PHYSICAL REVIEW VOLUME

141,

NUMBER 2 JANUARY 1966

Electron Distribution about an Edge Dislocation in a Metal

R. A. BrowN
Department of Physics, Monash University, Victoria, Australia
(Received 27 May 1965; revised manuscript received 13 September 1965)

The self-consistent electrostatic potential and charge density associated with a straight edge dislocation
in a free-electron metal are calculated to the first order in perturbation theory, the positive-ion background
being replaced by a continuum of positive charge which is assumed to deform according to the equations of
isotropic elasticity. The potential obtained is identical with the deformation potential outside the core of the
dislocation, but approaches zero on the dislocation line. In contrast to the deformation-potential approach,
the screening by the conduction electrons of the positive charge shift is incomplete, with the result that the
total charge density behaves as r~52sin (2k;7+1n) outside the core of the dislocation. The effects of the
core region, which is not well described by the model, are briefly considered, and the effects of the periodic
lattice are obtained in the nearly-free-electron approximation.

I. INTRODUCTION

HE relative freedom of the valence electrons to
move through the crystal is the fundamental
characteristic distinguishing metals from nonmetals;
thus it is not surprising that properties typical of metals
in general are quite well explained by the familiar
“free-electron” model. If we examine such properties
more closely, seeking the effect of the individual struc-
ture of the crystal of each metallic element while at the
same time emphasizing the characteristic freedom of the
valence electrons, we are led in a natural way to the so-
called “nearly-free-electron” model. Results of such
studies have indicated the effect of the periodic lattice
structure to be surprisingly small; this has been dis-
cussed by Cohen,! following the work of Phillips and
Kleinman,?® who attributes the smallness of the lattice
effect to the partial screening of the ion-core potentials
by the conduction electrons.

Since certain broad properties of perfect metal crys-
tals can be understood in term of the free-electron
model, it seems desirable to apply a similar treatment
to the study of those properties of defect crystals
which do not depend critically on the individual lattice
structure, and likewise to estimate the effect of this
structure by use of the nearly-free-electron model. In
this paper we apply these ideas to the calculation of the
electrostatic potential and charge distribution about an
isolated, straight, edge dislocation in a metal. In addi-
tion to the intrinsic interest of the problem, these
quantities are of interest for the study of properties such
as nuclear-magnetic-resonance line broadening, residual
electrical resistance in cold-worked crystals, and the
electrical interaction of dislocations with solute atoms
and other dislocations; however, such applications will
not be considered here.

1 M. H. Cohen, in T/e Fermi Surface, edited by W. A. Harrison
and M. B. Webb (John Wiley & Sons, Inc., New York, 1960),
p- 318.

2 J. C. Phillips, and L. Kleinman, Phys. Rev. 116, 287 (1959).

3 L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).

141

II. DESCRIPTION OF THE METHOD

We start with the unperturbed metal consisting of a
lattice of positive ions and conduction electrons, the
latter being described either by free-electron or nearly-
free-electron wave functions. On introducing the defect
we then consider the positive ion background to undergo
displacements given by the equations of isotropic
elasticity, and then let the electrons move so that the
resulting potential is self-consistent in the Hartree
sense. In the interest of simplicity, and in the same
spirit as similar calculations for the case of point de-
fects,*® the calculation is carried out to first order in
perturbation theory; such a procedure may be expected
to be satisfactory provided the perturbed wave func-
tions and eigenvalues differ only slightly from the un-
perturbed ones—in particular this precludes the forma-
tion of bound states on the dislocation. Fortunately the
potential and charge density derived from this treatment
are of a magnitude consistent with the use of first-order
theory. Section V deals with this point in more detail.

The procedure outlined above assumes that the posi-
tions taken by the ions in the defect crystal are not in-
fluenced by the conduction electrons. This idea has been
used by several authors,”® in calculating atomic dis-
placements about defects in close-packed metals, where
the effects of the Born-Mayer closed-shell repulsion be-
tween neighboring ions are shown to dominate both
conduction-electron effects and those of electrostatic
interactions between the ions. The approximation is
presumably not so good for body-centered cubic metals,
but even here we can suppose any further relaxation of
the ions, due to the calculated conduction-electron re-
distribution, to be of secondary importance, since, as is
shown in Sec. V, the extra strain due to the motion of
the ions in the electrostatic field of the dislocation is
considerably smaller than the initial elastic strain, at

4 E. Daniel, J. Phys. Radium 23, 602 (1962).

5 A. Blandin, J. Phys. Radium 22, 507 (1961).
( 6J.)S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
1960).

7H. B. Huntington, Phys. Rev. 91, 1092 (1953).

8 L. Tewordt, Phys. Rev. 109, 61 (1958).
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least outside a small core region surrounding the
dislocation.

Since the method uses the elastic expressions for the
lattice dilatation, it is obviously incapable of treating
the core region properly. We return to this point in
Sec. V.

III. FREE-ELECTRON TREATMENT

Describing the unperturbed crystal by the {free-
electron model, we apply the treatment outlined in Sec.
IT to the case of an isolated, straight edge dislocation of
Burgers vector b. We denote the perturbed charge
density and self-consistent potential by p(r), V(r), re-
spectively, define the Fourier transform over the crystal
of volume Q by

F@=o f et f(r)dr, 3.0

and obtain by a procedure similar to that of Ziman,®
(see Appendix A),

V(@)=p+(@leg?K () T

and 3.2)

p-(@)=p+()[1—-1/K(q)].

Rationalized mksa units are used throughout. The
charge density transforms 5, and p_ refer to the con-
tributions to the charge shift from the positive ion back-
ground and the conduction electrons, respectively, while
K(q), the static dielectric constant of the electron gas,
is given in this self-consistent-field (SCF) approxima-
tion by

kyme? dk2—q? 2ks+q
K(g)=1+ ’ I—1' B Wi ] (3.3)

T 30}
el | dkg  2k;—g
k; being the wave vector at the free-electron Fermi
surface.
We take our crystal to be a cylinder of large length L
and radius R, with the dislocation line as axis. The
theory of isotropic elasticity!? then gives

P

p+(r)=enyBr-1sing,
2r\1—»

for a crystal with Poisson’s ratio » and an unperturbed
density of n, ions per unit volume, each of charge Ze.

We introduce the right-handed orthonormal vectors
(1,j,d), with d along the dislocation axis, i in the slip
plane, and j directed into the compressed half of the
crystal, and write

q=1¢ cosn+j¢ sing+dx,

9 J. M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambridge, England, 1964), Chap. 5.

0 A, H. Cottrell, Dislocations and Plastic Flow in Crystals
(Oxford University Press, London, 1953), p. 40.
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to obtain, on using (3.4) in (3.1),

p(Q)=—(4menoBiQ0 ) E13(x) sing,  (3.5)

which on substitution in (3.2) and carrying out the in-
verse Fourier transforms yields finally

V()= enaBer sing / IOIERETE,
: (3.6)
o_(r)=—enoB sin¢/ Ji(rE)[1—1/K(8)]dé,

0

where J; is the Bessel function of the first kind and first
order. With

V(r)=F,(r) sing, p(r)="F,(r)sing,

we show the form of F, and F, in Figs. 1 and 2 using
constants typical of copper.
Analysis of the integrals of Eqgs. (3.6) shows that as
r—0,
V(r) = — (enoB/2¢) sing[r Inr+0(r) ],
o—(r) = (noBk*med/24nhe)
Xsing[7® Inr+-0(r*) ],

3.7

(3.8

while, as r > (see Appendix B),

1’l0B1['2h2
V(t)~—
kyme

1 sin(Rkp+1in)
Xsin¢[~+C——

7 (2kgr)si2 ot )] » 39)

and
p—(r)~—enoB

1 sin(2kgr+1ir)

X sin¢|i——D————~—~+ o(r—m)] . (3.10)

7 (Zkﬂ') 5/2

Here,
/e;m2e4(2/7r)”2|‘ me: 2
C= 4k 4+ ] ,
mieg2ht L 2rlegh?
and
4dr2ehke s

me?

Figures 1 and 2 show the leading terms in Egs. (3.9)
and (3.10) to be excellent approximations up to less
than a lattice constant from the dislocation line.

The total charge density at large distances from the
dislocation line is obtained by adding Eq. (3.4) to Eq.
(3.10) and oscillates according to

o(r)~enyBD singX (2k ;)52 sin(2ksr+31m). (3.11)
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IV. NEARLY-FREE-ELECTRON TREATMENT Vr(r) is the free-electron contribution given by the

first of Egs. (3.
We carry through the same procedure as that used to rst of Egs. (3.6), and

obtain Egs. (3.6) except that we use nearly-free-
electron wave functions and obtain for the SCF

Ua(r)=2_ ¢'*C(q)C(n+q) Ba(q)p+(n+q). (4.2)
potential,
V)=Vt)+Vr@)+2) Ualr),

(4.1) Thesumin Eq. (4.1) is over all nonzero reciprocal lattice

vectors n; that in Eq. (4.2) is over all wave vectors q.

where V(r) is the unperturbed periodic lattice potential, The functions C(q) and By(q) are defined by

Clg)="[eq?K(9)T1,
Ba(q)=—(16m%%/ 7@V o(n) i {(1— 54,0 (| k|*— |k+aq|?)(|k+aq|*~ |k+q+n[2) ]
+(1—5q,0[(| k] *— |k+q|?) (| k| *— [k—n|?) 4 (1—8q,—a)[(| k| >~ [ k+n[|?) (| k| >~ |k+q+n| ) ]
+(1—8q,—a)[(| k+q+n|>— [k+q|?) (| k|*— | k+q+n|2)]}.

Lengthy calculations show that for monovalent metals we obtain from Eq. (4.1):

noBmeZ\simj) »2 Vo(n) cosn-r

V(e)~Vx)+Ve()+ (

s

eohzkf / 7

where n=ya-}pud, the unit vectors a and d being, re-

spectively, perpendicular to and parallel to the disloca-
tion line.

V. DISCUSSION

Although drawn for the case of copper, the general
shape of the graphs in Figs. 1 and 2 is the same for all
metals. We see from these graphs that

lo_(r)/ens| <0.13, |V(®)[<0.77V.  (5.1)

Both these results are consistent with the use of first-
order perturbation theory. The first suggests that the
average change in the magnitude of an electron’s wave
function is less than 1/20 of its unperturbed value. The
second shows the perturbation potential to be rather
less than the average lattice potential for copper which
the results of Ziman!! indicate is greater than 3.5 eV.
Thus our use of first-order perturbation theory is
justified to at least the same extent as our adoption of
the nearly-free-electron model which treats the lattice
potential as a first-order perturbation. We further note

F(r)
VoLT
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F16. 1. —— Poten-
0.6 tial from Eq. (3.6);
————— asymptotic
form

04

0.2

0 1

i J, M. Ziman, Advan. Phys. 10, 1 (1961).

»#0

! ("2_2”kf>+0<r~l>} , (4.3)

Wt/ DnK () Pt 2uk;

that the perturbation (5.1) is also considerably less than
the free-electron Fermi energy of 7.1 eV for copper.

Using Eq. (3.9) we see that the electrostatic force on
an ion due to the dislocation falls off as 2 and hence
causes additional strains which are negligible compared
to the original elastic strains outside a core region whose
size depends on the nature of the inter-ionic forces,”12
and is calculated to be about three lattice constants in
copper and about ten in sodium. It is probably within
core-regions of similar size that the elastic continuum
picture becomes inadequate anyway, so we may again
regard our results as being consistent with the model
originally proposed.

The first term in Eq. (3.9) is identical with the de-
formation potential of Dexter,' but unlike the latter we
do not require perfect screening of the positive charge
shift, and in fact obtain a resultant charge density which

- {9}
w'x% 15

. . "
0 1 2 3"

F1c. 2. —— Electronic charge density from Eq. (3.6);
——~— asymptotic form.

2L, A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).

18 D. L. Dexter, Phys. Rev. 86, 770 (1952).
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oscillates at large distances from the dislocation accord-
ing to Eq. (3.11). Similar oscillations in charge density
have been obtained by Flynn,!* who considers the scat-
tering of electrons from an axially symmetric singularity,
and by several authors*® for the case of a point
singularity.

The second-order terms of Egs. (3.9) and (3.10) are
readily seen to arise from the singularity (infinite
gradient) at ¢=2k; of the dielectric constant K(g).
This together with Flynn’s result, indicates that these
oscillations are characteristic of the structure of the
electron gas and do not depend essentially on the nature
of the perturbing influence, provided this be some sort
of line defect. On the other hand the first-order terms
are clearly a result of the extended nature of the positive
charge shift.

These ideas assume some importance when we con-
sider the core of the dislocation. Clearly the model can-
not hope to describe the state within this core region, so
we will be concerned only with the effect of the core on
the region outside it. It is readily verified that the lead-
ing terms of Egs. (3.9) and (3.10) are unchanged by the
fact that the form (3.4) for the dilatation is valid only
up to an inner radius which we denote by 7¢; also the
discussion of the previous paragraph indicates that any
further perturbation on that already treated, being con-
fined as it is to a cylinder of radius 7,, leads to effects of
order —5/2 at large distances from the core. We may
therefore suppose the dominant terms in the potential
and electronic charge density of Egs. (3.9) and (3.10)
to be unchanged by any core effects, although the total
charge density of Eq. (3.11) will be affected.

With regard to the nearly-free-electron corrections to
the potential, we find from Eq. (4.3) that these are of
order 19, of the free-electron potential, which is about
ten times the correction found by Gousseland,!® who
considers the scattering of nearly free electrons by a
localized point potential.

APPENDIX A

Apart from those assumptions necessary for the use
of the SCF approximation at any time, Ziman® further
assumes that each Fourier component of the perturba-
tion can be treated independently. Defining the con-
tribution V_(r) of the electron redistribution to the
total (SCF) potential V(r) by Poisson’s equation,
V2V _(r)=—p_(r), this latter assumption leads to

«g?V_(q)=p-(q), (A1)

which is essentially Ziman’s Eq. (5.8).

It is easy to show from the results of Sec. III that
Eq. (A1) is not satisfied. Fortunately however one can
obtain Eqs. (3.2) without making the above-mentioned
assumption, but by replacing it with another which
proves to be justified in the light of the final result.

1 C, P. Flynn, Phys. Rev. 125, 881 (1962).
15 G. Gousseland, J. Phys. Radium 23, 928 (1962).
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Specifically one integrates Poisson’s equation connecting
the charge density and potential to obtain, using Green’s
theorem,

[ e 0t [g?V (r)—e"p(r) ] dr
=/ [ vV (r)—V(r) Ve ier]-dS, (A2)
s

the integral on the right being over the surface .S of the
crystal.

In general, the function V(r) will not satisfy every-
where the continuity and differentiability conditions
required for Green’s theorem, and one must assume that
any such singularities do not alter Eq. (A2). Further we
assume V(r) approaches zero in such a way that the
integral over the curved surface of our cylindrical crys-
tal vanishes as the size of the crystal becomes infinite;
periodic boundary conditions cause the integrals over
the two ends to cancel and so we write

eg?V(@)=p(0) . (A3)

Equations (3.2) may be deduced from (A3) without
using (A1), and on examining the resulting potential
V(r) it is found to be consistent with the assumptions of
the previous paragraph and so with Eq. (A3), but the
potential V_(r) is found to be inconsistent with (Al).

APPENDIX B

We briefly outline the derivation of the asymptotic
expression (3.9) for V(r). Introducing the lattice con-
stant ¢, and changing to dimensionless variables,
p=ra"', u= fa, the calculation of V from Eq. (3.6) re-
duces essentially to the calculation of

I(o)= f ) Ta(pu) du (B1)

where G(u)=[u?K(a'u) . Integrating Eq. (B1) by
parts, we have

() =p"G(0) 45~ f

0

0

Jolpu)G'(u) du.  (B2)

The first term of Eq. (B2) becomes the first term in Eq.
(3.9). The integral in (B2) behaves asymptotically as
the second term of (3.9); this is best seen by writing it
as a double Fourier transform using the theorem?¢

/ wf(u)Jo(pu) du=(2w)~!

x [ f T (y?102] expli(gtny)] di dy,

16T, N. Sneddon, Fourier Transforms (McGraw-Hill Book
Company, Inc., New York, 1951).
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where p=(£2+417?2)1/2, In particular, setting £=0 we have

/ uf(u)Jo(pu) du= (2mr)1

X / / ST y?)12] explipy) di dy.  (B3)

-—00
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We now substitute G'(u) for uf(u), and evaluate the
Fourier transform in Eq. (B3) asymptotically using the
methods of Lighthill,’” and then integrate with respect
to x to obtain the result expressed in Eq. (3.9).

17 M. J. Lighthill, Inéroduction to Fourier Analysis and General-
ised Functions (Cambridge University Press, Cambridge, England,
1959).
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Properties of F Centers in NaF
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A weak intensity emission, centered at 785 my, is identified as the F photoluminescence in NaF. The
temperature dependence of photoionization and photoluminescence of F centers is investigated. Two thermal
activation energies are found: AEz=0.06 eV for the photoluminescence, and AE;=0.12 €V for the photo-
ionization efficiency. The nature of the quenching mechanism of the F luminescence is discussed.

I. INTRODUCTION

N the last few years many studies have been carried
out on the emission and photoionization of the
excited F centers in alkali halides. From the dependence
of these phenomena on the photostimulation tempera-
tures, information has been gained on the interaction
of the F excited level with the crystal lattice. The
results on KCl and KBr show that the temperature
dependence of the luminescence yield corresponds to
the same thermal activation energy as the photocon-
ductivity intensity. This confirms that the temperature
dependence of the two effects is controlled by the
ionization process of the excited state of the F centers.!?
Other alkali halides, however, do not show the same
behavior. For instance, in LiF no F luminescence has
been found, nor has a dependence of the F photocon-
ductivity on the crystal temperature been detected.?
The aim of this research is to examine the behavior
of the F center in NaF by studying the temperature
dependence of the photoluminescence and photoioni-
zation of the center. In Sec. III the parameters of the
F luminescence are briefly reported. In a following
section the dependence of the emission and photo-
conductivity as a function of temperature is described
and discussed.

II. EXPERIMENTAL

NaF slices (~7X7X1 mm?) are cleaved from mono-
crystals supplied by Harshaw Chemical Company and

* Gruppo Nazionale di Struttura della Materia del Consiglio
Nazionale delle Ricerche.

1 R. K. Swank and F. C. Brown, Phys. Rev. 130, 34 (1963).

2 G. Spinolo and F. C. Brown, Phys. Rev. 135, A450 (1964).

3 G. Spinolo (private communication).

by Dr. Korth of Kiel. The samples are irradiated with
an OEG 50 x-ray tube of Machlet; the x rays are filtered
through a 0.5-mm target of NaF to ensure a uniform ab-
sorption. The crystals are photostimulated through a
double monochromator with quartz prisms. Two lamps,
both having 1 kW power, are used as light sources: a hot
tungsten filament lamp for the visible range, and a
Hanovia hydrogen discharge lamp with continuous
spectrum for the ultraviolet.

The luminescence is analyzed with a Hilger and
Watts monochromator having a glass prism and is
then detected with photomultipliers; its intensity is
automatically recorded on a paper recorder. Inter-
ference filters of Jena Glass-Werke are used when the
whole emission is of interest. The emission intensity
is measured in the spectral range between 200 and
700 my with an EMI photomultiplier type 9558 QA,
and between 500 and 1100 mu with a Philips 150 CVP
with the photocathode cooled to liquid nitrogen tem-
perature (LNT). In this way the dark current decreases
from 6 pA to 2-3X 109 A without appreciable variation
of the photomultiplier’s average sensitivity. The ab-
sorption spectra are recorded with a Cary 14M
spectrophotometer.

The relative ionization quantum yield is measured
indirectly, from the intensity of glow peaks obtained
by F photostimulation?: the NaF sample is irradiated
at LNT, so that only F and V centers (no M) are
created ; next, it is warmed to room temperature (RT)
in order to evacuate the shallow electron traps. After
these preliminary treatments, the crystal is photo-
stimulated in the F absorption band (for 1 min) at

4B. Bosacchi, R. Fieschi, and P. Scaramelli, Phys. Rev. 138,
A1760 (1965).



