 0.00283%, 0.00000% —0.00002%, 0.01883%,
23 3 0.01595% 0.00279% 0.00000%, —0.00002% 0.018719%,
0.01536%? 0.00260%* 0.000009%* —0.00002%> 0.01794%#
6 1 0.00000% 0.00000% —0.00058% —0.00002% —0.00060%
0.00000% 0.00000% 0.00000% —0.00002% —0.00002%,
H; 12 2 0.00000% 0.00000%, —0.00063% —0.00002% —0.00065%
0.00000% 0.00000% 0.00000% —0.00001% —0.00001%,
18 3 0.00000%, 0.00000%, —0.00058% —0.00003% —0.00061%
0.00000%, 0.060000% 0.00000%, —0.00001% —0.00001%

a After being corrected for the orthogonality to the real core.

shift at T' point with opposite sign. For the other H;
representation the core-polarization effect is negligible.
It thus appears as anticipated from the results for the
Be atom and for the Li atom and Li metal that the core
polarization is indeed positive for the conduction-
electron wave function with s character and negative for
the conduction-electron wave function with p character.
At a general point on the Fermi surface, the conduction-
electron wave function will have both s and p parts.
(d and higher components are seen to be negligible in
effect from the core polarization contribution of the
d-like degenerate H; representation in Table IV.)
Unless the p part is abnormally large, one would expect
a positive Knight shift from the combined effects of
direct and core-polarization contributions. From Loucks
and Cutler’s results® it is clear that very little of the
Fermi surface occurs around the H point while a rela-
tively large part resides around the I' point. We can
therefore conclude from our investigations that the
core-polarization effect cannot neutralize the direct
contribution to the Knight shift to bring the net result
in agreement with the vanishingly small experimental
value. The reason for the small observed Knight shift
has therefore to be sought elsewhere. The qualitative
explanation offered by Das and Sondheimer!? from a
consideration of the Landau-type contribution seems
promising. To make a quantitative analysis one would
have to adopt a formulation of the type developed by
Hebborn and Stephen!® for the Bloch wave function. In
their present form, however, the expressions developed
by Hebborn and Stephen require much more detailed
knowledge of energy bands and wave functions than is
currently available. Finally we should remind the reader
that our present calculations of the direct and core-
polarization contribution to the Knight shift are strictly
in the spirit of a one-electron picture. It is possible that
the introduction of correlation effects can affect the re-
sults significantly. However, there is no procedure cur-
rently available for a proper inclusion of many-body

effects in the calculation of conduction-electron wave
functions.

APPENDIX
From Eq. (13), we have

V2¢Is
(—' V2+ ) a¢ls,N

1s

=—[8(t)— 1| 8() [¢1) W1s. (A1)
If we define the following relations
RS04 = — (A2)
s= L1 0p)=——1, “
\[/1 1 0 ¢ , \/(47)
Ry w Vo (0,6) Pl (A3)
0 s, N= s, P)= )
b1s, 8 1,8V’ (0,8 v
and
6P1S,N= (5p)P13~ (A4)

Substituting Egs. (A2), (A3), and (A4) into Eq. (A1),
we obtain

@(%p) zdes d(3p) 2R1s d(dp)
1Sdr2 l dr dr I r dr
=[6(r)— (¥1:] 6(r) [¢15)JR1s.  (AS)
Define
F=d(5p)/dr. (A6)
Equation (AS5) reduces to
dF  dRys Ry
Ry—+2 F+2—F
dr ar 7
=[6(1)— (1| 5(0) [¥1:)IR1s.  (AT)

An integrating factor for Eq. (A7) is #2Ry, (applicable
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only when Ry, has no node), after applying this, we where §p(e) is determined from the condition

obtain Ry (015, |¥1:)=0.
G(r)=72R1s2F=/ 8(r)dr— (Y1,] 8(x) [¥1s) Doing so, we found

R:

6p(oo)=/ Plsz(r)dr/ F(r)dr. (A12)

Making use of Egs. (A11) and (A12), Eq. (A4)
Since we have boundary conditions that the wave func- becomes
tion and its derivative go to zero at infinity, we then r
have G()=0. Also from Eq. (A8) we see that G(0) §Py, y= Pn{ / F(r)dr
=G()=0. Equation (A8) therefore becomes o

X / 72Ry2dr+G(). (AS8)

PR =l s@) v [ PRuddr. (89) +/: ruoi [ Fow] . @15

From Eq. (A3), the expression for 8¢y, x is then
Using Eq. (A2), we obtain

Bbre = P“{ / P
F(7)= _M /T Plgz(r)dr (AlO) , '\/(41!') r o
Pi*r)  Ja 0 ,
and , + / P (r)dr / F(r)dr} , (Al14)
sp(r)= /w F(r)dr+6p(), (A11) where F(r) is given a5 in Eq. (AL0).
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Thermal Resistivity at Pb-Cu and Sn-Cu Interfaces between 1.3 and 2.1°K*

L. J. BarNESt AND J. R. DILLINGER
University of Wisconsin, Madison, Wisconsin
(Received 27 July 1965)

Measurements have been made of the thermal resistivity at lead-copper and tin-copper interfaces for
1.3<T<2.1°K. By the application of a magnetic field the lead or the tin could be transformed from the
superconducting to the normal state. This permitted measurements of the changes in the thermal resistivity
at the interface between two metals produced by allowing one of the metals to become superconducting.
The thermal resistivity at an interface formed by vacuum casting lead onto copper was found to
be 9.3 7737 °K cm?/W with the lead superconducting. An interface formed by growing a single crystal of
lead onto a single crystal of copper had an interface resistivity of 9.3 743 °K cm?/W with the lead super-
conducting. Upon application of a magnetic field to make the lead normal, the thermal resistivity at the inter-
face dropped to a value too small to measure reliably, less than 0.04°K cm?/W. These measurements suggest
that the heat transfer across Pb-Cu interfaces by electrons is increased considerably by changing the lead
from the superconducting to the normal state. The thermal resistivity at the interface between tin and
copper, with the tin superconducting, was about } as great as that for lead and copper, with the lead super-
conducting. An alloy zone formed at tin-copper interfaces obscures to some extent the nature of the re-
sistivity at these interfaces. However, heat transfer at Sn-Cu interfaces appears to be dominated by electrons
with the tin either superconducting or normal. Heat transfer by electrons at all interfaces behaves qualita-
tively in a manner similar to the thermal conduction by electrons in the superconductor used. A rod made
of alternate layers of Pb and Cu had a much larger thermal resistivity with the lead superconducting than
with it normal. This suggests the use of such a sandwich structure as a thermal switch.

INTRODUCTION divided by the rate at which heat is transferred across
the interface per unit area. This paper presents results
of an experimental investigation for 1.3<7'<2.1°K of
the thermal resistivities at interfaces between lead and
copper, and between tin and copper. Since application
* Work supported by the U. S. Atomic Energy Commission of a magnetic field could transform the lead or tin

and the Wisconsin Alumni Research Foundation. . .
t Present address: Atomics International Division of North from the superconducting to the normal state, it was

American Aviation, Inc., Canoga Park, California. possible to obtain information concerning the con-

HE thermal resistivity p at the interface between
two different media is defined as the temperature
discontinuity AT assumed to exist at the interface,



