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The low-temperature properties of alloys of the noble metals with low concentrations of transition metals
show many anomalies, conspicuous among them relatively enormous thermoelectric powers and non-
monotonic behavior of the resistivity with temperature. We investigate to what extent these anomalies
might be explained by supposing the existence of spiraling magnetic polarizations of the electron gas, i.e.,
static spin-density waves. We discuss qualitatively how thermoelectric anomalies can arise, first in terms of
an earlier theory which requires weak ferromagnetism in the noble metals and then in terms of the spin-
density-wave hypothesis, an assumption of weak antiferromagnetism. We solve the Boltzmann equation,
including inelastic scattering, for the two theories and display the thermoelectric powers and resistivities as
functions of the temperature. We consider several different models of spin-density-wave system, one appro-
priate to electron-electron interactions proportional to delta functions in the separation, another an approxi-
mation to Coulombic interelectron forces, and finally a linear spin-density wave as the simplest case of a
multiple spin-density-wave configuration. We find that the spin-density-wave hypothesis can explain the
magnitudes of the thermoelectric anomalies. Further, we find nonmonotonic resistivity behavior. A com-
parison with experiments shows that our model is too simple to provide a detailed explanation of the anom-
alous thermoelectricity and that the nonmonotonic resistivity we find cannot be associated with that ob-

served experimentally.

INTRODUCTION

HE low-temperature behavior of the electron gas

in dilute alloys of noble metals and transition
metals has been a puzzle ever since the discovery
by Borelius and co-workers of anomalous—‘“giant”—
thermoelectric powers.! Subsequent experiments have
revealed corresponding anomalies in a wide variety of
alloy systems and many other electronic properties.?

Two aspects of the experiments are especially
striking: (1) the anomalies occur—for some effects
virtually unchanged in magnitude—for the lowest
concentrations of the transition metal impurities that
can be reliably determined, and (2) when different
properties of an anomalous alloy system are measured,
each property investigated shows an anomaly.

The nonmonotonic behavior of the resistivity of these
alloy systems has attracted much experimental and
theoretical attention. The experiments have indicated
that the appearance of the anomalies depends in a
crucial way on the existence of magnetic moments
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localized on the impurity ions? and the theoretical
studies have used this as a starting point.

The most difficult aspect of the resistivity-minimum
data to understand are the measurements on alloys of
extreme dilution, for in these, the resistivity is found
to rise monotonically as absolute zero is approached.
Two theories exist which predict this sort of behavior,
one due to Brailsford and Overhauser* which predicts a
1/T dependence at low temperatures, the second a
phenomenological discussion by Korringa and Gerritsen,
given the form of a complete theory by Kondo,® in
which the resistivity varies as log7. The experiments
favor the latter theory.

The thermoelectric anomaly has similarly attracted
attention. The most nearly successful theory of the
anomalies to date has evolved from a suggestion by
Schmitt® that the transition metal impurities are
magnetized in the host lattice and that the alloy
system is weakly ferromagnetic. Three versions of this
theory” have appeared, all substantially identical in
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content and results, differing only in technique and
transparency ; the first of these is due to Kasuya. This
is the only published theory which produces thermo-
electric powers of the order of magnitude of those seen
experimentally in the appropriate temperature range.

The assumptions of the Kasuya theory are in-
compatible with those of the Kondo theory, and Kondo’s
theory (at least in its original form) is unable to explain
the anomalous thermoelectric effect.® The temperature
dependence of the resistivity in the Kasuya theory has
been carefully examined by DeVroomen and Potters.”
The resistivity, while affected by the magnetic scatter-
ing, shows nothing but monotonic behavior.

It has been shown that the anomalous specific heats
may be understood on the basis of a spin-density-wave
model.? We reported previously’ that the model would
also produce anomalous thermoelectric powers of the
order of magnitude of experiment. We here further
explore the consequences of this model. The thermo-
electric power calculations which we discussed then
are presented. In addition, calculations and results on
the resistivity as a function of temperature are given.
We find resistivity behavior which resembles that shown
by some of the alloys of higher impurity concentration,
a minimum followed by a maximum and then a steep
drop as the temperature is lowered. Also, we find no
resistivity rise at zero for any reasonable choice of
parameters. A more extensive discussion of this calcu-
lation is available elsewhere.!*

The point of view in Ref. 9 was that the spin-density
wave in the conduction electrons was stabilized by the
energy of interaction between electron-gas polarization
and the magnetic moments of the impurities. The
conventional picture of the ground state of the pure
host was retained. The extremely low concentrations
at which the thermoelectric anomaly is observed force
us to a more radical hypothesis, that the ground states
of the pure host materials have spin-density waves.
The recent experiments of Kitchens, Steyert, and
Taylor,2 as well as Craig and Steyert!® lend support to
this notion.

We consider the ferromagnetic Kasuya model from
a qualitative point of view in an effort to understand
the physical origins of the giant thermoelectric effect.
We shall find that we have simultaneously made clear
the antiferromagnetic case.

We assume a set of one-electron states labeled by the
wave number vector k, with one-electron energy E(k),
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and occupied with probability f(k). With each state
we associate a velocity, v(k). Let us call f(k) in equi-
librium fo(k); this will be the well-known Fermi func-
tion of E(k).

The effect of an electric field is to distort the distri-
bution function f(k). This tendency is opposed by the
scattering off impurities, and a steady state is main-
tained. In general, both the response of the distribution
to the field and the effectiveness of the scattering in
restoring the equilibrium value depend upon the state
k in question. Where the scattering is relatively in-
effective, the distortion in f(k) will be large compared
to k’s for which the scattering is more effective. Our
task is to assume a model for the scattering interaction
and use this to find f(k) from which we can easily
find quantities like the electric current by summing
over k space.

Our primary concern is with the thermoelectric
power. Using Kelvin’s second relation, we can write
this as the ratio of the Peltier coefficient to the tempera-
ture, or as 7! times the Peltier heat current divided
by the electric current.

o Ze VI (LER —{)/Ty
T ef(k)v(k) '

¢ is the Fermi energy. The denominator of (1) is clearly
equal to the electric current; the numerator is of the
form of an excess (compared to {), relative (in units
of kT') energy current.

In Fig. 1 we represent f(k) for a very simple model of
conduction; the equilibrium distribution is simply
shifted along the direction of the electric field & The
contribution of most of the occupied states to the sums
in Eq. (1) is cancelled by opposite contributions of
states symmetrically located. Only the states in the
lens-shaped regions above and below { contribute to
Eq. (1). The two lenses contain the same number of
states (to order &%), and all the states have the same

¢Y)

t(k)=0 f(k) =1

Fi6. 1. A schema to represent the simplest aspects of
electrical conduction.
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(k) (to order &). But since E(k)—{ is positive in the
upper lens and negative in the lower, the contributions
of the two lenses to the numerator of Eq. (1) are equal
in magnitude and opposite in sign; the excess relative
heat current vanishes (to order &) and the thermo-
electric power vanishes. At a higher temperature than
that for which Fig. 1 is drawn, the limits of the distri-
bution would be blurred instead of sharp and the
cancellation would not be exact. This is the ordinary
thermoelectric effect. The giant thermoelectric effect
appears when the cancellation is disrupted.

The sums in Eq. (1) depend upon E(k) and v(k),
which are relatively slowly varying with energy, and
the departure of f(k) from equilibrium values. It is
clear that if our simple picture of the electrons is to
lead to giant thermopowers, the distortion of f(k),
i.e., Af(k), must be different in the upper and lower
lenses of Fig. 1. In other words, Af must be a strongly
varying, asymmetric function of the energy in the
neighborhood of the Fermi surface. Af is the resultant
of two competing processes. The electric field exerts the
same force on every electron of the assembly in-
dependent of its velocity and is hence unlikely to
produce the necessary variation. This independence of
velocity, together with an assumed independence of
velocity of the scattering behavior lead to the simple
model of Fig. 1. We look to more complicated scattering
behavior to understand the giant effect.

The probability per unit time of a scattering event
from a state k to a state k’ is proportional to f(k)
X[1—f(k’)] just on the basis of the statistics of
electrons. Let us call the remaining factor W (k'k).

aP (k'k)/dt=Ww (K'k) f(R)[1— f(K') ]. 2)

W (k'k) depends on the energy difference of the initial
and final states through energy conservation. If, in
addition, the scattering mechanism made W (k'k)
strongly dependent on the initial state energy and
asymmetric about Er, we would need to look no further
for the source of the anomaly. Such a dependence is
very difficult to justify. For the purposes of this dis-
cussion, we shall ignore the dependence of W on the
initial state energy.

We may write the expression Eq. (2) as a sum of an
equilibrium part, a higher order part which we throw
away, and a term of the order of Af:

W &k){ fo(k)[1— fo(k)]

+AfW[1— fo(k)]— fo)AS(K)}.  (3)
That in equilibrium there is no net transfer from k to k’
implies

W (K'K) = @ =B @1y (k') =W (KK),  (4)

leaving for the net transfer rate from state k to k’

W (Kk){AfR)[1— fok)+et#fo(k)]

—AfK)fok)+et*(1—fo(k)T}.  (5)
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If the scattering is purely elastic, then ¢t#=1, and the
net scattering rate is just the slowly varying W (k'k)
multiplied by the difference Af(k)—Af(k’). This leads
to the symmetrical Af which was the basis of Fig. 1
and produces no anomaly.

If the scattering is inelastic, however, then (5) is
composed of two terms

W (KK){Af(K)et#Q (o) — Af(K)Q~ ()} 5
a=[E&)—i1/kT, (6)

where Q (x,u) = (e*+1)/ (e*t#4-1). The function Q which
multiplies W (k’k) in (6) is not symmetrical about the
Fermi energy. It changes from unity to et* within a few
AE of the Fermi surface. In effect, the inelasticity has
made W (k’k) a rapidly varying, asymmetric function
about ¢.

The mere fact of the presence of inelastic scattering,
however, is not enough to insure that Af will be dis-
torted in the necessary way. The total scattering rate
out of the state k, the property which determines how
large Af(k) will be, requires summing Eq. (6) over all
final states k’. Let us consider, then, the effect of
scattering to states both higher and lower in energy
than k. The first term in Eq. (6) gives us

(W (KK)Q () e W (K'K)Q (%, —w)JAS (k). (7)

We rewrote the W factor referring to one of the scatter-
ing processes using Eq. (4). Now both of the W’s in
(7) refer to processes where the initial- and the final-
state energies have the same separation. Since we are
assuming that the basic scattering process is only
weakly dependent on the initial-state energy, W (kk’)
and W (k"k) are very nearly equal. But the remaining
factor in (7), Q(xu)+e*Q(x, —u), is symmetrical
about the Fermi energy and cannot lead to an asym-
metrical Af. The argument for the second term of (6)
is similar. To obtain a thermoelectric anomaly, there-
fore, there must be something different about energy
gaining and energy losing scattering processes.

A model in which there was only one kind of collision,
energy gaining or losing, would certainly destroy the
symmetry, but would be very difficult to justify. A
model almost as good is one for which the electrons
are divided into two groups, 4 and B. The scattering
from A to B always involves an energy gain ; scattering
from B to A always involves an energy loss.

The introduction of this difference does indeed
produce a Af which is strongly varying and asym-
metrical about {. However, if the two groups of electron
states have the same energy and velocity functions and
are alike except for the inelastic scattering behavior,
the distortion in Af about { for one group will be
precisely opposite to the distortion for the other. The
two groups will contribute equally and with opposite
sign to the numerator in Eq. (1).

The final requirement of a model producing an
anomalous thermoelectric power is that the two groups
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between which the scattering is of “one-way’’ character
shall not otherwise be identical.*

The ferromagnetic model of a dilute alloy satisfies
all these criteria. The two groups are the spin-up and
the spin-down electrons. When a spin-up electron
scatters inelastically off a magnetized impurity ion, its
spin is flipped down and the ion moment is flipped
upwards. Because of the assumed internal field aligning
the impurity moments, energy must be transferred to
the ion in this process. In becoming a spin-down
electron, the electron has lost energy. In the reverse
process, a spin-down electron becomes a spin-up
electron and gains energy from the ion. The number of
spin-up and spin-down electrons is very nearly the
same, and the energy and velocity functions are also
alike. However, the elastic scattering of the electrons
depends on whether they are aligned with the impurity
or antialigned. The elastic-scattering rate is different
for spin-up and spin-down electrons through the inter-
ference between spin-independent and S.-dependent
scattering. The conditions for a thermoelectric anomaly
are satisfied. S

To consider the case of antiferromagnetism, we need
to understand the response of the electron gas to a
field—or effective field—with an oscillating character.
We shall consider the simplest case, a field of constant
magnitude whose direction rotates as a function of
position. The field as a function of position is described

by
H=H(, cos2q-r+1,sin2q-r); L-r=x, 1,-r=y. (8)

The one-electron Hamiltonian is modified by the
addition of a term

uH (o, cos2q-r+a, sin2q-r)
=uHy(ote 24 g—e?ar), (9)

For most of the states of the electron gas, the additional
term makes only a slight difference. It couples a state
k| to a state (k—2q)?. Notice that it does not couple
a state k1 with a state (k—2q)]. It is this feature that
makes the spiral the simplest antiferromagnetic con-
figuration to deal with, for the Schrodinger equation
including Eq. (8) can be solved exactly.

The states which are strongly influenced by the
spiraling potential cannot be characterized as spin
up or spin down in terms of the quantization axis
used in the absence of the coupling. Their spins have
a spiraling character with the same period as the
spiraling field.

Figure 2 is a representation of the Fermi surface of
an electron gas, both for spin-up and spin-down states,
showing the modification of the energy surfaces caused
by the spiraling field. The energy gaps are characteristics
of a periodic potential ; they do not occur symmetrically

14 A, M. Guenault and D. K. C. MacDonald, Phil. Mag. 6, 1201
(1961).
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F1c. 2. The Fermi surfaces—spin up and spin down—for a
gas of otherwise free electrons supporting a spin-density wave.

because the state k is not coupled symmetrically with
the states k4-2q as we mentioned.

Every electron of the distribution has at least some
spiraling character to its spin, although only those
states close to the gaps are profoundly affected. All the
states of the lower branch of the distribution, the
truncated spheroids of Fig. 2, have their spiraling
components in phase with the spiraling field. All the
states of the upper branch have their spiraling com-
ponents = out of phase with it. The lower states are
lined up with the field at every point and the upper
states are antialigned.

The states exactly on the faces of the gaps have their
spins completely polarized by the spiraling field; they
are completely “down” or ‘“up” with respect to the
field, those of the lower branch being down. A magne-
tized impurity ion will line up with the direction of the
field at its site. Hence the same group of electron
states will always be ‘“up” or “‘down” with respect to
every ion in the crystal. The states away from the
gaps are neither purely “up” nor “down,” but all of the
lower branch states are more down than up, and all the
upper branch states are more up. There will obviously
be great differences in Fermi velocity, in the density
of states, in the elastic scattering, and all the other
properties of the states, between the upper and lower
branch states. If we regard the upper and lower branches
as the 4 and B groups of the previous discussion, it is
clear that all the elements of a thermoelectric anomaly
are present.

For a sufficiently large value of ¢ or Hy, there may
be no sheet of the Fermi surface in the upper states.
The scattering from states near the gap, which are
fully polarized, to states far from the gap, which are
half “up” and half “down” with respect to the ions,
has the “one-way’’ character necessary for the produc-
tion of a thermoelectric anomaly. Electrons can scatter
from the gap to the ‘“bulges” only by turning an im-
purity spin down, and in reverse only by turning the
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spin up. There is no inelastic scattering between states
close to the gap because they are all “down.”

There is inelastic scattering among the states of the
“bulges.” Also there is elastic scattering between the
gaps and the bulges. Finally, the bifurcation into two
groups is not sharp; the polarized character of a state
changes gradually as one approaches a gap. These
features are not shared by the ferromagnetic model,
where the division into two groups is sharp, where
inelastic scattering occurs only within groups. How-
ever, it is clear that the antiferromagnetic model of an
electron gas can produce anomalies in the thermo-
electric effect, reduced, perhaps in magnitude.

Ferromagnetism and the spiraling antiferromagne-
tism are examples of long-range ordering. If we admit
the simultaneous presence of several or many spin-
density waves (SDW), a single-spin-density wave
appears as nothing more than a Fourier component
of a general electron magnetization. If the impurity
spins are random, it will take a great many components
with q vectors of many orientations to describe the
structure. As a result, it will be impossible to perform
the division of the electron states into two groups with
one-way inelastic scattering. Under these circumstances,
there will be no thermoelectric anomaly; this is a
paramagnet, however, not an antiferromagnet.

The important question in applying these considera-
tions to real situations such as dilute alloys is whether
or not there is any reason to believe that a single-spin-
density wave, or a limited number of them, should be
of exceptional importance. This question is of interest
quite apart from its relevance to the understanding of
conduction anomalies. As a working hypothesis we
assume an affirmative answer and show that the
resulting thermoelectric power is large enough to
explain the experimental anomalies.

We calculate the thermoelectric power and the
conductivity of a gas of free electrons scattering from
magnetized, localized impurities. We shall consider a
simple spiral-spin-density wave in two models of the
electron-electron interaction, treated in the framework
of the Hartree-Fock approximation, the Boltzmann
equation, and first-order time-dependent perturbation
theory. We shall also consider an example of a multiple
spin-density-wave state, the linear SDW which can be
resolved into two spirals.

COMPUTATIONS

Our calculation of the transport properties is quite
simple in structure, complicated only by the awkward-
ness introduced into the expressions by the form of the
SDW one-electron wave functions and the associated
nonsphericity of the Fermi surface. We write the
Boltzmann equation

—e&- kao(k) = (df/dt)collisions ) (10)
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and linearize it so that the collision terms become

d
(—d{) =2 [WEkk){AfK)[1— fok) - fok')Af (k)}
coll, ¥’
—WEk){AfR)[1— fok')]

—folAaf(K)}],

fo(k)= (11)

exp([Ex—¢1/xD)+1

W (kk’) is evaluated by use of the Fermi “golden rule”
of first-order time-dependent perturbation theory. With
a few minor approximations which clearly do no
violence to the physics, we can solve Eq. (10) for
Af(k). With this distribution function, the sums in
Eq. (1) are evaluated and the conductivity and thermo-
electric power obtained. The operations are all
elementary.

Let us begin with a description of the electrons. If we
assume a one-electron potential of the form

d(k)+e(K)oA-c (W) [ote 2 to—eiar]  (12)
we may easily find eigenfunctions
Y= (1/4/Q)eilE®+aale
X [A1 ()¢ &= T4 A5 (K)ot 40> 167,
E(k)— (k+q)*+e(k)
(13)

{0 HLE®R) — (k+a)+ (k) Ty
. c(k)
{0+ [E®)— (k+q)+e (k) 3’
E(k)=F+¢—[(2k-q— e(k) 4 (k) 2,
oB=—0,
h=2m=1.

As(k

Used as trial functions in the Hartree-Fock equation,
these eigenfunctions lead to a one-electron potential
of the form of (12), and integral equations for the
functions ¢(k), d(k), and e(k). In particular,
c)=— ¥  V({kK)4:(K)4:(K),

k' occupied

(14)

where V(k,k’) is the k—k’ Fourier component of the
electron-electron interaction. When we approximate
V (k') by a constant, we may obtain ¢ as the root of a
transcendental equation. e vanishes, and d becomes a
constant having no effect on the physics. With this
model of the interaction, the spin-density-wave con-
figuration is no longer the ground state of the electron
gas.’® We shall work with this model nonetheless
because of its greater simplicity. We shall discuss the

5 A. W. Overhauser, Phys. Rev. 128, 1437 (1962).
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probable effect of this assumption later, but it is clear
even now that nothing important is lost thereby.

A second set of solutions to the Schrodinger equation
with the potential (12), the upper-band states men-
tioned in the preceding section, are of similar form.

kau: [Blei(k—q) T Bttt "ﬁ] (1/\/9)61‘E,,(k)t,
Bi=—4,(k),
By=4:(k),
Eu(k)=F+g+[(2k-q)*+ (k)]

To avoid obscuring the argument, we shall first carry
out the discussion as if none of these states were occu-
pied; relaxing this restriction will be easy.

We assume a form for the interaction of the electrons
with the magnetized impurities,

SrVE—R)+J(x—R)é-Sr. (16)

Various R refer to different scattering sites; Sg is an
angular momentum associated with each site. The axis
of quantization is chosen to lie along the direction of
the conduction-electron polarization at the site. This z
direction is different from that in Egs. (13) and (15).
Since the interaction (16) involves the electron spin,
we must express the electron-spin operators &, 6+,
referred to the polarization axes in terms of those
implied in Egs. (13) and (15)

(15)

5,=0,cos2q-R+o, sin2q-R,

dt=0,41 o, sin2q-R—o, cos2q-R]. @7
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Our unperturbed states of the combined electron-
impurity system are Slater determinants of functions
of the type Egs. (13) and (15), multiplied by prod-
ucts of angular momentum wave functions oriented
by the polarization. The states of differing S,z are
split by the diagonal elements of the interaction
J(0) Xkoce A1(k)A2(k), and we use the off-diagonal
terms to calculate the scattering.

The scattering events which come from the spin-
independent part of the interaction and the &, part of
the spin-dependent term conserve the one-electron
energy E(k). The remaining part of the interaction,
proportional to ¢+S~ or -5+, flips the impurity and
electron spin. Since the levels of the impurity spin are
split by the interaction, the collisions caused by the
flipping terms are inelastic from the point of view of
the electrons alone.

The matrix elements of the scattering interaction
will be proportional to certain Fourier components of
the functions ¥ (r—R) and J(r—R). We approximate
these functions by constants. In systems where our
assumption of localized impurities is valid, the errors
introduced by this assumption will not be serious.
Furthermore, in the ferromagnetic case where the
transport problem may be solved without recourse to
this approximation, the results may be compared and
are found to be the same in all significant respects.!t
With this assumption, we may write W (kk’) as the
sum of three terms.

Wok'k)= (CV[A1(K)A1(k)+ A2 (k) Ao (k) 14+ MT[A:1 (k) A1(k) — A2 (k) 42(k) 7)oy 2N /22)S(E (k) — E (k)

WH(K'k)=172(A1 A1— Ao’ Ast A2 Ay — Ay A1) (87)2)ay 2N /2)S(E(K') — E (k)+AE),

(18)

W-(Kk)=2172(4/A1— A2 Ao+ A 41— A1 A2)X(8§7)2)av (e N /) (E (k") — E (k) — AE) ,

(8%)2=S(S+1)—M (M+1), M=S,,
AE=uxT=Zeeman splitting.

The angular brackets indicate a thermodynamic average over the Zeeman levels of the scattering centers. These
expressions can be cast in a form which better illustrates the properties we shall use in finding the solution of the

Boltzmann equation.

WO (k'k) = (wN /Q2){ V2(1-+sing sing’+ cosg cose’)—2 VI (M ).y (sing-+sing’)

“+{M?)sxJ? (14-sing sing’— cos¢ cos¢’)}8 (E'—E),

W=&K'k)= (xN/292)J* (8*)*)av (1Fsing) (1£sing’ )6 (E'— ELAE),

— e8-Vifom— (@/87) / CIOE) (Af—AS")

+WH KK (AfQ(—x, u)—Af'Q7 (2, —w))+e W~ (WK)[ASQ (wu)— Af Q7 (—2x, —p)TJdk', (19)

where we have defined

Sin¢kE —2A 1(k)A z(k) .

(20)

Singx is an even function under inversion of the argument & and cos¢y is odd. In this form, the Boltzmann equation
is soluble, for Eq. (19) is an expression for Af in terms of sing and cos¢. Since the functional form of Af1 therefore
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known, except possibly for constants determined by integrals of Af, the integrals may all be performed and simple
algebraic relations found for the unknown constants. It is at this stage that we have used our assumption about

the constant Fourier coefficients of the interaction potentials, for this assumption gives the kernel in Eq. (19)

the simple, degenerate form which permits the solution.

If we define Af=0df,/dEV,E- &7 (k), we have for the electric current

b ViE dfo
I= (69/87r3)/ / 7(f)——————dS(E)—dx, x=[E()—{]/«T.
—t/kr J 8(E) B dx

g'VkE
|V

! (21)

For electric fields normal to the direction of the spin-density-wave vector,

Af
TN= =
8-VrEdfo/dE g+hsing

= (eQ8n%/ N ){ (V4 (M?)avJ?) (P5(E)+Ps(E) sing)—2VJI(M )ow(Ps(E)— Ps(E) sing)

FLIH (8 )ar[(Ps(E—AE)+Po(E—AE)) (1—sing)Q(—w, 1)

while if & and q are parallel,

+ (Ps(E+AE)— Ps(E+AE)) (14-sin)Q (z,) [} 45 (22)
P;,(E)E/&(E—E(k’))dk’ , PG(E)E/(S(E—E(k')) sing’dk’; (23)
2aN
[cos¢/ (c cotp—24? cos¢):|l: 5 (V2—(M?)arJ?) cos¢’rx (¢")[c cote’ —2¢? cose’ 1dS ]
S(BK)
(24)

Tp=1§1 14+

e— (wN /@) (V2— (M?)av]?)

To include the effect of the states of the upper band,
the integrals of Eqgs. (21) through (24) are extended
over the upper-band sheet of the Fermi surface. The
corresponding expressions for the excess heat current
are different only in the appearance of an additional
factor x in the integrand. In the curves that follow, the
functions P;(E4=AE) and Pg(E4=AE) have been
approximated by their values at the Fermi surface,
since they are quite slowly varying. The effect of this
final approximation is the failure of the ordinary
thermoelectric effect to appear.*

RESULTS

The resistivity and the thermoelectric power were
evaluated from the expressions of the preceding section
for selected values of the parameters. We first examined
the thermoelectric power as a function of temperature
for a spin-density-wave vector magnitude equal to the
Fermi diameter, for the Hartree-Fock theory of the
free-electron gas predicts a spin-density-wave in-
stability at about this wavelength. In Fig. 3 we show
some typical results.

The temperature is measured in units of AE/k, the
thermopower in «/¢; for a fractional polarization of 89,
and J=0.03 eV, T'=1 corresponds to 29°K. The
magnitude of ¢ is that approptiate for an electron
density of 10% cm=3, The amplitude of the spin-density

7n(¢') cos’¢’dS
S(EK)

wave has been chosen so that the fractional polarization
of the electron gas is 0.08.
These curves share some features of the experimental
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F16. 3. Thermoelectric power as a function of temperature for
a single short-wavelength spin-density-wave electron gas. “Longi-
tudinal” and “transverse” describe the orientation of the electric
field with respect to the spin-density-wave vector. The thermo-
electric power is expressed in units of (x/e)=86.3 xV/deg; the
temperature in units of (Zeeman splitting) /.
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dilute alloys results in that they show a sharp rise or
drop from zero at the lowest temperatures, reach a
maximum and then decay. In Fig. 3, however, the
magnitude of the effect is still too small by at least a
factor 10 in comparison with the experiments. Also,
the effect with E transverse to q has the wrong sign.

We may replace the constant ¢ in our equations by a
function of wave vector which diminishes for k far from
the energy gap. Constant ¢ is the condition obtaining
when the electron-electron interaction matrix element
is assumed a constant. The diminishing ¢(k) should
provide a better approximation to the behavior of an
electron gas less effectively screened than the constant
matrix element implies. In this ‘“‘unscreened” model,
the spiraling electron polarization drops more abruptly
as a function of displacement of k from the gap. The
division of the electrons into two scattering groups is
thereby sharpened.

In Fig. 4 we see the effect of this modification on the
thermoelectric power. The increase is not great enough
to bring the theory in line with the experiments.

The expected fall off in ¢ as a function of k allows us
to consider linear spin density waves, for when the
energy gaps associated with two spirals of different q
are widely separated in %k space, we may regard the
two spirals as essentially noninteracting and approxi-
mate the electron wave functions with those ap-
propriate to the energy gap nearest. When the wave
vectors of two spin-density waves are equal and
opposite, then the net electron polarization as probed
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F16. 4. Thermoelectric power as a function of temperature for
screened and unscreened models of the electron gas. The param-
eters have been adjusted so that the fractional antiferromagnetic
polarization of the electron gas, and hence the temperature scales,
will be comparable in the two models.
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by localized moments is homogeneous in direction and
varies sinusoidally in magnitude. When the wave
vector q is small, however, the strongly perturbed
regions in % space are near one another, and the inter-
action between the two spirals must be considered,
making the problem much more difficult.

The scattering behavior is quite different in the
linear and spiral cases. With a linear spin-density wave,
the impurity spins do not all see the same internal field,
as in the spiral. Hence scattering off different ions
involves different inelasticities. As a function of tem-
perature we may therefore expect to see the features
of the transport coefficients broadened and shifted in
the low-temperature direction. The spatially varying
components of the electron spins still spiral; the ion
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q =144 x 10°

0.005H SPI.
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Fie. 5. Thermoelectric power versus temperature for single
and double spiral-spin-density waves, spiral and linear SDW’s,
respectively. The maximum Zeeman splitting in the linear model
equals the splitting for the spiraling case.

spins, aligned by the total electron polarization, are
quantized along a fixed direction. Therefore, except
where the polarization directions of the two con-
tributing spirals are coincident, the strongly polarized
electrons do not line up with the spin of the ion from
which they are scattered, in contrast to the single
spiral case. This weakens the one-wayness of the
scattering, for it is now possible for an electron at a gap
to scatter by flipping an ion spin up, losing energy in
the process, a type of event forbidden with a single
spiral. We expect a reduced thermoelectric anomaly.

Figure 5 contrasts the thermoelectric-power calcu-
lation for the linear and spiral cases. The parameters
have been adjusted so that the total electron polari-
zation is the same fraction in both cases. The use of an
unreasonably small ion spin (S=3%), to simplify some
of the intermediate calculations has reduced the effect.
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Also, the modification of the wave functions un-
perturbed by the first spiral by the introduction of the
second spiral has profoundly affected the longitudinal
effect.

The temperature behavior of the resistivity for the
cases of Fig. 5 is shown in Fig. 6. These curves are
interesting because, together with a phonon contri-
bution, they show a resistivity minimum followed by a
maximum. We regard them as a curiosity, however,
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Fic. 6. Resistivity as a function of temperature, measured
relative to the resistivity at 0 deg for the linear and spiral models.
For V/J <0, the maxima disappear.

rather than as an important result. Relative to the peak
in the thermoelectric effect, the resistivity maxima of
Fig. 6 come at too high a temperature. Furthermore,
the sign of V/J is opposite both to what it is usually
assumed to be and to that which is necessary to obtain
the correct sign of the thermopower (Fig. 7)1; the
interesting features of Fig. 6 do not survive the sign
change.

16 Cf., Eq. (16).
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F16. 7. Thermoelectric power versus temperature for a long-
wavelength, spiral spin-density-wave model. The maximum
magnitude of .S in 7a is approximately 23 uV/deg.

Figure 7 shows the thermoelectric power calculated
for a spin-density wave vector less than one-tenth the
Fermi radius. The dramatic increase in the effect is
due to the substantial population of states of the upper
band. We notice that the thermoelectric power has
the same sign as V/J; this feature is shared by the
Kasuya model. The maximum magnitude of the thermo-
power in these curves is a little over 23 uV/deg.

We have already remarked on the Hartree-Fock
instability which might lead to a q vector spanning the
Fermi surface. The narrow necks where the Fermi
surfaces of the noble metals make contact with the
Brillouin-zone edges could be spanned by a q vector
of the size necessary to produce Fig. 7.

We conclude that the spin-density-wave hypothesis
can lead to large thermoelectric anomalies in a paramag-
netic alloy. However, a consistent interpretation of
observed transport anomalies on this basis does not
appear easy, if at all possible.



