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The fact that the change in nuclear radii caused by
addition of pairs of neutrons (the odd-even effect is
attributable to other details of nuclear structure), is
less than the empirical formulas predict—either the
crude A3 or the more elaborate expression—has been
examined in terms of the possible effects of nuclear
compressibility and changes in surface and volume-
symmetry energies. Bodmer’s® detailed examination
of this matter suggests a much smaller compressibility
energy than might be expected for general considera-
tions. Additional evidence for such a “soft” nucleus is
also provided by the analysis (Greiner and Scheck®)

% A. R. Bodmer, Nucl. Phys. 9, 371 (1958).
# W. Greiner and F. Scheck, Nucl. Phys. 41, 424 (1964).
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of muonic x-ray measurements of neighboring elements
by Quitman et al.?5

We conclude that the muonic isotope shifts confirm
some of the conclusions of the optical measurements,
and in principle enable this type of investigation to be
extended to lighter nuclei. The development of im-
proved y-detection techniques now makes it possible to
consider more extensive and more precise measurements.

Note added in proof. Recent measurements of the
difference in the scattering of 250-MeV electrons by
Ca% and Ca* indicate a difference in charge distribution
for the two nuclei which is in good agreement with that
reported in this paper. [R. Hofstadter ef al., Phys. Rev.
Letters 15, 758 (1965).]

% D. Quittmann, R. Engler, V. Hegel, P. Brix, G. Backenstoss,
K. Goebel, and B. Stadler, Nucl. Phys. 51, 609 (1964).
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The hyperfine separation of deuterium has been measured by a spin-exchange technique in which deu-
terium interacts with radiating hydrogen in a hydrogen maser. Resonance of the deuterium is detected by its
effect on the hydrogen oscillation power level. The result is A»(D) =327 384 352.340.25 cps in the 41 time
scale [A»(Cs)=9 192 631 770 cps]. A theoretical analysis of the technique and experimental details are

presented.

I. INTRODUCTION

HIS paper describes a redetermination of the

ground-state hyperfine separation of deuterium
by a new technique in which a hydrogen maser’—® is
used as a polarization detector. The maser oscillates on
the hydrogen hyperfine transition (F=1,mp=1)—
(F=0,mp=0) at approximately 1420 Mc/sec. Spin-
exchange collisions between deuterium and hydrogen
relax the oscillating hydrogen magnetic moment by an
amount depending on the deuterium electron polari-
zation as well as on the spin-exchange collision rate.
When a radiation field is applied at a deuterium reso-
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nance frequency, the deuterium electron polarization
decreases and there is a corresponding decrease in the
oscillating hydrogen magnetic moment. Changes in the
maser power level thus serve to detect deuterium
resonances.

This technique is similar to the optical-pumping
spin-exchange method* in that changes in the deuterium
electron polarization are detected by spin-exchange
coupling to a second spin system whose electron polari-
zation is more conveniently observed. However, it
preserves two advantages of the hydrogen maser: The
frequency shifts due to wall collisions are small relative
to those produced by buffer-gas collisions in an optical-
pumping experiment, and better spatial averaging of
the magnetic-field gradients reduces the resonance line-
width and produces a highly symmetric line.

In principle, the deuterium hyperfine separation
could have been measured with equal precision using a
deuterium maser. However, there are substantial ex-
perimental difficulties associated with construction of
such a maser owing mainly to the relatively low
deuterium hyperfine frequency. The present method
was chosen for its experimental simplicity, its interesting

4*H. G. Dehmelt, Phys. Rev. 109, 381 (1958); F. G. Major,
thesis, University of Washington, 1962 (unpublished).
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Fic. 1. Schematic diagram of the apparatus. Magnetic shields
surrounding the cavity have been omitted for clarity.

relation to the optical-pumping spin-exchange method,
and the ease with which it can be extended to the study
of other paramagnetic atoms. In addition to the present
measurement, this method has been used to determine
the N quadrupole coupling constant,® and it should
prove useful for certain other atomic systems.

The theory of the experiment has been derived in
detail by Crampton® and will be summarized below.
Preliminary results of this work have been reported
previously.”

II. THE HYDROGEN MASER AS A SPIN-
EXCHANGE SPECTROMETER

Since the hydrogen maser has been described in detail
elsewhere,'® the present description concentrates on
features unique to this experiment.

A schematic diagram is shown in Fig. 1. Hydrogen
and deuterium are mixed and dissociated in an rf
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discharge. The emerging atoms pass through a hexapole
magnet which focuses into a beam those atoms pos-
sessing negative electron moments. By inspection of
the energy levels of ground-state atomic hydrogen and
deuterium, Fig. 2, it can be shown that the beam con-
tains atoms in the following states (designated by F,
mF) hydrogen in states (1,1) and (1,0) and deuterium
in states (3,2), (¢,1), and (%, —1). The atoms enter a
6-in.-diam spherical quartz storage bulb lined with
TFE Teflon. They leave after a mean storage time of
about } sec, during which they cross the bulb about 10*
times. The storage bulb is centered in a cylindrical
cavity tuned to the hydrogen hyperfine frequency, and
a static magnetic field (indicated by H, in Fig. 1) is
applied transverse to the cavity axis in order to couple
the cavity to the hydrogen transition (F=1, mp=1) —
(F=0, mp=0). Transitions between deuterium hyper-
fine levels are induced by a second rf field at approxi-
mately 327 Mc/sec. This field is applied by a small loop
(shown to the right of the storage bottle in Fig. 1)
placed so as not to disturb the cavity mode seriously.

Sensitivity of the hydrogen oscillation level to deu-
terium resonances depends in a rather complicated
manner on the various relaxation mechanisms which
couple the hydrogen levels and limit the radiative
lifetime. A detailed description of detection of the
deuterium transition (3,2) — (3,2) by its effect on the
oscillation level of the hydrogen transition (1,1) — (0,0)
is given in the next section, but by way of introduction
a simplified discussion is presented here.

The radiation rate of hydrogen in the maser depends
on the population difference of the levels concerned,
as well as on the radiative lifetime and other factors
such as hydrogen flux and cavity Q. With sufficient
deuterium flux spin-exchange collisions decrease both
the population difference and radiative lifetime, and
there is a corresponding decrease in the power level.

The selection rule governing magnetic dipole tran-
sitions is Amr=0, 1. Most previous hydrogen-maser
experiments made use of the Amp=0 transition
(1,0) — (0,0) because its frequency has no first-order
dependence on the magnetic field. That transition is
not suitable here, since it is insensitive to the deuterium
populations and, hence, cannot be used to detect tran-
sitions between deuterium levels. This is a consequence
of the fact that the hydrogen states (1,0) and (0,0)
possess no z component of angular momentum, and
there is consequently no preferred direction for a posi-
tive or negative polarization in the deuterium spin sys-
tem. In contrast, the rate of radiation on the transition
(1,1) — (0,0) does depend on the electron polarizations
of the colliding atoms. (The electron polarization is
twice the expectation value of z component of electron
spin.) The (1,1) — (0,0) oscillation level can thereby
serve to detect changes of electron polarization caused
by a second rf field resonant at one of the deuterium
hyperfine or Zeeman transition frequencies.
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The effect of a deuterium transition on the hydrogen
oscillation level depends on the extent to which it
changes the deuterium electron polarization. The
problem is first to find the deuterium populations and
then to calculate the effects of possible transitions on
the electron polarization. This can be done readily in
two limiting cases—the case when the densities of
hydrogen and deuterium are sufficiently low that the
rate of D-D and D-H spin-exchange collisions are small
compared to the rate at which deuterium enters and
leaves the storage bulb, and the opposite case of high
densities when the collision rates are large.

Case I: Low Density

In this case, the deuterium level population differ-
ences are determined primarily by those of the incoming
deuterium beam, though they are somewhat reduced by
relaxation processes within the storage bulb The prefer—
entlally occupied deuterium levels are F=3§, mp=%, %,

3. The hyperfine transitions which affect the electron
pOIarization are (3,3)— 3,3), (3)— (G3), and
E,-3H— G, —1). (The ﬁeld-mdependent transitions
(33 — (3, —%) and (§, —3) — (3,3) do not change
the electron polariza.tion ) Of the three observable
hyperfine transitions, the first, (§,3) — (3,3), affects
the polarization twice as much as either of the others.

Case II: High Density

In the limit that spin exchange dominates all other
transition mechanisms, the atoms become distributed
among the spin levels so that the populations are pro-
portional to expBmp, where 8 depends on the z com-
ponent of angular momentum of the entire atomic
system.®® In this limit, all deuterium transitions for
which Amp=—1 produce the same change in electron
polarization. The observable hyperﬁne transitions are
(2;2)_) (272)} (2; 2)_> (“ '_"5 ’ and the two field-
1ndependent transitions (,3) — 3, —3%) and 3,) —

2, —1). The last two transitions are unresolved at the
low fields used and have a combined effect twice that of
either field-dependent transition.

It might appear from these considerations that from
the standpoint of signal intensity at moderate spin-
exchange line widths, the most favorable deuterium
hyperfine transition is the field-dependent transition

323)— (%,2). There are, however, two other con-
siderations. The first is that, in addition to broadening
the resonance, spin-exchange collisions can shift the
resonance frequency. The second is that the field-
dependent deuterium resonances must be corrected to
zero magnetic field, which means that an accurate
determination of the magnetic field is necessary. The
unresolved field-independent transitions are substan-
tially free from these complications, even at high

3L. W. Anderson, F. M. Pipkin, and J. C. Baird, Phys. Rev.
120, 1279 (1960),121 1864 (1961),122 1962 (1961).

IL. W. Anderson, F. M. Pipkin, and J. C. Baird, Phys. Rev.
116, 87 (1959).
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exchange collision rates and are consequently most
favorable. Observations were made in this experiment
of both the field-dependent and field-independent
transition. Details of the above considerations are
given in the following section.

III. THEORY
A. Introduction

The system of interest is a gaseous combination of
hydrogen and deuterium undergoing spin exchange with
itself and interacting with applied radiation fields and
various relaxation mechanisms. A complete description
of the system can be given in terms of p(H) and p(D),
the spin-state density matrices for hydrogen and deu-
terium, respectively.!®!! Once p(H) and p(D) are known,
it is a straightforward matter to derive expectation
values for any desired experimental quantity such as
the oscillating magnetization, polarization, etc.

The evolution in time of p(H) is governed by rate
equations which couple the two matrices. We formally
identify the contributions to the time rate of change of
o(H) and p(D), as follows:

dp(if{) - (dp(;[{)) ﬂow+ (dplif[) )radiation

dp(H) dp(H)
) o)
dt relaxation dt H-exchange

(dp (H)>
+ .
dt D-exchange

M

The first term represents the flow of hydrogen atoms
in and out of the storage bulb. The second accounts for
the interaction with the radiation field. The third
describes the effect of all relaxation mechanisms, other
than exchange, such as magnetic field inhomogeneties
or wall imperfections. The fourth term accounts for
hydrogen-hydrogen spin-exchange collisions, while the
last accounts for hydrogen-deuterium exchange col-
lisions. It is this last term which couples the hydrogen
and deuterium systems.

The equation for the rate of change of the deuterium
density matrix is similar:

O

dp(D) dp(D)
H ) man Ca)
dt  /relaxation dt /H-exchange

dp(D)
-+ .
dt D-exchange

10 P, L. Bender, Phys. Rev. 132, 2154 (1963).

nL. C. Ballmg R. J. Hanson, ‘and F. M. Pipkin, Phys. Rev.
133, A607 (1964); 135, AB1 (1964)

@
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For clarity, p(H) and p(D) are displayed below, with the states explicitly identified by their value of F and mp.

(1,1) Hy  Hyp Hys Hy
_ 1,09 Hy  Hp Hos Hyy 3
p(H)_(l’ -1 Hy  Hy Hg Hy | )
(0,0) Hy  Hy Hys Hyy
(F7mF) (%a% %7% (%7 _%) (%: —%) %7% (%7 -%)
3.3 Dy Dy 13 D14 Dys Dy
33 D31 Dy D3 D3y Dos Do
_3,—3 D3;  Dse D3 D34 Dgs Dy
p(D)= 3, —%) Dy Dy Dy M Dy Dy : )
(3,3 Dsi  Dse Dy Dy, Dsgs Dy
3 —%) D¢1 D D3 Dy, Degs Dy

o(H) and p(D) represent mixed states due to the
random histories of the atoms.

In the following sections, we will display explicitly
those terms of Egs. (1) and (2) which are needed to
determine the effect of the deuterium resonance (%,3) —

3,3) on the power radiated by the hydrogen on the
transition (1,1) — (0,0). Since these transitions are
well resolved at the magnetic field used, off-diagonal
elements corresponding to all other transitions will be
omitted. The results of a similar analysis for the deu-
terium field-independent transitions, (£,3) — (3, —%
and (1,3)— (¢, —3%), is presented in the Appendix,
along with an analysis of the experiment using the
maser as an amplifier.

For convenience, we will display the exchange and
nonexchange terms of dp/dt separately.

B. Nonexchange Contributions to do/dt

If we designate the mean lifetime of a hydrogen atom
in the storage bulb by T'gg, we have!

1
2

o) -

1
——p(H), (©)

fow Imp 0 Tus

0

where all elements of p not shown are taken to be O.

Significant contributions to (dp/df)r.a arise when the
applied oscillating field, H; coswi, is such that wp~wmo
= (En—E,)/h, where m and % refer to the states of
interest. The matrix element (in units of frequency)
connecting the states is taken to be of the form 3xgeir?,
For the hydrogen transition (1,1) — (0,0),

XYH= —ﬂoHl/\/Zﬁ (6)
H; is perpendicular to the static field Ho. It is readily

shown® that, neglecting the counter-rotating field,

(H10)raa= — (H 4a)raa= — ¢ Im (H ye—tnt) (7a)
(H s1)raa= (H16*)raa=twoH 1
+ (2/2)xg(Hu—H)ert, (7b)

We describe relaxation processes other than spin
exchange by times T and T, which account for re-
laxation of the diagonal and off-diagonal elements,
respectively. The form of the relaxation is taken to be
simple decay to the equilibrium value. (This is an over-
simplification. For instance, Zeeman relaxation does
not couple states with different 7. However, we believe
that these approximations introduce no serious errors;
they can be removed, but only at the cost of con-
siderable algebra.) Thus, for hydrogen we have the
relaxation terms

Hmm,: THl——l[i'—Hmm] ) (83')
Hy=—TrHy. (8b)

Combining Egs. (5), (7), and (8), we obtain for the
nonexchange contributions to g(H):

Hu=Tas [3—Hul]+Tur [2—H 1]

—xg Im (H416—'.“’Ht) , (93.)
H 22= THB_I[% —H 22]+ THFIE%—H zz] ) (9b)
Hy=—Tus'Hsy+ Tai [2—Hss], (9c)
Hu=—Tus'Hut+Tar [2—Hu]
+xu Im(Hue_i"’H‘) , (9d)
Hy=— (Tas '+ Tas'—iwn)Hau
-+ (1/2)361{ (H11—H44)€i“’ﬂt . (96)

The nonexchange contribution to dp(D)/dt is similar.
Let wpo be the frequency of the transition (§,3) —
(3,3) and the matrix element drivingitbe 3xpetpt, where

xp=— (V3o 1/7. (10)

H, here represents the amplitude of the rf field stimu-
lating the deuterium transition. The results for
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(dp (D)/ dt) nonexchange are€:
Dy=Tps (32— D11)—xp Im(Dsie—pt)

+Tpri(3—Du), (11a)
Dos="Tps'(3—Da)+Tor (§—Ds2) (11b)
Dyy=Tps (3—Dss)+Toi '(3—Dss) , (11¢)
Dys=—Tos ' Du+Tor '(3—Dus), (11d)
Dss= — T'os'Dys+xp Im(Dsep?)
+Tor 1(3—Dss), (11e)
Dgs=—Tps " Des+Toi ' (3—Des) , (11f)
Dg1=— (Tpp '—iwpetTps ™) Ds:
+ (¢/2)xp(Du— Dss)etent.  (11g)

To illustrate the procedure for handling the full set
of rate equations we will calculate the power radiated
in the absence of exchange. In this case, dp(H)/d¢ is
completely given by Egs. (9a)-(9). We can solve these
equations by combining them in the following form:

Hu—Hu=3Tup'— (Tus '+ Tur™) (Hu—Ha)

- 2.’X‘H Im (H413_iwﬂt) , (gf)
H‘H: - (THB~1+ THz_l)H41+ inHH,;]_
+ 3/ Dau(Hu—Hauent. ()

For stationary oscillation, Hy—H4=0, and the
above equations are solved by the substitution

H = (a+iB)eient, (12)
where o and 8 are real numbers. The result is
TH?
a:
s ( )
Xa\WH— WH
g(wH 0 13
(‘THI,THZ,)_I‘I“ (TH2’/TH1/) (wH—WOH)2+xH2
1
B:
4Twup
YH
, (14)
(rad )+ (rr /7HY) (0E—WoE) 2+ H?
where
1 1 1
— (15)
et Tm Tus
1 1 1
= (16)

4
ta? Tu: Tas

The power radiated by the ensemble is computed
from the oscillating magnetization M.

M= n(H){uop)= — gimon (H){J)
= —giuon(H) Tr[Jo(H) ],

where #(H) is the hydrogen density.

17
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The radiated power is given by

dH d
P= —/M-—d3r= — VB<MX——H1 costt>
dt dt

av

=n(H) Ve (uo/V2)H 8. (18)
Vg is the volume of the radiating gas and
n(H)Vp=IuTs, (19)

where [q is the total hydrogen flux. By combining Egs.
(6) and (14)-(19), we obtain the following:

P=%Ighw
xH2

(rat 7)1+ (rre/7HY) (WE— WHO) >+ 2K '

C. Spin-Exchange Contributions to dgo/dt

(20)

A number of authors have undertaken investigations
of spin exchange.519—¢ (A list of references is given in
Ref. 11.) The analysis by Balling, Hanson, and Pipkin
(hereinafter referred to as BHP) can be readily applied
to the present experiments. Their theory is in agree-
ment with experiments on electron-rubidium collisions,
though there appears to be a slight discrepancy in the
case of electron-cesium collisions,!® possibly due to the
neglect of spin-orbit interaction. This effect is expected
to be much smaller for atom-atom collisions. In any
case, spin-exchange theory which ignores this effect
has given good agreement in the case of hydrogen, both
in experiments on spin exchange relaxation'® and fre-
quency shifts.617 The conditions of these experiments
were sufficiently close to the present for us to apply the
theory with confidence.

The spin-exchange process is described in BHP by
the spin-flip cross section osy [BHP Eq. (25-1)] and
the shift parameter x [BHP Eq. (26)] defined by

osp= (r/x?) li::o (2141) sin?(82—67), 1)
,C=_1___2% f (I41) sin[2(52—61)],  (22)

OSF

where 6;' and §;2 are the singlet and triplet phase shifts
for binary collisions at angular momentum 7%} and
relative momentum #k. For our purposes it is more
convenient to introduce spin-exchange collision and

2 E. M. Purcell and G. B. Field, Astrophys. J. 124, 542 (1956).

18 7. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956).

14 T P, Wittke, thesis, Princeton University, 1955 (unpublished).

157,. C. Balling and F. M. Pipkin, Phys. Rev. 136, A46 (1964).

16 H. C. Berg, Phys. Rev. 137, A1621 (1965).

17 S. B. Crampton and D. Kleppner, Bull. Am. Phys. Soc. 9,
451 (1964). The last sentence of this reference should read: “Spin-
exchange shifts of the order of 19, of a 40-cps change in line-
width of the Amp=—1 oscillation frequency and 0.5% of a
1-cps change in linewidth of the Amr=0 oscillation frequency
are in agreement with a theoretical estimate of the spin-exchange-
shift parameter . . . .”



60 CRAMPTON, ROBINSON, KLEPPNER, AND RAMSEY

frequency shift rates, Tup~! and kgpTup~, respectively,
which are defined in the case of hydrogen colliding with
deuterium by

:Z-‘HD_1 =n (D) (vrelo'SF (HyD)>

wh =
=n(D) — X (214+1) sin2(613—611)> , (23)
uk 1=0 k

I(HDTHD_1 =n (D)(v,euc (H,D))

wh
=D} — 3 (21+1) sin[2(513—611)]> .

2uk 1=0
(24)

p is the reduced mass and #(D) is the deuterium
density. The average is over the thermal velocity
distribution. Rates for the other collision combinations
are similarly described and are denoted by Tmm™,
Tpru, etc. It is readily verified that

n(H)
Tpu = HD T,
n(D)
(25)
n(H)
kpalpat= kapl BHD .
n(D

We also introduce the symbols ®(H) and ®(D) for
the electron polarization of the hydrogen and deuterium.
If the electron has spin angular momentum S7%, then
@® is defined by

C=(S.)/S=2(M,), (26)
from which it follows that
CH)=2Tr[S.o(H)]=Hu—H;s, 27)
®(D)=2Tr[S.o(D)]=Du+3Ds2—%4D3s3— Dy

—3Dss+3Dgs.  (28)

A related quantity which will also be useful is the
atomic polarization, @. If the total atomic angular
momentum is F7, then

Q=(F)=(Mr). (29)
@ is readily evaluated, with the following results:
QH)=Trmpz(H)=H11— H3;=®(H), (30)
@(D)=TrF.p(D)=34Du+3D2»2—3D33—3Dus
+3Ds5—3Des=30(D)+Dss—Des.  (31)

To simplify notation, we temporarily drop the sub-
script “‘exchange” from dp/di and instead use subscripts
to indicate the spin-exchange process being considered.
Thus 6(H)exchange= 6 (H) ua—+p(H) up, where 4(H)up is
the rate of change of the hydrogen density matrix due
to spin-exchange collisions with deuterium. Our
starting point is BHP Eq. (27). In evaluating dp/dt,
we retain only those terms which make a significant
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contribution to subsequent calculations. In particular,
terms contributed by nuclear identity [denoted by
osr and osp’x” in BHP Eq. (B2)] are omitted on the
ground that they are very small compared to the terms
retained. Terms involving squares of off-diagonal
elements are dropped for the same reason.

A matrix for p(H)gg is given in BHP, Table 10.
With the assumptions stated above, their result can be
reduced to (do(H)/dt)mm:

Huy=—Tag {Hu—[14+0(H)T/4}, (32a)
Hyp=—Tug{Ha—[1—C(H)2]/4}, (32b)
Hsy=—TurY{Hyu—[1—0(H)1/4}, (32¢)
Hu=—Tun{Hu—[1—C(H)?]/4}, (32d)
Hy=— Ter {[(1—(H)]/2
—(t/Dkga[Hu—Hu—CH) }Hyu.  (32e)

Equations for the remaining contributions to the
spin-exchange terms in p can be found by a straight-
forward application of BHP Eq. (27). The results
follow :

(dp(H)/dt)up:

Huy=—Tap {Hu—[14+0(D)J[1+e(H)]/4}, (33a)
H22= ~THD‘I{Hn—-[:1“‘P(D)G)(H)]/‘lf} ’ (33b)
H33= — THD_I{H%—[I”"(P(D)]D” (P(H)]/4} ) (33‘3)
Huy=—Tup {Hu—[1—-0(D)e(H)]/4}, (33d)
Hu=—Tap{(3—®(D))/4
+ (’i/Z)KHDG)(D)}H41. (336)
(dp(D)/dt)pm:
Du: —Tou{3[1— G)(H)]Dn
—3[1+CH) ][ D22+2Dss ]}, (34a)
D= —Tou H{§[1~CH)][—Du+Dx]
+5$[14+@(H) J[—2D33— Des ]
+ (5D22—2Ds5)/9}, (34b)
Dyy=—Tox{—3i[1—®(H)][2D22+ Dss]
+3[14+@H)J[Dss—Das]
+[5D33'—'2Dss]/9} y (34C)
Dy=—Tpa{—2[1—®(H) [ Dss+2Des]
+3:[1+0H) Dy}, (34d)
Dss=—Tou{ —3[1—@(H)]Du
— (1/18)[1+@(H)J[2D33— 3Dss+ Dee ]
—[2D3—5Dss]/9}, (34e)
Dgs=— ToxY{— (1/18)[1—C(H)]
X[2Ds94-Ds5—3Dgs]—3[ 14+ @ (H) ]Da4
—[2D33—5Des]/9}, (34)
Dsi=— £ Toa{5— @ (H)+4ikpua®(H)} Ds: . (34g)
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(dp(D)/dt)pp:
Du=—Top Y{3[1—®(D)]Dn

—s[14+0 D)1 Dee+2Dss]}, (35a)
D= —Top {—3[1—®(D)[Du—Dx]
”‘%D‘f‘ (P(D)][2D33+D66]
+ (5D32—2Ds5)/9}, (35b)
Dyy=—Tpp}{ —3§[1—@(D)1[2Dss+ D55 ]
+ 31+ (D) ][ Dss—Das]
+[5D33— 2066]/9} 5 (SSC)
Dy=— Top Y —§[1— (D) 1[Dss+2Des |
+i[1+@(D)1Dwu}, (35d)
Dys=—Tpp{—3[1~¢(D)]Du
—(1/18)[1+ (P(D)][2D33—3D55+D66:|
—%[2022—51)55]} . (356)
Dss= —Tpp{—(1/18)[1—®(D)]
X[2Dgs+Dss—3Dee ]—3[ 1+ (H) ]
X[Ds—35(2D33+5Dg6]}, (356)
Dsi=—1Top Y 5D2+8Ds5+9D +4Dss
+ 7D66}D51+ (21'/3)KDDTD1Y1
X[Du—Dss—®(D)Ds1.  (35g)

The nature of the spin-exchange process can be
readily understood if we temporarily neglect all non-
exchange processes. The results are most succinctly
and usefully stated in terms of the rate of change of
the polarization. Combining Eqs. (32) and (33) yields

de(H)/di= —Tupo ' [¢(H)—(D)]/2,  (36)
and, in a similar manner, Egs. (34) and (35) yield
da(D)/di=+Tor ' [¢H)—®(D)]/2. (37)

By incorporating Eq. (25) with the above, we obtain
the following result for the rate of change of the z com-
ponent of the total atomic angular momentum:

da(H) da(D)
n(H) +n(D) =
dt dt

0. (38)
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It is apparent that the spin-exchange process drives
the electron polarization of the two spin systems
towards equilibrium, while at the same time it conserves
the z component of the angular momentum of the whole
system.

The steady-state solutions of Egs. (36) and (37) lead
to

e(H)=e([D)=0, (39)

where @ is the equilibrium polarization of the system.
The stationary solutions to Eqs. (32)-(35) are then

1+(p mF ()
Hjj=%(1-6>2)[ ] , (40)
1— @232 1@y
L
263+ L1—¢

The subscript j stands for any hyperfine level and
mrp(j) is the value of mp for that level. This illustrates
the result of Anderson, Pipkin, and Baird® that the
most probable distribution of level populations in an
isolated system undergoing spin exchange is given by a
Boltzmann distribution, ™.

The “spin temperature” 31 is given in our case by'®

p'=In[ (1+¢)/1—-@)]. (42)

By substituting these results in the defining equations
for @(H) and @ (D), we obtain

aH)=e,
a(D)=30(114067)/(3+6).

(43)
(44)

D. Oscillation Conditions for the Hydrogen Maser

In this section, we investigate oscillation of the maser
on the hydrogen transition (1,1) — (0,0). Our procedure
will be to equate the radiated power P to the power
required to maintain the oscillating field. For the
present, we will treat ®(H) and ®(D) as independent
quantities.

We begin by solving the rate equations as in Sec. B.

d
Z(Hu'—Hu) =3{Tup '+ Tun'®(H) (140 (H))+3Tup ' [¢ (D)4 (H)+-20(D)® (H) ]}

—[Tus '+ Tur '+ Tan '+ Tap J(H u—Hag) — 200 TmH gretont,

(45)

d
;i;H“: —{Tup 4 Tu +3Tur [1—-CH)]+1Tup [3—C(D) 1} Hu

1
+i{onotikaalar (Hu—Hiu—®H))—3kapTap '@ (D)}HM—EXH (Hu—H y)etont,  (46)

18 We also find this form for 871 to hold for the level populations of hydrogen in spin-exchange equilibrium with atoms having nuclear
spin 1 and electron spin § [N**] and atoms having nuclear spin % and electron spin 1, although in these latter cases ® is not simply
proportional to the expectation value of the electron spin of the nonhydrogen species.
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These equations have the same form as Egs. (9¢), (9f),

and the solution is

H jetont= , (47)
(rm1rme) - (rHe/TH1) (W — 080" )28’

where

A=Y Tup '+ Tarte(H)[ 1+ H)]
+1iTuo ' [@(D)+e(H)+20(D)CH) T} .

The resonant frequency wmo’ is slightly shifted from
wmo by spin exchange.” Thus the solution for radiated
power corresponding to Eq. (20) is

P=1TuTuphod

xH2
(ra1rE2) " (7He/ THY) (WE—WHL)*+2H?

The energy density, and hence the radiated power,
is proportional to xg? and to simplify the equations we
retain xg as our dependent variable. For analyzing this
experiment it is convenient to give the results in terms
of the polarizations (as yet undetermined) and the
relaxation times.

If we equate P to the power dissipated, and do some
rearranging, we obtain

xr’= (mTan){ Tus '+ Tax '@ (H) (140 (H))
+3Trp [ @(D)+ ¢ (H)+20(H)®(D) T}
—{Tep+Tur 4 Tag '+ Tun ™}
X{Tus 4 Tus 4 5Tur [1—CH)]

(48)

+iTup '[3—-CH)]}. (49)
The constant » is given by®
osr(H,H)9% V, 1
me=—— (50)

NS
mut Ve Q

where V.=cavity volume, and 5= (H1)%ub/(H%)cavity
(as explained in Ref. 2, Sec. IV.E). The beam flux
appears implicitly in these equations through the col-
lision rates Tgg' and Tmp'. These depend, respec-
tively, on #(H) and #(D), which in turn depend on
the hydrogen and deuterium flux.

E. Detection of the Deuterium Resonance

Our remaining task is to find ®(H) and ®(D) in the
presence of the applied oscillatory fields. The procedure
for hydrogen is straightforward; from Egs. (9), (27),
(32), and (33), we obtain
de(H)

dat

=3Tup'— (Tup '+ Tuar+ Tap )P H)

— %THD_II:G) (H)—" (P(D):l—-xH ImH 416 %wat, (5 1)

1 Note that m is closely related to the parameter ¢ defined by
Eq. (11) of Ref. 3. It plays much the same role as a quality factor
to describe the experiment.
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For stationary oscillation, d®(H)/d¢=0. By combining
Eqgs. (47), (49), and (51) and rearranging, we finally
have
®(H)= (a/b)+(1/26) Tup'®(D), (52)
where
a= —%THB”I— (im) THHxH2 N
b=Tup "+ Tur'+3Tap".

The situation for deuterium is more complicated
since the equation for d®(D)/dt cannot be expressed
in terms of ®(D). However, the atomic polarization,
@(D), does obey a simple equation. By combining
Egs. (11), (31), (34), and (35), it is possible to show
that

da(D)/dt=3Tps*— (Tos '+ Toi ) @(D)
+%TDH‘1[(P (H) —@ (D)]"'xD ImD516_"[“’05 .

(53)

(54)

In order to obtain ®(D) by the stationary solution
of Eq. (54), we must relate ®(D) to @(D). In general,
this requires numerical solution of the full set of rate
equations. However, in the high-density limit in which
the spin-exchange collision rates are much greater than
all other relaxation rates, the deuterium populations
are given to a good approximation by Eq. (41). In this
case, @(D) and ®(D) are related by Eq. (44). If, in
addition, ®(D)<<1 (a good approximation under the
experimental conditions), we can drop the quadratic
terms in Eq. (44), and by substituting the result in
Eq. (54) we obtain

®(D)=c/d+ (2d) Tox'¢(H), (55)
where

c= %TDB_I—QCD ImD516’i‘”°t ,
d=(11/6)(Tos*+Tor ) +5Tou .
We solve Egs. (51) and (55) simultaneously for ®(D)

(56)

005— E

{ | 1 | 1 I
0 02 04 06 08~ 10 12
n(D)/n(H)

F16. 3. ® and Pnin in terms of the ratio of densities of deuterium
and hydrogen. The following typical values are used here: Tgy™!
=Tup1=V2Tpr 1=V2T s}, m=0.2. Oscillation can occur only
if ®¢ > ®Pmin, shown by the shaded region.
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and ®(H) and substitute the result into Eq. (50).
Retaining Ds; as an independent variable, we obtain
in the high-density, low-polarization limit

zr?=—Tur " 71 [Po— Pmin ]

" #(D)
— XD ImD;,le“""’D‘} (57)
n(H)
Here
Co=3rm[ Tus '+ Tos (n(H)/n(D))],
Cuin=[Tar+5Tup "]
X[A+2/m)Tag?+3Tap 212, (58)
11 2(D)
rar'=Tas +Tar*+———Tos+Toi ™).
6 n(H)

® is the equilibrium electron polarization in the absence
of rf fields and ®Pnin is the minimum polarization re-
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quired for sustained oscillation. In the absence of
deuterium, ®Pmin=m/(2m—+1)~0.1. Pni, increases with
the deuterium density and approaches a limiting value
of 3. Since the state selector restricts polarization to
0.5, it is clear that the deuterium density must be
limited to avoid completely suppressing oscillation.
This limit is illustrated in Fig. 3.

The last term in Eq. (57) is found by substituting
the spin exchange equilibrium values of Dj;; in the
equation for Dy;. The following expression is obtained:

Zpirpst
XD ImD;,le_i“"" = %6) (D> ) (59)
03 2+ (wp—wop')?
where
1']:)2_1 = TD3_1+ TD2*1+%TDH[5 —@ (H)]
+(11/18)Top ' [1—®(D)]. (60)

By combining Egs. (57) and (59) we eventually arrive
at

4 %xDZ
xHZ':_THH_lTHl—l[G)O_(Pmin{ 14+ }:I , (61)
m (TDITD2)_1+ (TD2/ TD1) (wD"‘woDl)2+ (’Y/ 6)90D2
where
n(H)
TpL 1= THI !,
n(D)
(62)

v={1+3mTunrm[ Tag '+ Tuo JLA+2/m) Tan+5Tuo "1},

wop’ =wop— 2 kpalpr '+ 2kDD DD 1].

The fractional change in radiated power due to the
application of the field xp is then

BP @m in

P G’O_ ®Pmin
4D

X - (
(rp17mp2) '+ (7D1/7D2) (wp—wop')?+ (v/6) 2D

63)

Equation (63) describes a Lorentzian resonance line.
Since v <1, the effect of power broadening is suppressed
compared to the usual case. This occurs because spin-
exchange links angular momentum in the cavity radi-
ation field with the atomic spin systems. The applied
deuterium signal broadens the line as it decreases the
population difference. However, at the same time the
flow of angular momentum to the hydrogen radiation
field decreases, and the net effect is that the radiation
field behaves like an angular momentum reservoir
which partially restores the difference.

The amplitude of the line is enhanced by the factor
®min/ (Po— Pmin). This reflects the fact that when the
oscillation is marginal, arbitrarily small influences can
produce significant changes in the oscillation level. In
one sense, this effect tends to amplify the resonance.

However, since it also makes the system unstable in
the presence of small fluctuations of flux or linewidth,
it is the source of a number of experimental difficulties.

The resonance maximum is shifted from the true
resonance frequency by an amount

dw=wop'—wip=—2[kpaTpr *+3%xppTDD1]. (64)

Bender has calculated kgm in the classical limit® and
finds kgg=—0.25. A preliminary experimental deter-
mination* yields xgg=—0.440.3. If we make the
reasonable assumption that

kaE=KkED=KkpH=KDD= —0.4

— —_ —1 —1 1 —
Tur '=Tup'=Tpor'=Top ‘=37,

m=0.2 and @=0.23,

we find that 8w is approximately 19, of the linewidth
of the hydrogen resonance, (rrms)~L

Some comments on the approximations made in
deriving Eq. (63) are in order. This result assumes that
the system is in spin exchange equilibrium, i.e., spin-
exchange rates are large compared to the rates of all
other mechanisms which influence the populations. The
only effect of these mechanisms, including radiation, is
to determine the spin temperature of the system. When
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we make the further assumption that the polarization
is small, the problem effectively reduces to that of a
two-level system. In practice, spin-exchange equilibrium
was not reached with the available beam flux (nor is it
necessarily true that this limit was desirable, since
signal strength would have been increased at the
expense of increased linewidth). Nevertheless, at col-
lision rates high enough to provide effective coupling
of the two spin systems, the result is useful in providing
a simple description of the physical processes occurring
and in making estimates of such effects as spin-exchange
frequency shifts.

The results of a similar analysis for the field-
independent transitions are given in Appendix A. It is
also possible to detect the deuterium resonance when
the maser is below the hydrogen oscillation threshold
by using the maser as an amplifier. This method is
described in Appendix B.

IV. APPARATUS

Since the hydrogen maser has been described else-
where,? only features new to this experiment are
described here.

Magnetic Field

The static field H, is perpendicular to the cavity
axis and is produced by a cylindrical current sheath
shaped so as to produce a current density with an
azimuthal dependence approximating sinf. The sheath
is surrounded by three cylindrical shields (similar to
those described in Ref. 3), and satisfactory oscillation
is obtained at fields as low as 0.1X10~3 G. Under
favorable ambient conditions, fluctuations of the field
during successive 10-sec periods are 2)X10~8 G, corre-
sponding to mean frequency fluctuations of the maser
of 0.03 cps.

Source

It can be seen from Eq. (63) that the hydrogen
oscillation level depends critically on ®Pmin. Since Puin
depends on the H-D spin exchange rate, the oscillation
level is very sensitive to fluctuations in the source
pressure. Because the usual pressure reducers at the
gas storage tanks allow fluctuations in the flow rate of
up to 109, the handling system shown in Fig. 4 was
finally adopted. The source gases are stored in reservoir
tanks at twice atmospheric pressure, and the flow rate
is adjusted by variable leaks. The flow rate is smoothed
by a filter composed of a reservoir and small fixed leak.
The time constant of the system is approximately 5 min.

FIXED
LEAK

| [
VARIABLE 0-1 BALLAST
LEiAK AlTM VOLUME

|
RESERVOIR

2 f;\TM

FiG. 4. Gas-handling system.
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Rf Driving Field

The 327-Mc/sec rf field for driving deuterium reso-
nances is obtained by X15 frequency multiplication of
a 21.8-Mc/sec signal from a Rohde and Schwarz type
XUA frequency synthesizer. Coupling is achieved by a
half-wavelength lumped transmission line as shown in
Fig. 5. In order to keep the rf amplitude constant as
the frequency is swept, the field is sampled by a small
loop and the resultant signal is rectified and applied to
a gain control on the driver. The frequency of the 327
Mc/sec driving field is monitored by a HP 5243L
frequency counter with a time base provided by a
General Radio 1120-AH frequency standard main-
tained by J. A. Pierce.

Processing of the Maser Signal

The system illustrated in Fig. 6 provides a record of
both the amplitude and frequency of the maser signal.
(The frequency is needed to determine the ambient
magnetic field.) Power is coupled from the cavity, con-
verted to approximately 30 Mc/sec and amplified. A
second stage of conversion reduces the frequency to
approximately 6 kc/sec, where it is detected and dis-
played by a recorder. The oscillation frequency is
determined by using a second hydrogen maser as a
frequency reference. Both systems use the same local
oscillator to convert the signals to 30 Mc/sec where
they are mixed. The difference frequency (approxi-
mately 250 cps) is measured by a counter.

V. Procedure and Results

The procedure for detecting a deuterium resonance
was to adjust the hydrogen density to several times its
threshold value and then to increase the deuterium
density until the radiated power level was reduced by
about 25%,. The degree of spin exchange equilibrium
was investigated by sweeping the entire deuterium
spectrum for Amy= — 1 hyperfine transitions. The ratio
of the intensity of the transition (3,8) — (3,3) to the
field-independent transitions was found to be 3.3. It
can be shown that in the high-density limit the ratio
should be approximately 3(14+®)/(1—@), and that in
the low-density limit it should be «. For the reasonable
value ®=%, the predicted high-density ratio is 2.5,
which indicates that the system was in an intermediate

VACUUM
FLANGE

= (O)]

Az D)
160-211 pfd
CAPACITOR

INPUT

STORAGE
BuLB

F16. 5. Schematic diagram of the lumped transmission line
used to couple the deuterium driving field.
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situation approaching spin exchange equilibrium.
Failure to observe the transition (%, —%) — (£, —%) is
consistent with this conclusion.

Observations of the Field-Dependent Transition
33)— 53

Figure 7 shows a trace of resonance on this transition
made under favorable conditions of magnetic field and
beam stability. The maximum ratio 6P/P is 0.4, and
the amplitude signal-to-noise ratio is estimated to be
10:1. The Lorentz curve fitted to the data has a width
of 7.0 cps, of which it is estimated that 5.0 cps is due to
spin exchange. The duration of the line sweep was about
2 min. The estimated uncertainty in locating the center
of the curve is 0.2 cps. The magnetic field was deter-
mined from the frequency of the hydrogen oscillation,
which was monitored continuously during the run, and
the results were corrected to zero magnetic field by
using the Breit-Rabi formula. This correction was
typically 250 cps.

Rectifier
RC~05sec

Amplifier
30Mc/sec

Recorder

X 15
Multiplier
. | Local
Oscillator ~ «

e | woar
. 1450 Mc/sec .250¢ps
Maser B ]| Amplifier
(frequency standard)| 30 Mc/sec

FiG. 6. Block diagram of the detection system. Maser A is the
experimental apparatus. Its amplitude is monitored to display
the deuterium resonance, and its frequency is simultaneously
monitored against maser B to measure the magnetic field.

A histogram showing the results of 30 determinations
is shown in Fig. 8. Each determination consisted of two
sweeps of the line in opposite directions. The standard
deviation of the mean is 0.1 cps. In addition, uncer-
tainties are contributed by possible spin exchange
frequency shifts and by cavity mistuning. The former
were estimated in Sec. III to be about 19} of the line-
width, or 0.1 cps. The effect of cavity mistuning is more
serious. The hydrogen oscillation frequency is pulled
by an amount equal to the cavity tuning error divided
by the ratio of cavity linewidth to atomic resonance
line width. The cavity was tuned by conventional means
to about 500 cps, but could drift by as much as 1 kc/sec
during a run. Assuming a cavity resonance width of 30
kc/sec, and an atomic resonance width of 10 cps, the
limit of error in the oscillation frequency is 0.33 cps.
Since the magnetic field correction for deuterium is %
that of hydrogen, this places a limit of error on the
deuterium frequency of 0.45 cps.

The total uncertainty in this determination due to all
the above sources is taken to be 0.5 cps.
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AMPLITUDE
1
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o FREQUENCY

Fi16. 7. Trace of the recorder output of a scan of the deuterium
transition (4,3) — (4,3). The dashed line is the plot of an ampli-
tude curve correspondmg to a Lorentz power curve. The vertical
breaks are frequency markers.

Observations of the Field-Independent Transitions
GH—-> G —Hand 33— G -3

Because of the low signal-to-noise ratio available with
these transitions, measurements were made by manu-
ally adjusting the frequency to the center of the reso-
nance line rather than by sweeping the whole curve.
The results of 25 observations taken over a 10-min
interval are shown in Fig. 8. The total splitting of the
two unresolved transitions due to magnetic field is 0.2
cps. If the components have the same intensity, no
error is introduced. Since the system is not in spin-
exchange equilibrium, one component may predomi-
nate, but since the maximum error due to this case is
0.1 cps, it will be neglected. Similarly, the spin-exchange
shifts should cancel and are neglected. The total un-
certainty in this determination is taken to be the
statistical error, 0.3 cps.

Collisions of the deuterium with the storage-bulb
wall introduce a frequency shift in all of the transitions
observed, but this can be neglected on the following
grounds: For a storage bottle with the same dimensions
and wall coating material, the shift in the hydrogen
Am=0 hyperfine resonance has been measured to be
—0.0298 cps.?? Determinations of pressure shifts of the

i

Illlllllll

cp:
356 387 l *

358 3«2 54 56 55

Fi16. 8. Histogram of the results. The left-hand plot is for the
field-dependent transition (%,%) — (,3), while the right-hand plot
is for the ﬁeld-mdependent transitions (3,3) — (3, —3), and
(3, —% — (4, —%). The abscissa labels are in cycles per second
and represent the last digits of 327 384 000 cps. The mean value,
and rms deviation are indicated.

0 S. B. Crampton, D. Kleppner, and N. F. Ramsey, Phys.
Rev. Letters 11, 338 (1963).
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hydrogen isotopes in optical-pumping experiments lead
to approximately equal fractional shifts for a variety
of buffer gases. Assuming that this result also holds
true for wall collisions, the wall shift for deuterium is
—0.007 cps, which is negligible compared to the final
uncertainty.

To transfer the measurements of Fig. 8 from the UT2
to the A1 time scale, the results must be decreased by
4.25 cps. By combining the two determinations with a
weighting proportional to the inverse squares of their
uncertainties, we obtain the final result

Av(D)=327 384 352.3-£0.25 cps,
assuming that
Ap(Cs)=9 192 631 770 cps.

This result is higher than the previous optical
pumping result of Anderson, Pipkin, and Baird® by
their experimental error, 5 cps.

APPENDIX A: DETECTION OF FIELD-
INDEPENDENT DEUTERIUM
RESONANCES

In addition to the field-dependent transition already
described, (£,3) — (3,1), the field-independent tran-
sitions (3,3) — (3, —%) and (3,3) — (§, —3) are also
of interest. Actually, these transitions possess a first-
order field dependence due to the nuclear interaction
with the external field, but at the fields used, this is
much less than the linewidth. At spin-exchange equi-
librium, the intensities of the two lines are equal, and
the resulting line lies at the zero field average.

The procedure for analyzing these transitions is
similar to that used above. In the same limits of high
density and low polarization, the transitions undergo

®Pmin \
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spin-exchange frequency shifts given by

2
bl (3,5) — G, —%):‘:E(PKDDTHD_l,
(A1)

bl (33)— G —D]1= _E(PKDDTHD_I.

The shifts average to zero. The result for the detected
signal is
6P (Pmin
P Crin—C
xDZ/ 9

X ,
(rp17D2) ™+ (rp2/ 7p1) (wp—wp0)2+ (v/9)2p?

where xp is given by Eq. (10).

(A2)

APPENDIX B: MASER DETECTION BELOW
THE OSCILLATION THRESHOLD

If Po<Pmin, seli-sustained oscillation will not occur.
However, it is still possible to detect deuterium reso-
nances by using the maser as an amplifier. A small rf
field is applied to the hydrogen at its resonance fre-
quency, and the intensity of the stimulated radiation
is monitored. If the power level of the applied rf field
is below saturation and the frequency is well within the
hydrogen bandwidth, the high-density low-polarization
solution resembles the oscillator solution. We will let
@® denote the power detected when the hydrogen is
radiating minus the power detected when there is no
hydrogen present. For the case of hydrogen radiating
on the transition (1,1) — (0,0), the change in P due
to driving the deuterium transition (£,3) — (3,3) is

#0/6 (B1)

0P
—1?_ <(Pmin'_ 0)0/ (rp1rp2) M+ (7p2/ 7D1) (Wp—wop )2+ (Prmin/ Pmin— o) (2p%/6) ’

where the symbols have the definitions given in Sec.
III. Due to the factor ®min/(Pmin— o) in the power-
broadening term, the fractional signal change on reso-
nance is less for the amplifier than for the oscillator.
There are two reasons for this; the system is no longer
marginally oscillating, and the hydrogen field no longer
acts as a polarization reservoir. Furthermore, with this
method the hydrogen frequency cannot be used to
monitor the magnetic field. There is, however, a com-

pensating advantage which may make detection below
threshold useful in some circumstances. When the
oscillation condition ®¢>®pni, is relaxed, Tz and
Tps! may be reduced to allow detection at lower
overall linewidths. If the signal-to-noise ratio is limited
primarily by beam and magnetic field stability, mag-
netic-field-independent transitions may be detected
with increased sensitivity using the maser as an
amplifier.



