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L113]-directed open orbits supported by the model CU
VI traced out in the compilation of the data for Fig. 10.
This orbit lies just inside the shaded region at a relative
k, =0.15 and at an angle 12' between the field and L110]
axis.

Based on the above arguments, we 6nd that Roaf's
phenornenological FS model CU VI is in good accord
with our galvanomagnetic measurements with respect
to Hall constant values and angular extent of various
one- and two-dimensional regions.
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Core-Polarization Contribution to the Knight Shift in Beryllium Metal*
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Direct and core-polarization contributions to the Knight shift in beryllium metal were calculated at a
number of symmetry points near the Fermi surface. The direct contribution was evaluated using wave func-
tions for the conduction electrons by the orthogonalized-plane-wave method. The contribution of the core
electrons was determined using the moment-perturbation (MP) method developed in an earlier paper. The
accuracy of the MP method was rechecked by calculating the core contribution to the hyperGne coupling
constant in the 3E2 state of the beryllium atom. Good agreement was obtained with the result of an earlier
self-consistent-Geld calculation by Goodings. For the F4 level, the direct and core contributions to the
Knight shift are 0.01536 and 0.00258%, respectively. For the two degenerate levels oi FI&, the direct con-
tributions both vanish while the core-polarization contributions are —0.00061 and —0.00001%. These re-
sults lead to the conclusion that core-polarization eBects alone can not explain the near-vanishing Knight
shift observed experimentally in beryllium metal. Some other contributions such as those from various
orbital mechanisms would therefore have to be considered.

I. INTRODUCTION

NUMBER of recent papers' ' have dealt with the
theory of the Knight shift in beryllium metal.

Earlier measurement by Knight' ' showed that the
Knight shift was less than 0.002/z, that is, essentially
zero within experimental error. The theoretical investi-
gations, on the other hand, while they differ quantita-
tively in their predictions, all lead to 6nite values of the
Knight shift which are beyond the range of experimental
error.

Since beryllium is a light metal with only one core
state, one would expect an analysis of the Knight shift
to be relatively easier compared to heavier metals. In
heavier metals the spin-orbit and other relativistic
effects and the problem of orthogonality to core states
lead to complications in the calculation of the wave
functions for conduction electrons. It is therefore im-

portant to understand the reasons for the disagreement
between theoretical and experimental results for Be.
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The 6rst source that comes to mind is possible inaccura-
cies in the wave function employed to make the theoreti-
cal estimates of Knight shift in earlier papers. Wood and
Milford' employed augmented plane-wavefunctions
based on earlier calculations by Jacques. ' They as-
sumed a spherical Fermi surface and found that the
Knight shift is appreciable. A spherical Fermi sur-
face was also assumed by Pomerantz and Das' who used
an orthogonalized-plane-wave (OPW) calculation and
found the Knight shift to be substantial. Townes,
Herring, and Knight' obtained their Knight shift result
from Herring and Hill's OPW calculation. ' Herring and
Hill determined the energy levels at a number of points
and lines in k space but did not include many OPW
functions in their calculation owing to the lack of com-

puting facilities at the time. The most recent calcula-
tions on the band structure and Fermi surface of Be
metal are due to Louis and Cutler' and Loucks, ' who
made a careful study of the potential to reach a certain
degree of self-consistency and obtained energy levels at
a number of points using fairly high order secular equa-
tions. They found quite good agreement with the availa-
ble de Haas —van Alphen data" and soft x-ray spectro-
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75-76, 17 (1956).
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scopic data. ""One would therefore expect wave func-
tions obtained from their potential to be reasonably
accurate and reliable. We have computed the energies
and wave functions at a few points in k space using their
potential and found the convergence in both energies
and wave functions to be very good. The Knight shift
at the F point wbere a substantial part of the Fermi sur-
face is located came out of our calculation to be appre-
ciable. One therefore has to look for causes other than
error in the direct Knight shift to explain the experi-
mental data. One explanation that has been proposed by
Sondbeimer and Das" is a Landau-type diamagnetic
shielding. Sondheimer and Das have made a semi-
quantitative estimate of the diamagnetic shielding using
the effective-mass approximation and showed that it is
possible to get a diamagnetic-shielding term comparable
in magnitude to the direct Knight-sbift term. In addi-
tion, one could also get an orbital contribution to the

magnetic shielding which is analogous to the Lamb and
Ramsey'4 type of contribution in molecules and non-
metals. Hebborn and Stephen" bave worked out elabo-
rate expressions for Bloch electrons which incorporate the
Landau and Lamb and Ramsey type contributions.
However, these expressions are rather difBcult to use for
quantitative estimates. The other important mecha-
nism which could contribute significantly to the Knight
shift is the core-polarization eGect which has been dis-
cussed by a number of authors. " "In the case of Be
this effect would correspond to a contribution from the
core 1s electrons due to their spin polarization by ex-
change interactions with, th.e conduction electrons. In
this paper, we have carried out a calculation of this
core-polarization effect for Be metal using the moment-
perturbation (MP) method developed in an earlier
paper. "It is found that tbe core polarization is in the
wrong direction to remove the discrepancy between the
computed direct contribution to the Knight shift and
experiment.

In Sec. II we have used the MP method to compute
tbe contribution from tbe core-polarization. effect to the
hyperfine constant for the 'Pp term of the Be 1s'2s2p
state. Our result is very close to that from Goodings'
unrestricted Hartree-Fock (UHF) calculation. 'P The
total hyperfine constant is found to be in good agree-
ment with experiment. "
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In Sec. III the wave-function calculation in Be metal
is described. Convergence tests are carried out both for
the energy and wave function.

In Sec. IV the core-polarization calculation is de-
scribed and the significance of the results is discussed.

(be~I ep)=0,

E,= (co I
Ha Lep),

and 8%'~ is the solution of the equation

(5)

with
(&o—&o)&+~= (II+ Ilier) +o, — —

(be~I +p) =0

2~&L. M. Sachs, Phys. Rev. 117, 1504 (1960).

II. RESVMR OF THE MP METHOD AND
APPLICATION TO THE TRIPLET P

STATE ('Pp) OF THE Be ATOM

In an earlier paper, '~ the theory of the MP method
was developed and it was applied to study hyperfine in-
teraction in the Li atom and Li metal. Actually, the Li
atom is the least favorable case for a perturbation ap-
proach because of tbe small number of electrons in-
volved. However, we found in the case of Li that both
perturbation approaches, the MP'r as well as the
EP" (exchange-perturbation) method gave answers
only about 15%different from the unrestricted Hartree-
Fock approach of Sachs" and Goodings. " Since Be
involves one more electron, we would expect the pertur-
bation result to be even better and in closer agreement
with the UHF method. To test this point and also to
obtain a check on the perturbed wave function to be
used subsequently for the core polarization calculation
in the metal we have performed a MP calculation on
the 'P, Be 1s'2s2p state. The result of this calculation
will be described in this section. For the sake of com-
pleteness we start with a brief resume of the theory of
the MP method.

Suppose we have an unperturbed system governed by
the zero-order Schrodinger equation

o%'o =&o%'o

We are interested here in the second-order change
E,N'" in the energy of the system, due to its combined
interaction with two first-order-perturbing Hamil-
tonians EI~ and H~. It can be shown" that to first
order in either II~ or H~, the order of application of H~
and H& is immaterial and E,&(" is given by either of the
following two expressions.

(2)

(3)

where 8%& is tbe solution of tbe first-order equation

(&o—&o) |l+z= —(&z—&.)+o,
witb
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and where
2 = (16m/3) r,rNh'I, m, (12)

The fact that E,N&'i can be obtained from either
Eq. (2) or Eq. (3) leads to two different approaches for
obtaining E,N&'&. In the problem at hand IIN describes
the Fermi contact interaction of the nuclear moment
with the core electrons and IIE, the exchange perturba-
tion potential produced by the valence electrons at the
site of the core-electron. For the exchange-perturbation
method" one determines 5&E by solving Eq. (4) and
obtains E,N "& using Eq. (2). On the other hand, for the
second approach or the moment perturbation method'
8@N is determined by solving Eq. (6) and E,N('~ is subse-

quently obtained from Eq. (3). In principle, these two
methods are entirely equivalent. However, the MP
method has some practical computational advantage
and is more flexible in its application to the solid state
than is the EP method.

The perturbation Hamiltonian IIN due to the nuclear
magnetic moment is given by

16m
r,rNA'I. S;5(r~),IIN ——P

3

where r, and rN are the magnetogyric ratios of the elec-
tron and nucleus, respectively. I is the spin of the
nucleus, S; and r; are the spin and position vectors of
the ith electron. The summation extends over all elec-
trons in the core states. The perturbation IIE can be
written as

(9)

with m, =—,'for up-spin core states and m, = ——,
' for the

down-spin state, and Bpi, N is given by the solution to
the following equation

+2

1s

This is a second-order linear inhomogeneous equation
for 8&i, N, and can be solved by standard numerical

techniques. However, in the present case since t(i, does

not have any nodes and 8&i.,N has the same angular
dependence as fi, one can use an especially simple pro-

cedure which requires only the evaluation of some in-

tegrals. This procedure is detailed in the Appendix. "It
only applies to problems in which the ground-state wave

function is nodeless and the perturbation in the wave

function has the same angular dependence as the zero-

order wave function. Writing

P]g 1

and

The expression for 8&»,N obtained by this procedure is

then the following:

where n;& is defined by

rr;s4;(r;) =Ps(r;) Ps(rs) 4;(r„)dry. (10)
r;—rI

1 P1.
341,N

g(4ir) r
F(r)dr

The summation over k extends over all valence electrons
whose spin is parallel to core state p; and rr;s vanishes
when operating on a core state jwhose spin is not parallel
to valence state k.

For the ground-state wave function we take a deter-
minant built out of all the core states with spins both
up and down. Since we are interested in eGects linear in
IIE we assume, as in previous work, '" that the down-

spin core states are not perturbed while the up-spin core
states are perturbed by IIE. The perturbed wave func-
tions 4'p+3%E and 0'p+8%N are obtained from the
zero-order wave function No by replacing the unper-
turbed one-electron wave functions in the determinant
by perturbed one-electron wave functions and keeping
terms up to erst order.

Remembering that we have only one core (1s) for
the Be atom and following the adaptation'" of D algarno's
procedure for perturbed many-electron systems to the
present problem, we obtain

4'le, N ~~/la, N q

Pi, '(r)dr F(r)dr, (16)

where F(r) is given by

8p„N was then solved numerically from Eq. (16)
using Goodings" calculated restricted Hartree-Fock
wave function of the Be atom for Pi, . A plot of the wave

functions 5P~, ~ and P~, is given in Fig. 1. The general

behavior of 6P~, N is very much the same as that ob-
tained" for Li as is to be expected.

Having obtained 8&i, ,N one can calculate E,N('& from

Eq. (3) with IIE defined as in Eq. (9). In the Be atom
1s'2s2p('Ps) state with two unpaired valence electrons,

2'This procedure is similar to a general method developed by
P. J. Price LProc. Phys. Soc. (London} A67, 383 (1954}g.We have
presented this procedure in the Appendix to make it understanda-
ble in the present context.
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TABIE I. List of contributions to hyper6ne constants in Mc/sec for the 'f 2 term of the Be 1s'222p state.

Core-polarization contribution
a 28 a,'2' a, =aP'+a, '&

Direct 2s
contribution

Total contact
contribution

Dipolar
contribution Total

Goodings'
This paper
Exp erimentalb

—21.1 8.0
—14.7—13.1

—98.8—98.8
—113.5—111.9

—8.8—8.8
—122.3—120.7—124.54

& Reference 19.
b Reference 20.

and

A.(ri)
P2 = — it'2 (r2) $1 (r2)dT2

ti'1 (r1) r12
(19)

(r )
II/ y

A.(ri)

g2

if 2n*(rs)—A.(rs) d».
r12

(2o)

In Eqs. (18), (19), and (20), the operators H&, H2„
and Hsn are one-electron operators. Using Eqs. (11)
and (18), one gets

&.N'" = 2A(~q&I. , N ~%,
~
A.)

+2A(byI, ,N ~EI2n~gi, ). (21)

To evaluate Eq. (21), we apply the usual technique of
expanding 1/ris in various spherical harmonics and per-
forming the proper angular integrations. Tbe final radial
integrals to be evaluated are then

(|'yI. ,N ~
P2,

~
it I,)= —2 P2, (ri) 8PI, ,N(ri) dri

and

r1

X — P2, (rs)Pi, (r2)dr,
rl 0

"Ps,(rs)Pi. (r2)
+ drs

r2
(22)

CO

(~4'I,N
~
+2

~ A.)= —— P2,(ri) ~PI,N(rl)drl
3 0

1
X

r1 0

rsP2„(rs) Pi, (rs) dr2

"P„(r,)P1,(r,)
+rl dr, . (23)

After performing these integrals, we obtained the
numerical results

2(h'/is N j Hss j tpis) =2X (0 067314)=0. 134628, . (24)

2(basis, N
~
II2n

~
/is) =2 X (—0.02545) = —0.0509, (25)

B contains two parts, one from the 2s electron and the
other from tbe 2P electron. Specifically, we have

HE=&2,+EI2n,
where

where tbe zero-order radial wave functions pi„p„, and

p» were taken from Goodings' restricted Hartree-Fock
calculations. "

The total contribution to E,N&'& is therefore E&'&,N
A (0.08373). This compares very favorably with
Goodings' value" of A(0.094) obtained by the UHF
procedure.

The contribution a„ in cycles, to the magnetic hyper-
fine coupling constant from the core polarization can be
obtained from the formula

a.=E,N&"/I Jh, (26)

where J is the total angular momentum quantum num-
ber. From our results we found for beryllium,
a.= —13.1 Mc/sec.

In Table I we have listed for comparison the core-
polarization contribution to the hyperiine constant ob-
tained by us as well as Goodings' UHF results. For the
sake of completeness we have also listed the direct, con-
tact and dipolar contribution from tbe 2s and 2p states.

From Table I and Eqs. (24) and (25) it can be noticed
that the core-polarization contribution from the 1s
state is the difference of two numbers, one arising from
the influence of the 2s polarizing electron and the other
due to the 2p polarizing electron. It is therefore gratify-
ing that the net a, is within about 12% of the UHF re-
sult. This observation bears out our expectation that the
perturbation approach would be better for Be than for
Li. It would be interesting to compare tbe individual
contributions from the 2s and 2p polarizing electrons for
the Mp and UHF methods. Unfortunately, Goodings
has not presented these numbers for the UHF method.

From a study of the results in the two states of the Li
atom (1s22s and 1s22p) and in the Be atom (1s22s2p), it
appears that the 2s valence electron produces a positive
core polarization when interacting with the is state
while a 2p electron produces a negative core polariza-
tion in the is state. A similar observation also applies
to tbe Li metal where it was found that the s and p parts
of the conduction electron produce positive and nega-
tive core polarization, respectively. The d part of the
wave function produces a relatively small and negative
core polarization. The opposite behavior of the s and p
electron can be understood from the sign of the product
of the valence and core wave function in the important
region where they overlap significantly. It is this region
that makes the most important contribution to the ex-
change potential H~ which ultimately determines the
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TABLE II. Convergence tests of energy eigenvalues and variational parameters of the wave function at the
symmetry points of I' and B of the brillouin zone in Be metal.

r4-
3
9

23

HI

No. of
Represen- OPVPs

tation involved

Order of
secular Eq.

(No. of
SLCOPW's) Energy&

0.9538
0.9477
0.9464

0.9387

0.9313

0.9158

Real

1.0723
1.0659
1.0642

1.0000
1.0000

0.9979
0.9979

0.9948
0.9948

Imaginary

0.0000
0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

0.0000
0.0000

Real

~ ~ ~

—0.0500—0.0498

0.0652—0.0652

(
0.0676—0.0676

Imaginary

~ ~ ~

—0.0289—0.0288

0.0000
0.0000

0.0000
0.0000

Real

~ ~ ~

0.0115

0.0384
0.0384

Variational parameters ai defined in Eq. (37)
82 CS

Imaginary

~ ~ ~

—0.0198

—0.0666—0.0666

& Refers to the bottom of the band which is at —0.1893 Ry. The Fermi energy obtained by Loucks and Cutler {Ref.8) is Ez =0.90i Ry.

atrial pl iiiSl (37)

where the a~'s denote the variational parameters of the
trial wave function and Si~"&~ is the proper (SLCOPW)
for a fixed fkif value.

Si~ &=Pi,, ci,,'xi,,' (for all k, that fk, f= fkif), (38)

were included in the summation by Loucks and Cutler'
in their energy band calculation in Be. They made no
use of group theory to factor the secular equation per-
haps because group theory is of no help at general
points in k space. Also they did not determine the 8 s
since they are only interested in the energy bands. In
our calculation, however, we are more interested in
assessing tbe importance of core-polarization effects
than in their exact quantitative evalaution; we have
therefore performed our calculation at a few points of
symmetry. At these points group-theoretical factoriza-
tion has considerable merit not only because it reduces
drastically the amount of work involved in computing
matrix elements and solving a much lower order secular
equation but also from the point of view of accuracy.
For example, regarding the I'4—level of the P point,
with the help of group theory, one only has 3 coeKci-
ents to solve instead of 23 8 s. The other twenty co-
eKcients are determined in terms of the calculated three
using exact ratios between the coeKcients which are
determined from the group of k. Since there is inevitably
some error involved in the numerical methods for solv-

ing the secular equation, a third-order secular equa-
tion would naturally involve less inaccuracy than one
of 23rd order.

Thus we set up the trial wave function built out of
symmetrized linear combination of orthogonalized plane
waves (SLCOPW) which are adequate for the irreduci-
ble representation at the symmetry points in which we

are interested

I ko I
'3oo +{~Foe &.8i 8i)—

4x
X—{1+expi(ko—k, ) ~)

0
(39)

(S, ,Si)= g Cso'*Co, ' Ik, f'~o, .
kq'kq

wher'e

4z—8 8—{1+expi(k,—k, ) ~), (40)
0

PIi« = 'V(r) sin(fk, —k, fr)rdr, (41)
fk,—k, f o

fkif o

Pi„(r) sin(
I
ki fr)dr, (42)

8i I'i„(r) sin(fk——i fr)dr,
fkif o

(43)

and ~ is the distance (nonprimitive translation) be-
tween the two atoms contained in a unit cell. We have
made use of the symmetrized coefficients Ck, ' tabulated
at six symmetry points of the Brillouin zone by Falicov'~
for his band-structure calculation on magnesium.

The secular equation

The secular equation requires the calculation of the
matrix elements (Si',IISi) and (Si.,Si). Following the
usual procedure, we obtain the following results:

(Si,IISi)= Q ck,'eci, '
kg'kq

where the C&,"s are the symmetrized coefFicients de-
termined by the group th.eory and Xg ls the usual
one-OPW expression as given in Eq. (34).

det
I
(Sp,FISi)—E(Si.,Si) I

=0

"L.M. Falicov, Phil. Trans. Roy. Soc. A255, 55 (1962).

(44)
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was then set up and evaluated for the F4 representa-
tion at the I' point and tbe two degenerate representa-
tions of Hi at the H point. Tbe resulting polynomials
were then solved for the lowest energy eigenvalues be-
cause these were close to the Fermi energy. The selec-
tion of F4—and H~ representations also provide a good
sampling of the Fermi surface since the former is s-like
and the latter non-s-like. The corresponding eigenvec-
tors (tbe variational parameters a~) were then obtained
by solving a set of simultaneous equations. All these
numerical calculations were complicated by the fact
that z is a nonprimitive translation vector and conse-
quently one has to deal with complex algebra and com-
plex numbers. The results obtained together with the
convergence tests are given in Table II.

From Table II we notice that both the energy value
and the variational parameters in tbe wave function
showed extremely good convergence with increasing
order of secular equation and consequently increasing
number of OPW's involved. Tbe convergence of the
variational parameters have particular importance in
the evaluation of the Knight shift which will be dis-
cussed in the next section.

IV. KNIGHT SHIFT AND CORE POLARIZATION
IN BERYLLIUM METAL

The usual expression for the Knight shift due to the
conduction electrons is by

(»/&4- ~=(g~/3)X. ~(la~(0) I')- (45)

where X~ is tbe spin paramagnetic susceptibility,

(~f~(0) ~')„ is the average electron density at the nu-

cleus from the electrons at the Fermi surface and V is
the volume of the crystal in which P is normalized. A
convenient expression for (~gs(0) ~'), for purposes of
computation has been given by Callaway"

(I4,(O) I
~)..=H~~~(N)?i

X )P(k,0)
~

'(
~
&gE

~

)-'dS, (46)

where m(N) is the density of states on tbe Fermi surface
and the integral extends over the whole Fermi surface.

From Eq. (46) it is clear that an accurate evaluation
of (If~(0) ~'), requires (i) a knowledge of the Fermi
surface, (ii) the variation of E with respect to k, and

(iii) the variation of the conduction-electron wave func-
tion fi, with respect to k as one traverses the Fermi
surface. Our aim in this paper is not an accurate evalu-
ation of the Knight shift but rather an investigation of
sources of error in tbe direct Knight shift and the under-
standing of the role of core polarization to determine if
the core-polarization contribution can possibly counter-
act the direct contribution to the Knight shift so as to

give the vanishingly small total Knight shift observed
experimentally. We have therefore considered the lowest
level of the F4 representation and the two degenerate
representations of Hi. The F4 representation has pri-
marily s character and therefore contributes a sub-
stantial direct Knight shift. Tbe Hi representations on
the other hand, have no s character, and therefore pro-
duce zero direct Knight shift. Any other points, on or
close to Fermi surface, will lie between these two cases.
We therefore feel that for an understanding of the direct
and core-polarization contributions to the Knight shift
the study of the I'4 and H& representations is most
informative.

In the calculation of the direct Knight shift using Eq.
(45) we need a knowledge of the spin susceptibility X„.
Feher and Kip ' obtained a value of X„=2X10 ' cgs
volume units from the area under the electron-spin-
resonance signal in Be metal. This value is about a factor
of 3 smaller than the calculated value using the result of
the density of states at the Fermi surface obtained by
both Loucks and Cutler' and Herring and Hill~ by means
of the following expression'

X.=~~'~(u),
x„=6.86)&10 ", cgs volume units.

This value is in exact agreement with the result one
gets from tbe experimental value of the low-temperature
specific heat y in Be metal" using the relation between

X~ and y in the one-electron approximation

y= ~'k'e(y)/3.

The disagreement between tbe spin-resonance value
of X~ and the theoretical value from the density-of-states
calculation is somewhat disturbing. It could arise either
out of some uncertainty in the evaluation of X„ from
the spin-resonance measurement or from the neglect of
correlation effects in tbe calculation of X~. In the
absence of definite information on this point we have
tabulated our results on the Knight shift using the spin-
resonance value.

X„=2X10 ~ cgs volume units. To obtain the re-
sults for the Knight shift pertinent to the choice of
X~=6.86X10 ~ cgs volume units, we only have to
multiply the tabulated results by a factor of 3.43.

The question of convergence in the predicted direct
contribution to the Knight shift will be considered 6rst.
In Table III we have listed the calculated values of
Pz'(0) and tbe direct Knight shift for different numbers
of SLCOPW used for the I'4—representation. It can be
seen that the direct Knight shift for 3 SLCOPW's is
only about 6 j~ less than that for 1 SLCOPW. While we
have not demonstrated tbe convergence for a general

point, it is not unreasonable to expect that the calcu-
lated direct Knight shift would be quite rapidly con-

"J. Callaway, energy Band Theory (Academic Press Inc. ,
New York, 1964).

"G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).
"R.W. Hill and P. I . Smith, Phil. Mag. 44, 636 (1953).
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TABLE III. Convergence test of (AH/H)s;„„ for I'4 level
at symmetry point F in Be metal.

Order of
secular No. of OPW's

Eq. involved

3
9

23

fr'(0)
102.3758
95.6305
95.1694
91.6885'

!

f'AH

'E H s'-.t
0.01715%
0.01602%
0.01595%
0.01536%'

a After being corrected for the normalization to the real-core states.

vergent with respect to the number of OPW's. This re-
sult is in contradiction with the conclusion arrived at by
Schneider ef a/. ' in recent work. These authors concluded
from their results for 1 and 3 SLCOPW's that the
calculated Knight shift was very poorly convergent (see
Fig. 2 of Ref. 4). Our result for 3 SLCOPW's agrees
quite well with their result but our 1 SLCOPW result
disagrees with theirs. The origin of this disagreement is
probably due to a numerical error in their calculation.
The good convergence we have obtained for the direct
Knight shift leads us to believe that the OPW method
does in fact give us a good representation of the
conduction-electron wave function near the nucleus in a
good metal. This conclusion will perhaps be inapplicable
to semimetals and semiconductors and a combination of

/ortho Ql &l+l, ortho (47)

tight-binding and OPW method proposed by Schneider
ef a/. ' may therefore be desirable in those cases. For
beryllium metal, we feel that the necessity for such a
modification of the OPW method has not been
demonstrated.

The last row in Table III gives the direct Knight
shift after correcting for the lack of orthogonality be-
tween the conduction-electron wave function P„„eand
the real-core wave function. This point has not been
considered in earlier investigations so we shall explain it
here briefly. The real-core wave function P.,i, is not ex-
pected to be significantly different from the atomic fi,
wave function. The overlap integral between the 23
OPW's and the real-core function was found to be

g, , i, lP,.„,)= —O.OO27S33.

Whenever one has two nonorthogonal states and
needs the expectation value of one-electron operator it
can be shown that one gets the same expectation value
if one uses orthogonalized orbitals which have been
orthogonalized by Schmidt's procedure. "In the present
case we found it convenient to orthogonalize the con-
duction wave function P„„sto the real-core wave func-
tion Po i,

where

R...th, ~"'~ =ps, ch, '&h, , „th.' (for all k, that
l k, l

=
l ki l), (48)

with

exp(ik r) 1
x~s o.th. '= — — Ai, (k) P exp(ik R„)li,(r—R„)—

Q(NQ) +N
A t, '(k) P exp(ik. R,)gi, (r—R„), (49)

(4~)'I'
Ai, '(k) =l —

!kni
rPi, (r) js(kr) dr —A &,(k) P&„(r)P&,(r)dr.

0

(50)

Using /ortho we obtained the Knight shift as listed in the last row of Table III. The lack of orthogonality between
conduction-electron wave function and the real-core function is thus seen to be minimal in its effect on the direct
Knight shift.

It should be noted that this type of nonorthogonality contribution to the hyperhne interaction does not occur in
atoms because the core and valence functions are orthogonal either owing to their angular parts (s and p states,
for example) or when the angular part is the same, owing to the orthogonality condition imposed on the radial

parts of the wave functions when solving the Hartree-Fock equation.
It is now clear that the vanishingly small Knight shift observed experimentally cannot be explained by errors

in the direct Knight shift calculation. We therefore proceed to an investigation of the core-polarization contribu-
tion to the Knight shift. The procedure that will be followed is the MP method which has already been used for the
Be atom in Sec. II and for the Li atom and Li metal in an earlier paper. ' In a similar manner as was done in Ref.
17,32 the core-polarization contribution to the Knight shift is given by

)AH 8~=—X.I'(2 «(5y .i l&~la, i ))
E H,„3 (51)

"B.S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957).
rr A negative sign was left out on the right-hand side of both Eqs. (43) and (47). The results in Table II are of correct sign.
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with
g'coca (&1)

B~——— g.,a*(r2)—4., 1.(r2)dr2,
4.,1.(r1)

where Re(8&, 1,~HEtp. ,i,) means the real part of (6&., 1,~IIE~$., 1,).
In the calculation on Li metal the normalization was performed over the Wigner-Seitz sphere and the integral in

Eq. (43) of Ref. 17 was also confined to the Wigner-Seitz sphere. In our present formulation, however, the integrals
in Eqs. (51) and (52) extend over the whole crystal.

Introducing Bloch functions for the real-core and the perturbed wave function in the tight-binding approxima-
tion, we have

and

Pc,ic(r) = P ezpi(k R, )&1,(r—R„)
Q(2$) " (53)

8y, ,i,(r)= p exp(ik R„)byi, E(r—R„),
Q(2Ã) ~

(54)

with i/i, and 8&1,,E defined as in Sec. II.
Making use of Eq. (37) for conduction-electron wave function f„„aand Eqs. (53) and (54) we get

Q exp( —ik, R,)byi, ~*(ri—R„)

XXk, '(ri)X22. '*(r2)—p exp(ik, .R„.)pi, (r2 —R„)dridr2. (55)
12 v

In Eq. (55) we have two types of integrals: one in which all the localized orbitals are centered about the nucleus
in question and another in which orbitals about adjacent centers are also involved. An examination of the order of
magnitude of the contribution from the latter type of integrals indicates that they make a negligible contribution;
we can therefore simplify Eq. (55) to the following form

with

(&&., 1.~IIE($., 1,)=— 2 ill« * Z Ck, 'Ck, "
gQ& i e,a,

8&1.,zr(r 1)F(r1)—F(r2)A.(r2)dr idr 2 (56)

and

F(ri) =exp(ik ri) —(42r) ' 'Bi».(ri)

F(+2)=exp( —ik, ' r2) —(42)'"Bl'», (r2)

(57)

(58)

where Bl and Bl are given in Eqs. (42) and (43).
One can now make use of the expansion:

1 1 r(' g

I'1"*(~1,A) I'1"(~2,A),
r12 1 22l+1 r&='+' ~=—

and
&ik r —42r p 2l jl(~r)Irlrc(~ 94)I l™W(~k$2)

l.m
(60)

and group the terms in Eq. (56) according to the values of L These terms arise from the corresponding i parts of the
P„„aand may be referred to as contributions from the s, p, d, parts of the conduction-electron wave function.
Thus, the s(l=o) contribution to (g. 1,, ~IIE~pc 1,) is

&&y.,1, ~IIE(g.,i,),=-
Q~Q t, t' a&s &'

/11
'll41, A' ("1)F(ri).

~

—
I
F(r2)A'1 (r2)david&2.

&12 s

(61)
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TABLE IV. List of contributions to the Knight shift for the 1 4 representation and the two degenerate
representations of III for Be metal.

Represen-
tation

HI

No. of Order of
OPW's secular

involved Eq.

3
9

23

12

Direct
contribution
(SHIH) pireet

0.01/15%
0.01602%
0.01595%
0.01536%'
0.00000%
0.00000%
0.00000%
0.00000%%
0.00000%
0 00000Fo

Core
polarization

s part
(~H/H),

0.00301%%ug

0.00283%%ug

0.00279%
0.00260%%'

0.00000%
0.00000%
0.00000%
0.00000%%
0.00000%
0.00000%

Core
polarization

p part
(~H/H). ,
0 00000%
0.00000'%%ug

0.00000%
0.00000%'

—0.00058%
0.00000%

—0.00063%
0.00000%

—0 00058'%%

0.00000'%%ug

Core
polarization

d part
(aH/H). a

—0.00002%
—0.00002%
—0.00002%%

0 00002%%uga

—0.00002%
—0.00002%
—0.00002%
—0.00001%
—0.00003%
—0.00001%

Total
(SHIH)r i.i

0.02014'%%ug

0.01883'%%

0.01871%
0.01794%'

—0.00060%
—0.00002%%
—0.00065%
—0.00001%
—0.00061%
—0.00001%

a After being corrected for the orthogonality to the real core.

shift at I' point with opposite sign. For the other IIi
representation the core-polarization effect is negligible.
It thus appears as anticipated from the results for the
Be atom and for the Li atom and Li metal that the core
polarization is indeed positive for the conduction-
electron wave function with s character and negative for
the conduction-electron wave function with p character.
At a general point on the Fermi surface, the conduction-
electron wave function will have both s and p parts.
(d and higher components are seen to be negligible in
effect from the core polarization contribution of the
d-like degenerate Hi representation in Table IV.)
Unless the p part is abnormally large, one would expect
a positive Knight shift from the combined effects of
direct and core-polarization contributions. From Loucks
and Cutler's results' it is clear that very little of the
Fermi surface occurs around the H point while a rela-
tively large part resides around the I' point. We can
therefore conclude from our investigations that the
core-polarization effect cannot neutralize the direct
contribution to the Knight shift to bring the net result
in agreement with the vanishingly small experimental
value. The reason for the small observed Knight shift
has therefore to be sought elsewhere. The qualitative
explanation offered by Das and Sondheimer" from a
consideration of the Landau-type contribution seems
promising. To make a quantitative analysis one would
have to adopt a formulation of the type developed by
Hebborn and Stephen" for the Bloch wave function. In
their present form, however, the expressions developed
by Hebborn and Stephen require much more detailed
knowledge of energy bands and wave functions than is
currently available. Finally we should remind the reader
that our present calculations of the direct and core-
polarization contribution to the Knight shift are strictly
in the spirit of a one-electron picture. It is possible that
the introduction of correlation effects can affect the re-
sults significantly. However, there is no procedure cur-
rently available for a proper inclusion of many-body

effects in the calculation of conduction-electron wave
functions.

APPENDIX

From Eq. (13), we have

I

—~'+ I Pi. , iit

iPi, =Ri, Ypg(0, &) =
r Q(4m)

(A2)

alld

0I ls,N
8&i, ,~= 8Ri, ,v Ypg(0, &)=, (A3)

r g(4~)

U1i,% (3p)+1 (A4)

Substituting Eqs. (A2), (A3), and (A4) into Eq. (A1),
we obtain

d'(bp) dRi, d(3p) Rg, d(3p)
Ri, +2 +2

dr' dr dr r dr

De6ne
=L~(r) —8 18(r)lk.)]R' (A5)

F=d(bp)/dr.

Equation (A5) reduces to

dF dR1, R1,
Ri, +2 8+2 F—-

dr dr r

(A6)

=I ~(r)-Q..I8(r) l~i )1R" (A7)

An integrating factor for Eq. (A7) is r'Ri. (applicable

=—L8()—Q .I~()IP.)34 ' (A1)

If we define the following relations
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