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Alpha MnS is a face-centered cubic antiferromagnet which exhibits the same ferromagnetic-layer spin
arrangement which is found in MnO. The Mn" zero-Qeld nuclear magnetic resonance (NMR) has been
observed in the antiferromagnetic state of o;MnS and, from the temperature dependence of the resonance
frequency, information is derived regarding the spin deviation as a function of temperature. The so-called
anomalous temperature dependence of sublattice magnetization which has been reported for MnO is found
to be essentially absent in O.-MnS. The general question of the incorporation of biquadratic exchange terms—j(S; S;) into molecular-6eld and spin-wave theories of magnetism is discussed, and a simple spin-wave
theory is developed for O.-MnS which includes both bilinear and biquadratic exchange interactions between
nearest and next-nearest neighbors (J&,ji; Js,js) as well as both isotropic and anisotropic magnetostrictive
terms. The spin deviation is found to be an extremely sensitive function of j& and of distortion (anisotropic
magnetostriction), but is relatively insensitive to jm and isotropic magnetostriction. The bilinear exchange
interactions are estimated by using Lines' Green's-function theory to describe the paramagnetic properties
of n-MnS, for which we Gnd values JI =7'K and J2= 12.5'K. Comparison of theory with experiment for the
temperature dependence of spin deviation allows an upper limit to be placed upon the magnitude of jz, The
ratio j&/Jr is found to be less than 10 ', which is at least an order of magnitude smaller than any previous
estimates made for Mn'+ interactions.

1. DTTRODUCTION
' 'N Parts I and II of the present series of papers, ' the
- - statistical problem for antiferromagnetism in the
face-centered cubic lattice is treated using a random-
phase Green's-function approximation, and the results
are used to interpret the magnetic properties of MnO.
It is found, contrary to an earlier suggestion, ' that the
anomalous temperature dependence of the MnO mag-
netization curve is not evidence for the existence of
intrinsic biquadratic exchange in the MnO system.
The anomalous behavior may be quantitatively ex-
plained in the complete absence of biquadratic exchange
by taking account of an anisotropic magnetostrictive
eGect, the existence of which has been known for many
years, ~' but which has previously been studied only
in a molecular-field approximation, 5 which badly
underestimates the importance of the eGect.

In spite of this result, some uncertainty still remains
concerning an upper limit to the size of a possible bi-
quadratic term. The reasons for this are twofold.
Firstly, the effect of introducing a biquadratic contri-
bution to the exchange Hamiltonian in addition to the
distortion (magnetostrictive) terms was never con-
sidered in detail in Parts I and II, although our general
"feeling" that it would behave very much like an
additional distortion term (as far as magnetization is
concerned) will be shown, in the present paper, to be
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correct. Secondly, although the shapes of the mag-
netization curves as a function of T/T~ (where Trr is
the Neel temperature) are extremely sensitive to
distortion for very small values of the latter, they
become rather insensitive for values of distortion larger
than those observed in MnO. The reason is that the
Neel temperature itself becomes a function of dis-
tortion at these higher values (see Fig. 7 of Part II).
Thus, for MnO, the shape of the magnetization curve
is fairly insensitive to any biquadratic exchange which
might be present in the system in addition to the dis-
tortion terms.

On the other hand, the spin arrangement which is
found in MnO (the antiferromagnetic fcc type-2 order;
see Fig. I of Parts I and II), would seem to be an ideal
system for use in detecting the eGects of very small
magnetostrictive and/or biquadratic terms on bullr
magnetic properties —far better, for example, than
simple two-sublattice antiferromagnetic systems such
as MnF~. The reasons for this are related to the break-
down of molecular-6eld theory for the present case
(compare Figs. 6 and 7 of Part II) and will be discussed
at some length in Sec. 4.

An ideal substance for use in searching for very small
biquadratic eGects would therefore be one which
exhibits the fcc type-2 spin structure and also has small
magnetostrictive effects. For simplicity, however, and
in order to allow for as accurate a theoretical analysis
of the problem as possible, it is also desirable that the
salt should have well-isolated orbital-singlet single-ion
ground states and a magnetic anisotropy which is very
small compared to the isotropic exchange energy. Of
the obvious candidates, viz. , NiO, EuTe, and ~-MnS,
only the last is really suitable on all counts. Although
Ni++ has an orbital-singlet ground state in NiO, and
an isotropic exchange energy which far outweighs any
dipolar anisotropy, its Neel temperature is so large
525
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that an analysis of the paramagnetic state necessitates
the inclusion of higher energy orbital contributions
which are difficult to handle in an accurate statistical
treatment. EuTe, on the other hand, contains magnetic
cations with well isolated orbital-singlet ground states,
but the 4f wave functions are so localized, and the
resulting superexchange so small, that the dipolar
anisotropy energy is by no means small compared with
the isotropic exchange. In such a case, the anisotropic
effects are not well approximated by effective fields,
and result in considerable theoretical complications.

For these reasons we have singled out o.-MnS as
being the salt most suitable for detailed study in a
search for effects which might be due to biquadratic
exchange. The experimental information presently
available for O.-MnS is, however, rather scant, and it is

hoped that the work of the present paper will stimulate
interest in the magnetic properties of this salt.

We have observed the Mn" nuclear magnetic reso-

nance (NMR) in zero external magnetic field at tem-

peratures between 1.5 and 20.4'K. The temperature
dependence of the NMR frequency provides infor-

mation concerning the temperature dependence of
sublattice magnetization. We 6nd that the so-called
anomalous behavior of sublattice magnetization which

was observed for MnO is essentially absent in n-MnS,
indicating that the lattice distortion in o.-MnS is

probably rather small, and that e-MnS should therefore
allow for a sensitive measurement of biquadratic
exchange.

In discussing the possible interactions in n-MnS, we

have allowed for both isotropic and anisotropic mag-

netostrictive effects and have introduced biquadratic
interactions between both the nearest and next-nearest
neighbors in addition to the bilinear exchange J~ and

J2. A spin-wave theory has been developed for the
system and it is demonstrated that the deviation of
magnetization from its value at T=O is very sensitive

indeed to anisotropic distortion 6 and to nearest-

neighbor biquadratic exchange j&, but is fairly in-

sensitive to isotropic magnetostriction and to next-
nearest-neighbor biquadratic exchange. This allows us

to describe the NMR results in terms of J~, J~, j~, and

6 only.
Values for the nearest- and next-nearest-neighbor

bilinear exchange paramters J~ and J2 are estimated
from a description of the paramagnetic state using the
Green's function theory of Part I; we find J&=7'K
and J2=12.5'K. Using these values in the spin-wave

calculation, and fitting the theory to the NMR experi-
mental results, then provides us with information con-

cerning ji and A. We conclude that the ratio j&/Ji
&0.001 for O.-MnS; it may even be negative. All

previous estimates of biquadratic exchange for Mn++

interactions (see, for example, Joseph') have indicated

that j/J is positive and 0.01~ 0.05. Whether j&/J&

is positive or negative for n-MnS can be decided by a
direct measurement of anisotropic distortion 6, but
the results of such a measurement are not yet available.
It is important to note, however, that the result
j&/Ji(0.001 refers only to nearest neighbors (super-
exchange via a 90' ligand). It does not follow that an
equivalent result is necessarily valid for next-nearest
neighbors (superexchange via a 180' ligand).

In Sec. 2 we discuss biquadratic exchange in the
molecular-field approximation, comparing the effects
of biquadratic and distortion terms on sublattice mag-
netization in this theory. In Sec. 3 we investigate the
manner in which biquadratic exchange can be included
in a simple spin-wave theory. Section 4 derives an
exchange Hamiltonian for ~-MnS and discusses the
spin-wave estimate of sublattice magnetization using
this Hamiltonian. The paramagnetic properties of
n-MnS are analyzed in Sec. 5 using the random-phase
Green's-function theory of Part I, and estimates are
obtained for the bilinear exchange parameters in this
salt. In Sec. 6 we describe the measurement of the zero-
field NMR in the antiferromagnetic state of ~-MnS,
and discuss the temperature variation of this frequency
in terms of the spin-wave calculations of Sec. 4. Also
discussed is the resonance }inewidth and the contri-
bution to this linewidth to be expected from indirect
nuclear spin-spin interaction. Finally, Sec. 7 discusses
the conclusions concerning biquadratic exchange which
follow from the results of the present paper.

2. BIQUADRATIC EXCHANGE IN THE
MOLECULAR-FIELD APPROXIMATIOÃ

Consider an exchange Hamiltonian of the form

(2.1)

where
+Ss, (S;,')——S,,(s;,)$), (2.2)

where J;; and j;; are, respectively, the bilinear and
biquadratic exchange parameters for interactions
between spina S; and S;, and where P&,,& runs over all
pairs of spins in the system. In the molecular-field
approximation, we reduce Eq. (2.1) to a single spin
Hamiltonian 3'.; by replacing the various spin functions
of all spins S;&S;by their average values, thus neg-
lecting all correlations between the spins. If we assume
that spin S; is in an eigenstate of S;, (which is self-
consistent in the sense that the resulting Hamiltonian
R; has stationary states which are eigenstates of S,,),
then we may readily replace the operators of 5; which
occur in (2.1) by their average values, which can be
written as functions of (S;,) and (S;,s). The resulting
single spin Hami1tonian is

se, =p (J,-,s,.(s,.)—j,,[s,.(s,.)+s.„(s,„)

' R. I. Joseph, Phys. Rev. 138, A1441 (1965). (s;.)= (s,„)=-,'s(s+ 1)——;(s,, ), (2.3)
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and where the axis s has been singled out as the direction
of spin alignment in the ordered state, so that (S;,)
=(5,„)=0.

The Harniltonian (2.2) is already in diagonal form
and has eigenvalues

E'= 2 ((~v+2i'~)~(5'~. )

which, on using (2.9), gives

3kT&=5(5+1)LQ (J;,+i2j;;) p—(J;;+2j;;)g. (2.12)

Solutions are also readily obtained for the para-
magnetic state, where we may calculate the magnetic
susceptibility in the form

—''I:5(5+1) + 'P3) ( )
x =&g'~s'5(5+1)/3&(2'+ ~) (2.13)

where m and nz' are, respectively, the eigenvalues of
S;, and S;,', and where

Lusing conventional notation] with 0, the Curie-Weiss
constant, given by

=~5(5+1)——',(5 ') (2.5) 340=5(5+1) Q (J,;+-,' j;;). (2.14)

(2.6)

We now introduce two sublattices; an "up" sublattice
which includes the spin S;, and a "down" sublattice,
thus restricting ourselves to spin arrangements which
have a single axis of spin alignment in the ordered state.
Writing the average value of spin (5;,) equal to +8
on the "up" sublattice, and. equal to —S on the "down"
sublattice, and writing (5;,2)=(5,2) for spins on both
sublattices, we may calculate the thermal averages

(S;,) and (5;,') in the form

and

nz exp[Xm+ Vm')/kT
(5,.)=8=

exp/Xm+ I'm')/k T
(2.7)

m' exp LXm+ VnP)/kT
(S;.') = (S.')= (2.8)

P~ expLXns+ Fm'3/kT

where P runs over values —5, —S+1, , 5—1, S,
and where the functions X and I" are given by

X=K P;;+ ',j'~)8 E(Sv+-ljv)8-, (2.9)

I'= E i'~P (2.10)

where p;" runs only over those values j for which 5;
and 5; are on different sublattices, and where Q,' runs

only over values j for which S, and S; are on the same
sublattice. The Eqs. (2.7) and (2.8) may now be solved
simultaneously to provide us with the temperature
depend. ence of 8 and (5 2) in the molecular-field

approximation.
The system is most easily described in the limit

S —+ 0, (5.2) —+ —', S(S+1), for which both X and I' go
to zero. This limit will determine the Neel temperature
unless j;;is large enough to give a erst-order transition,
and we find, from Eq. (2.7)

S=S(S+1)X/l3kT, (2.11)

Thus, in the paramagnetic state, the biquadratic
interaction —j@(S,"S,)' behaves exactly as would an
antiferromagnetic bilinear term —,j,,S; S;. In general,
of course, this is a result which is restricted to both the
paramagnetic state and to the molecular-field theory.
There is one case, however, for which the result is
rigorous; namely S=2, for which

(S;.8;)'—=—,', —-,'S,"S;, (S=-',). (2.15)

Solution of the simultaneous Eqs. (2.7) and (2.8)
in the antiferromagnetic region is best carried out
numerically. We have considered in detail the case
S=5, which is the value of spin applicable to Mn +
salts. The results for 8 and (5,') as functions of tem-
perature are shown in Figs. 1 and 2, where the curves
are plotted for different values of the parameter p,
where

2pLQ (J;;+2j;;)—p (J;;+i2j;;)g=p j;;. (2.16)

The curves show the transition to become of first order
for values p&0.06.

Although we expect the molecular-field result to be
very poor for the fcc type-2 spin arrangement, it is
interesting to compare the curves of Fig. 1 with those
of Part II, Fig. 6. Consider the case where the only
nonzero interactions in (2.16) are for nearest neighbors

J&,j&, and for next-nearest neighbors J2,j2. If we put
j2——0, we have (for the Mno-type spin pattern),
p= ji/J&. In this case, the system described by Fig. 6
of Part II di6ers from the present one only by having
nearest-neighbor interactions $Ji&j(S)'jS; S, in place
of JiS;.S;—ji(S;.S;)'. We see that the biquadratic
exchange does behave (at least for spin 2), very much
like the distortion term which was discussed in detail
in Part II. Quantitatively, however, the biquadratic
terms produce a rather smaller effect on sublattice
magnetization than do equivalent distortion terms
(they are about x3 effective for spin ~~). It is probable
that they become progressively less effective for smaHer
values of spin until, in the limit of spin -„ they have no
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FIG. I. Average spin per site S as a function of temperature,
calculated in the molecular-Geld approximation for an arbitrary
uniaxial antiferromagnetic spin pattern, for spin —,', and for various
values of the "biquadratic parameter" p of Eq. (2.16). The
parameter T~ in the coordinate of the abscissa is calculated from
Eq. (2.12), and is the molecular-field Noel temperature as long
as the magnetic transition remains of second order.

effect at all on the shape of the magnetization curves
(when plotted as functions of T/Trr).

3. BIQUADRATIC EXCHANGE IN THE SIMPLE
SPIN-VIVE APPROXIMATIOÃ

for a spin on the "up" sublattice, and

5'= S+b*b, St= (2—S)"'b*, 5 = (25)"'b (3.2)

for a spin on the "down" sublattice, where a*a and
b*b are, respectively, the number of spin deviations on

r R. Kubo, Phys. Rev. 87, 568 (1952).

Since our main concern in this paper will be a de-
scription of the experimentally measured low-tempera-
ture sublattice magnetization curves of o,-MnS, it is
important to investigate the eGect of biquadratic ex-
change interactions at very low temperatures. The
available experimental data are all contained in a tem-
perature region for which a simple noninteracting spin-
wave theory should. give an excellent approximation, so
that we need consider only this simplest of spin-wave
approximations.

If we expand the interaction JS,"S,—j(S; S;)' in
terms of the operators S;+, S,', 5;+, and S, where
S+=S,&iS„, then the resulting expression involves
the single spin operators S+, 5', 5+5+, S+S+, S+S',
S'S+, and S'S' of both spins. In spin-wave theory we
describe a system in terms of the deviation of its spins
from the ordered state S'=&5 by introducing boson
creation and annihilation operators in the form~

Sz—5 o+g St —(25)&/&g 5—= (25)&&~++ (3.1)

an "up" and a "down" site (i.e., equal to zero in the
ground state, and equal to one in the first excited state).

In the simplest spin-wave approximation, we write
the exchange interactions in terms of the above boson
operators in such a way that all the single-spin oper-
ators involved have the correct matrix elements
between the ground and first excited states. Con-
sider, for example, the operator (S')'. In single
spin states ~5) and ~5—1), it has eigenvalues S' and
(5—1)', respectively. It can therefore be represented
by Ss—(25—1)a*a. Consider also the operator StSz.
It has only one nonzero matrix element between the
states ~$) and IS—1), which is (5~5tS*IS—1)= (25)'~'
&& (5—1). It can, therefore, be represented by (25)'~'
&&(5—1)a. We note that neither of these operator
equivalents results from a direct substitution of (3.1)
and subsequent neglect of terms higher than quadratic
in spin deviations. A full set of the required operator
equivalents is given in Table I.

H a spin S; is on the "up" sublattice, and a spin Ss
is on the "down" sublattice, then the exchange inter-
action 3'.;&=JS; S&—j(S; Ss)' between them may be
written in terms of the boson operators (using Table I)
in the form

3(';s= —(&+j)S'—jS'+SP+j(2S'—25+1)]
XP;*a,+ba*bs+ a;by+a;*by*], (3.3)

where we have neglected terms higher than quadratic
in spin deviations. As far as the thermal excitations are
concerned, the interaction behaves exactly as if there
were a bilinear exchange J+j(25'—2S+1) alone.

If we now consider two spins S; and S,' on the "up"
sublattice, an exchange interaction 3!;;=JS; S,'—j(S; S; )' may be expressed as

X,; =JS' j$4 5/J j(2—S' 2—5)]- —
XE~,*o;+o,"*o; —o o; *—o;*a,']. (3.4)

In this case the thermal excitations are the same as
one would get for a bilinear exchange J—2jS(S—1).
An exactly equivalent result may be obtained for a
pair of spins on the "down" sublattice.

For spin S=-„we easily verify that the biquadratic
exchange behaves as an antiferromagnetic bilinear term
+-',jS; S; both for parallel and antiparallel spins, in
agreement with the exact result (2.15). In the limit of
very large spin quantum numbers, the biquadratic
terms are equivalent to a bilinear ontiferromagnetic
exchange 2jS' for antiparallel spin pairs and equivalent
to a ferromagrsetic exchange 2jS' for parallel spin pairs.
Thus, in this limit, the system behaves in the classical
manner, the term —j(S; S;)' favoring parallel and
antiparallel spin alignment equally. For spin S=~5,
which will be the case of interest for a-MnS, the bi-
quadratic terms for as +(17j/2)S; S; for antiparallel
spin pairs, and as (—15j/2) S; S;for parallel spin pairs.

It is of some interest, in passing, to note a few
properties of the purely biquadratic (jpositive) system,
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TABLE I.S; on the "up" sublattice,
Sq on the "down"' sublattice.

Spin operators

S,+S;

(S.s)s

S;+S;+and S& S;
S;+S,*
S;*S;+

S,*S;—

SI+SI
Sg Sg+

(Sss)2

SI,+Sg+ and Sy, SI,

San+Sf*

Sa'Sa+

Sa'Sr

Equivalent Bose operators

2S+ (2S—2)a,*a;
2Sa,*u;

S'—(2S—1)a,cay

0
(2S)'"(S—1)a~

(2S)'~'Sa;
(2S)'~'Sa, e

(2S)'"(S—1)aF

2Sbgbg,

2S+ (2S—2)baby
S'—(2S—1)4*4

0
—(2S)'~'S4*

—(2S)'i'(S —1)bP
—(2 S)'~'(S 1)bj,—

—(2S)'&She

3—

S ~5/2

0
0 0.2

I

0,4
I I

0.6 0.8
TJ'TN

l

1.0
I

1.2

Fro. 2. The thermal average values of Sp and S,s (or S„'),
calculated in the molecular-Geld approximation for an arbitrary
uniaxial antiferromagnetic spin pattern, for spin —,', and for various
values of the "biquadratic parameter" p of Eq. (2.16).

for which all bilinear exchange J vanishes. Some of
these properties are rather surprising. Thus, even in a
molecular-6eld approximation, the antiferromagnetic
ground state always has lower energy than the ferro-
magnetic one. (compare Eqs. (3.3) and (3.4) in the
absence of the spin excitations. $ In the spin-wave
approximation, the energy

difference

between the
ferromagnetic and antiferromagnetic states is larger
still, since the ferromagnetic state is an eigenstate of the
biquadratic Hamiltonian whereas the molecular-6. eld
antiferromagnetic state is not.

For 5=-', and 5=1, the ferromagnetic state is un-

stable in the spin-wave approximation, whereas the

antiferromagnetic state is stable (for three-dimensional
structures) for all values of spin. For 8) ss, however,
the ferromagnetic state is also stable in the spin-wave
approximation, i.e., it is a metastable state of the
system.

4. THE SPIN HAMILTONIAN FOR e-MQS

In the present section we shall write a Hamiltonian
for the n-MnS spin system which includes both bilinear
and biquadratic exchange interactions, and also allows
for both isotropic and anisotropic magnetostrictive
eBects. A Hamiltonian of this nature necessarily con-
tains quite a large number of parameters and it is
unfortunate that, at the present time, little is known
about many of them. In spite of this, we shall show that
the shape of the magnetization curve for e-MnS is
quite insensitive to a number of these unknowns, and
that our lack of knowledge concerning them does not
prevent us from drawing some important conclusions
about the magnitude of biquadratic exchange in this
salt.

The crystal structure and the antiferromagnetic spin
pattern' for z-MnS are exactly the same as found for
Mno and discussed in some detail in Part II.We expect
the dominant exchange interactions to exist between
nearest neighbors and between next-nearest neighbors.
We also expect the magnetic anisotropy energy to be
mainly of dipolar origin, and to be very small indeed
compared with the isotropic exchange energy.

We shall introduce bilinear and biquadratic exchange
interactions between nearest neighbors (J,,j&) and
between next-nearest neighbors (Js,js) in the system,
neglecting more remote interactions. Each of these
exchange parameters will be sensitive to interspin
distance. In O.-MnS, however, it is possible to neglect
the dependence of j& and j& on interspin distance,
since terms arising from the distance dependence of
biquadratic exchange are likely to be at least an order
of magnitude smaller than those arising from bilinear
exchange magnetostriction and from biquadratic ex-
change itself.

Above the Neel point (T~= 147'K), o.-MnS possesses
the cubic rocksalt structure. In the ordered state, the
spin systems forms ferromagnetic $111] layers which
are stacked antiferromagnetically. The distortion
which accompanies this type of ordering has been
described by Rodbell and Owen. s It may be considered
as the sum of two separate parts, the first being an
isotropic contraction of all cube edges by an amount
ba/a, and the second a deformation along the (111)
axis (i.e., normal to the ferromagnetic sheets) with the
length of the cube edges Axed. In the latter deformation,
the cube corner angles become ~~m~d.

If the nearest- and next-nearest-neighbor distances
are, respectively, d&' and d2' in the cubic state, then in

SL. Corliss, N. Elliott, and J. Hastings, Phys. Rev. 104, 924
(1956).
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the ordered state they become d&+ and d'&, where d&+

refers to nearest-neighbor parallel pairs of spins and
d~

—refers to nearest-neighbor antiparallel pairs, and
where

(dy+ —8p)/dy =&—5—58/g

(dn —d2')/d2e =—8a/a.

(4.1)

(4.2)

then we may represent the exchange part of the e-MnS
energy by the Hamiltonian

3'.=g [Jr+S; S;—j&(s; S;)']

If we write the d.ependence of the exchange J; (i=1, 2)
on small variations br of interspin distance from the
(cubic) equilibrium separations in the form

J;(r+5r) =J,(r)+$8J,(r)/Brflr
=J,(r)I 1—e,br/r j, (4.3)

thus defining the dimensionless parameters e; as

e,= ( r/J;) 8J—,/Br,

The resulting equilibrium values are given by

8C,~„=&z,J.e.t &S; S;)„:—&S;-S;)..j, «.»)
-9C.(~./. ).,=P.,J„,L-&S,-S,&, +&S,-s,), 3

+-,'A"z, J2e2&s,"S;)... (4.12)

where (S; S,)„„'and (S; S;) & refer, respectively, to
thermal averages over antiparallel and parallel nearest
neighbors, where z, (= 12) and z2(= 6) are the numbers
of nearest and next-nearest neighbors of any particular
spin, and where Ã is the total number of spins in the
lattice.

In the following section, from an analysis of the
paramagnetic properties of n-MnS, we find values
J&——7'K, and J~——12.5'K. For this ratio J2/J~ ——1.8,
Fig. 7 of Part I shows that the nearest-neighbor spin
correlations are very small at the Keel point. It is quite
likely, therefore, that the molecular-field estimate
&S;.S;)„„n=—&S,"S;)„'=(8)' is a good approximation
in the ordered state. The same is not likely to be true
for next-nearest neighbors where (Fig. 8 of Part I) the
magnitude of &S,"S;)„at TN is 0.3S(8+1).With
this simplification, Eqs. (4.11) and (4.12) reduce to

+p [Jg-s,"S;—jg(S,"S;)']
~„=Xz,J,e, (8)2/4C„ (4.13)

+p p,+S,-S,-j,(S, S,)e], (4.5)

J,+=J,P+ e, (Sa/a) ). (4.7)

In the latter equations, J~ and J2 refer to the exchange
parameters in the paramagnetic state, and 5a/a and
6 refer to the equilibrium values of these quantities.
Throughout this analysis we shall neglect any spin-
separation dependence due to thermal expansion of
the lattice, since it is extremely small indeed in the
temperature region &T~.

In this approximation, the free energy of the system
is made up of an exchange part F, Lsee Part II, Eq.
(3.3)j and an elastic part. The latter, ' may be expressed

where g„n refers to a sum over antiparallel pairs of
nearest neighbors, P„p refers to a sum over parallel
pairs of nearest neighbors, and where

J,+=J~(1+e~(5a/u) ~-', e~Aj, (4.6)

(8a/a)~= —Sz2Jgeg&S; S;) „/18C, . (4.14)

We note that, whereas the distortion 6 is absent in the
paramagnetic region (see also Sec. 6 of Part II), the
isotropic contraction ba/u will not set in suddenly at
the Neel point but will be a continuous function of
temperature varying closely as (S; S;) near T&.
Equation (4.14) will, however, be valid only for T&T~,
the temperature variation of 8a/a (still neglecting
thermal expansion) in the paramagnetic region should
be determined from (4.12).

Our main concern in the present paper is the inter-
pretation of magnetic data obtained in the spin-wave
region. Using the results of Sec, 3 for biquadratic ex-
change in the spin-wave approximation, and considering
specifically the case S=~, we may make the following
substitutions in Hamiltonian (4.5):

n n (17j&
p —j&(s; S;)'~Q

I
S; S;,

nn nn ( 2

z.,=-,'c,an+-,'C.(3aa/u)', (4.8)
p u (—15jq)

j,(S, S,) P I
IS,"S,, (4.15)

nn nn k 2

&ave/aa&+c, a =o, (4.9)

~&ax/a(~a))+ac. t u/~=o, (4.10)

where the pointed brackets represent thermal averages.

thus de6ning a pair of elastic constants C~ and C for
the system. The equilibrium values of d and Su are
obtained by minimizing the total free energy (exchange
plus elastic) with respect to d, and 8a, when we obtain

(17je)g —j (s'. s;)' 2 I
Is'. s-.

nnn nnn k 2

Substituting for Cq and C, fusing (4.13) and (4.14))
in Eq. (4.8), the full spin-wave Hamiltonian for the
z-MnS system, including strain and anisotropy, may
now be written, and takes exactly the form which was
used for describing MnO LEq. (4.1) of Part IIj but
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with rather more complex expressions for the "eHective"
exchange parameters. Thus, we write

Se=gg, S,"S,++g;S; S;+g g2S; S;

+Q D;S;g2+Q D28;„2, (4.16)

g,+—g,—= -2'J,2,&~+16jl, (4.23)

where Dl and D2 are parameters describing, respec-
tively, the anisotropy which restricts the spins to the
[111]plane, and the anisotropy which constrains the
spins to a particular direction s within this plane, and
where

pl+= Jr[1+21(ba/a) +4&16~]+(17/2)j 1, (4.17)

g,—=Jl[1+el(ba/a)~ —~elh~] —(15/2) jl, (4.18)

g2 =J,[1+-',~2(&a/a)~]+ (17/2) y„(4.19)

with (5a/a), 2 and A~ given by Eqs. (4.13) and (4.14).
The temperature dependence of sublattice magneti-

zation in the spin-wave region has been calculated, for
the antiferromagnetic fcc type-2 spin arrangement and
a Hamiltonian of the form (4.16), in Part II. The result
ls

Pl+P28=S+-',—-',

[{p+&){p —7)]'~'

S[{pl+y-)(P2 y)]'"—
Xcoth (4.20)

2kT
where

Pl+7= 2(gl +pl ) (clc2+c2c2+clcl)

+4g2(cp+C2'+c2')+2 (pl+—gl
—)

X (3—sls2 —s2s2 —slsl)+2D1, (4.21)

p2 —'r = 2 ($1 gl ) (S1S2+$2$2+$3$1)

+4g2(»2+$22+$22)+2(pl+-gl-)

X (3—clc2—c2c2—c2cl)+2D2 & (4.22)

and where c; and s; (i= 1, 2, 3) are the cosines and sines
of three arguments which, in the average ( ~ -)x, run
independently between —x and x. If we suppose the
anisotropy parameters D& and D& to be known, then
the spin deviation 8(0)—8(T) is a function of the three
variables pl++pl —,pl+—gl—,and g2. In the case of no
magnetostriction and no biquadratic exchange, these
variables are, respectively, 2J~, 0, and J2. Numerical
evaluation of (4.20) reveals the very important result
that the spin deviation 8(0)—8(T) is many times more
sensitive to pl+ —gl than it is to deviations of &1++&1
from 2J1 and g2 from J'2. For n-MnS, for which the
sects of magnetostriction and biquadratic exchange
are quite small, this result is very significant, allowing
us to describe the system to a good approximation in
terms of Jl, J2, and pl+ —gl only, where

thus eliminating the "unknowns" j2 and (8a)~ from
the problem.

The large sensitivity of spin deviation to $1+—$1
is readily understood by considering the spin-wave
energies of the system, which are proportional to
[{Pl+y)(P2—y)]'~2. We see from (4.21) and (4.22)
that, in the limit pl+ —gl ~ 0, there are a number of
regions in the reciprocal lattice space where the ex-
citation energies go to zero in the absence of anisotropy.
Thus, for systems with small anisotropy, very little
energy is required to excite spin-waves with wave
vectors close to these values. It follows that for low
temperatures nearly all the spin waves in the lattice
are of this type. The thermal average 8{0)—8(T) of
the system is therefore very great1y reduced if these
particular spin-wave energies are increased. Examination
of the spin-wave energy expression shows that contri-
butions from g2 and from g&++pl are very ineKcient
in this respect. The pl+ —gl terms, on the other hand,
are very much more effective, making the system ultra-
sensitive to distortion 6 and to nearest-neighbor bi-
quadratic exchange. The e8ect is most pronounced at
low temperatures and for small distortion (or nearest-
neighbor biquadratic) terms, when the latter terms are
more than ten times as effective at reducing spin devi-
ation than are equivalent contributions to g2 or
/1++/1 . Such an effect is describable only in terms
of collective oscillations and will be overlooked by
molecular-field or cluster approximations.

Physically, such a supersensitivity is only likely to
arise for systems which contain "unfavorably oriented"
spins, where we use the latter expression to denote pairs
of spins which are aligned ferromagnetically in the
ordered state but which have an antiferromagnetic
exchange interaction between them (or vice versa). The
fcc type-2 order has six unfavorably oriented nearest
neighbors and provides perhaps the best example of this
supersensitivity to lattice distortion and biquadratic
exchange which is presently known.

5. THE PARAMAGNETIC STATE AND THE
DETERMINATION OF Jg AND J2

In the paramagnetic state, we shall assume that the
n-MnS system can be described in terms of bilinear
nearest- and next-nearest-neighbor exchange&parame-
ters J~ and J~ alone, i.e., in the complete absence of
magnetostrictive and biquadratic terms. In this approxi-
mation we may use the results of random-phase Green's-
function theory (Part I) and we shall be able to esti-
mate J& and J& with a probable accuracy of better than
10%.We assume, therefore, that the effects of magneto-
striction and biquadratic exchange in the paramagnetic
state are small compared with the eGects produced by
a variation &10% in bilinear exchange. Since aniso-
tropic magnetostriction is almost certainly completely
absent for T)T~ (see Part II, Sec. 6) and, to a first
approximation, biquadratic exchange —j(S; S;)' be-



M. E. LINES AND E. D. JONES

haves as a bilinear term —,
' j(S;.S;) at high temperatures

(see Sec. 2), such a situation is extremely likely, and
will prove consistent with the low-temperature findings
of the following section.

Experimental measurements of magnetic suscepti-
bility in the paramagnetic state have been published
for Of-MnS by several authors, ' "who report a very wide
range of values for both the Curie constant C~ and the
Curie-Weiss temperature 0. The widely differing results
undoubtedly arise in part from differences in sample
composition, but equally responsible, one suspects, are
the errors incurred by fitting the results to a simple
Curie-Weiss law in temperature regions where such a
law is not valid. The most recent, and the most ex-

tensive, measurements are those of Banewicz and
Lindsay, ' —"who find that the situation for o-MnS is
very similar to the one found for MnO and discussed in
Part II.They find that if experiments are carried out at
temperatures T&5T~, for which short-range order
sects should be negligible, then the measured Curie
constant Csr is some 10% smaller than the value

appropriate for a spin —, system. This would indicate
that the system deviates significantly from a Mn++
and S ionic description at these evelated temperatures.
We shall prefer to interpret the lower temperature
(T~&T&2T~) data in terms of the Green's-function
theory of Part I. In Fig. 3 we compare the data of
Lindsay and Banewicz" with the theoretical estimates
from Part I (Fig. 2), and we 6nd that good agreement
can be obtained for a value of Curie-Weiss constant
0=465 K. Some additional information is furnished

by the slope of the curves concerning the ratio Js/J&,
indicating that for +-MnS this ratio is certainly greater
than 1 and less than 3, and is probably close to 1.5.

The value of magnetic susceptibility at the Neel

point as measured by Lindsay and Banewicz" is
6260)&10 ' emu/g, and allows a value to be derived

for J&+Js Lby use of the Green's-function result

x(Ts)=Ng pa /12(J&+Js)].We are using, throughout,
the results obtained for the sintered-rod sample of Ref.
15 which dier by a few percent from those obtained
for the powder specimen of Ref. 14. We find a value

Jr+Js——20.0'K.
The Gnal piece of information concerns the transition

temperature Tz. It can be measured quite accurately

by observing the temperature for which the manganese
NMR in the paramagnetic region disappear. We have
found this to occur quite suddenly and reproducibly at
147~1'K.'~ This is in exact agreement with the dis-

' C. F. Squire, Phys. Rev. 56, 922 (1939).IF. Mehmed and H. Haraldsen, Z. Anorg. Allgem. Chem. 235,
193 (1938).

u S. S. Bhatnagar, J. Indian Chem. Soc. 16, 313 (1939).
u H. Bisette, Ann. Phys. 1, 295 (1946).
u A. Serres, J. Phys. Rad. 8, 146 (1947)."J.J. Banewics and R. Lindsay, Phys. Rev. 104, 318 (1956).
~5 R. Lindsay and J. J. Banewicz, Phys. Rev. 110, 634 (1958).
'6 J.J.Banewicz, R. F. Heidelberg, and R. Lindsay, Phys. Rev.

117, 736 (1960)."E.D. Jones (to be published).

(i) from g(T)Ts);
(ii) from x(T~);

(iii) from T~,

(iv) from x(T)TN);

2Jr+Js=26.6'K,

Jr+Js——20.0'K,
12.6Js—2.3JP/Js ——147'K, (5.1)

1.0(Js/Jg&3. 0.

As was the case for MnO, the first three results should
certainly be good to better tha, n 10%. We are easily
able to find values J& and J2 which very closely satisfy
the conditions (i) to (iii) and which fall within the
limits set by (iv). The best values are very close to

Ji =7.0'K, Jg = 12.5'K, (5 2)

giving a ratio Js/J&=1.8. They may be compared with
our findings for MnO, which were Ji = 10'K, J2——11'K.

6. Mn55 ZERO-FIELD NMR IN THE ANTI-
FERROMAGNETIC STATE OF e-MnS

In this section, we present the results and inter-
pretations of the observation of the Mn" zero-field
NMR in the antiferromagnetic state of n-MnS. We
find that the determination of the average value of
sublattice spin 8 for the antiferromagnetic ground state
at O'K is not possible for n-MnS because of an apparent
increase in the value of the hyperfine coupling constant
in e-MnS over the value determined by electron para-
magnetic resonance (EPR) on the Mn'+ ion in an ap-
propriate nonmagnetic host lattice. A similar situation
for the isomorph MnO has been noted in Part II.

The observed temperature dependence of the Mn"
zero-6eld NMR frequency provides the only measure-
ments, to date, yieMing information regarding the
temperature dependence of the sublattice magneti-
zation in n-MnS. From these measurements we are
able to compare the experimental results with the
noninteracting spin-wave theory developed in Sec. 4.

's C. T. Anderson, J. Am. Chem. Soc. 53, 476 (1931).
"M. E. Fisher, Phil. Mag. 7, 1731 (1962).

continuity in the specific heat, ' and is, as expected, "
a few degrees below the temperature where the maxi-
mum in the magnetic susceptibility is found. We note
that the random-phase Green's-function theory is not
sufficiently accurate in the immediate vicinity of T& to
indicate the latter e6ect. The double cusp feature of
the specific-heat curve" is puzzling, but a possible
explanation is put forward in Sec. 7.

We have used the theoretical estimate for T~ which
we considered (in Part II) to be the best presently
available for the fcc type-2 spin structure and spin —'„
viz. , the random-phase Green's-function result plus
10%. Within the range 1.0&Js/Jr(3. 0, this result
may be expressed in the form ET/Js=12. 6—2.3/x',
where x=Js/Jr.

Our findings may be summarized as follows:
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Mn" NMR in Antiferromagnetic e-MnS

The measured temperature dependence of the Mn"
zero-6eld NMR frequency is shown in I ig. 4. A smooth
curve has been drawn through the data and extrapolated
to O'K, yielding a value vss(0)=577.5~0.1 Mc/sec.
In Fig. 5, we show a comparison of the data obtained
for rr-MnS with those measured for MnO (see Part II).
The so-called anomalous behavior of Mno, i.e., the
very slow decrease in v"(T) as a function of T/T&, is
essentially absent in o,-MnS. This is an early indication
that the eRects of lattice distortion and/or biquadratic
exchange are probably small in O.-MnS. The situation
will be discussed in detail at the end of the present
section, when a comparison between spin-wave theory
and experiment is made.

The zero-6eld time-independent Hamiltonian for a
Mn" nucleus in antiferromagnetic O,-MnS is written as

2.6

2.5
1

I

2
T/T„

where the s axis is the direction of antiferromagnetic
spin alignment in the ordered state. The first term on
the right-hand side of (6.1) results from core polari-
zation of the inner s-shell electrons by the outer 3d
electrons, where (S,)=S is the time-averaged electron
spin polarization per Mn'+ ion, A55 the hyperine
coupling constant, and I the nuclear spin (I=-,'). The
second term in (6.1) is the magnetic interaction
between the Mn" nuclear moment and the dipolar
field due to neighboring electronic spins, with F55 the
nuclear gyromagnetic ratio, and Hs;, =P; D,'(S,'),

FxG. 3. Curves of magnetic susceptibility, as calculated in the
random-phase Green's-function approximation, are plotted as a
function of temperature and compared with the experimental
data of Lindsay and Banewics (Ref. 15) for the case 8=465'K
Le is the Curie-Weiss constant/.

57
i

Exyerimental

The Mn" zero-ield NMR was observed in powdered
samples of O,-MnS in the frequency range 575—580
Mc/sec between 1.5 and 20.4'K. The NMR spec-
trometer used to detect the Mn" resonance was a
super-regenerative uhf oscillator previously described. "
Attempts to observe the Mn" NMR using cw tech-
niques have thus far proved unsuccessful. %e attribute
this failure to an expected increase in Mn" NMR
linewidth in a-MnS as compared to MnO (see dis-
cussion on linewidths). An experimental estimate for
the linewidth (5H)" can be made with the super-
regenerative oscillator in the following manner. The
method consists of varying the self-quench frequency
of the oscillator and noting the value of the quench
frequency for which the sideband responses on the
recorder are just resolved from each other. Thus, for
o.-MnS, we estimate that (5H)"=900 Oe.

V

z 577—
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~ K. B.Jefferts and E.D. Jones, Rev. Sci. Instr. 36, 983 (1965).
FrG. 4. Temperature dependence of the zero-6eld Mn'5 NMR

frequency in antiferromagnetic n-MnS.
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a similar calculation on Mno indicated that the zero-
point spin deviation was of the wrong sign (a zero-
point increment). This would indicate that the fault
is more likely to be found in the assumptions made
about the hyperfine constant than in the approximations
of spin-wave theory.

For n-MnS, we experience the same difhculties as
were found for MnQ. For example, let us assume that
at O'K the value of S=S=-'„and solve Eq. (6.2) for

Using vss(0) =577.5&0.1 Mc/sec, Hq;v ——+4.78
kOe, and ass/2m=1. 0553)&10s cycles/G, the result is2"=—(77.72+0.03)10~ cm-'. Listed in Table II are

0.995
0

l

0.05 0.10
I

0.15 0.20 0.25

TABLE II. Mn'+ hyper6ne coupling constants
(sixfold cubic sulfur coordination).

FxG. 5. Comparison of the temperature dependence of Mn" NMR
frequency as measured for MnO (Part II) and u-MnS. Lattice

Lattice
constant

(i.)
A" (units of cm iX10 4)

4.2'K 77'K 300'K

where i is summed over all lattice sites. The dipolar
field is nonzero in the cubic state and is fairly insensitive
to the small distortions which lower the cubic synunetry
of the lattice for T(T~. We have calculated the com-
ponents of the D tensor for the cubic state of n-MnS,
with the result Pq;, =+4.78 kOe (for S= ss), where the
plus sign indicates that Hd;, is in the same direction as
the sublattice magnetization.

The zero-field NMR frequency v"(T) is derived from
the Hamiltonian (6.1) with the result

"'(2')=L(l) l~ "/&I —(v"/2 )& .jSP, (6 2)

where we have assumed that Ass is negative and larger
than p"AHd;, . Furthermore, we make the not un-
reasonable assumption that the temperature dependence
of 355 between 1.5 and 20.4'K is negligible, so that the
temperature dependence of 8 is measured. by v"(T),
i.e., v(T) ~S.

As mentioned in Part II, it is customary at this
juncture to calculate the value of S at absolute zero,
and thereby to investigate the effect of zero-point spin
Quctuations upon the antiferromagnetic ground-state
spin alignment at 0 K. Such a calculation can be made
from (6.2) only if the value of 2's for rr-MnS is known.
It has been common practice" "to assume that a good
estimate for the hyperfine coupling constant of an S
state magnetic ion in an antiferromagnetic salt is given
by the value measured (by EPR) for the same magnetic
ion in a diamagnetic isomorph. With such an assump-
tion, the results of NMR experiments have invariably
indicated zero-point spin deviations which are much
smaller than those calculated by spin-wave theory,
and have been considered by some to cast a doubt on
the validity of simple spin-wave theory for the anti-
ferromagnetic state. In Part II, however, we noted that

"E.D. Jones and K. S.Jefferts, Phys. Rev. 135, A1277 (1964)."G. L. Witt and A. M. Portis, Phys. Rev. 135, A1616 (1964).
'3 P. R. Locher and S. Geschwind, Phys. Rev. 139,A991 (1965).

MgS
CaS
SrS
n —MnS

5.19
5.68
5.87
5.21

75 23~ 74 Sb 74.68—76.8" —75.7'
—77.44~ —76.8b —75.56~

various values of A" determined by EPR for the Mn'+
ion in the nonmagnetic isomorphs of a-MnS. The iso-
morph corresponding most closely to e-MnS, at least
in terms of lattice constant, is MgS. For this case, our
value is 3% larger than the equivalent low-tempera-
ture KPR result. This discrepancy is increased if one
assumes a zero-point spin deviation 3.2% as cal-
culated below, from spin-wave theory. The assumption
of the equivalence of the 255 hyperfine constants for
~-MnS and for Mn'+ in the various nonmagnetic
isomorphs again leads us to the singularly unlikely
result that 8r s) s. W conclude that this assumption
is probably suspect, and that we can make no experi-
mental conclusions regarding the magnitude of zero-
point spin reduction until the questions concerning the
355 value have been resolved.

Comparison with the Results of Spin-Wave Theory

The temperature dependence of sublattice mag-
netization in the spin-wave region may be computed
from Eq. (4.20) provided that we have some knowledge
of the relevant parameters which are contained in the
equation. These parameters are rii+& ri, , ris

l
see Eqs.

(4.17) to (4.19)), and the anisotropy constants Di and
Ds. As described in Sec. 4, we may replace pi++pi
by 2Ji and gs by Js, where Ji and J, are the nearest-
and next-nearest-neighbor bilinear exchange parameters
(which have been estimated in Sec. 5 to be St=7.0'K
and Js——12.5'K). The parameter Ds represents the
in-plane anisotropy. An idea of its magnitude is best

a S. Geschwind (private communication) (estimated accuracy +0.07
+10 4 cm 1).

b P. Auzins, J. W. Orton, and J. W. Wertz, Proceedings of the First
International Conference on Paramagnetic Resonance, edited by W. Low
(Academic Press Inc. , New York, 1963).

o O. Matumura, J. Phys. Soc. Japan 14, 108 (1958).
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obtained from a comparsion of theory and experiment
for NMR linewidth (see Part II) for the equivalent
calculation for MnO), when we find Ds 0.001'K. For
the calculation of 8, it may safely be taken as zero.

The parameter D~ describes the "out-of-plane"
anisotropy which we expect, for n-MnS, to be domi-
nantly of dipolar origin. We can evaluate it from a
knowledge of the antiferromagnetic resonance fre-
quency or,&, through the equation

f'iro, r~,=SE24Di(Ji+ Js)$'i', (6 3)

0.01—

I-
I cfj

I

o.oos —.

Icn

0
0 10 20

TEMPERATURE (OK)
30

FIG. 6. Theoretical spin-deviation curves, as calculated in the
simple spin-wave approximation of Sec. 4 with Jy =7'K,
Js=12.5'K, D&=0.28'K, and Dr=0 (which are the values which
we Gnd for n-MnS), and for various values of the parameter
g&+—

g& of Eq. (4.23), are compared with the experimental
temperature dependence of Mn" NMR frequency. The error in
the experimental measurements is given by the brackets on the
data. An equivalent error in the theoretical curves is roduced
by an uncertainty of &5'P& in J2 at 20 K and of +10 & in J2 at
15'K.

'4 P. L. Richards (private communication).

where S=~5. The resonance frequency for O,-MnS has
been measured by Richards'4 and is 19.8 cm—'. Using
the values for J~ and J2 which have already been
evaluated, we And a value D~ ——0.28'K. A calculation
which assumes that D& is entirely of dipolar origin gives
(when an allowance is made for a deviation of spin

3% from —,') the result Di 'i'=0.36'K. The total
"out-of-plane" anisotropy would therefore appear to
contain a nondipolar contribution which reduces D~~'I'

by about 20%. This is exactly the situation which we
found for MnO in Part II.

With the above information, it is now possible to
compute the temperature variation of sublattice mag-
netization as a function of the single "unk.nown"
rii+—gi . As mentioned in Sec. 4, the spin deviation
is very sensitive indeed to this parameter. We may,
therefore, estimate its value for ~-MnS by comparing
the theoretical and experimental spin-deviation results.
This, in turn, by use of Eq. (4.23), will furnish us with
information concerning the magnitude of distortion
and biquadratic effects in this salt.

sJieih, a+16ji( 0.1'K, (6 4)

compared with a value 1.2'K for MnO. Unfortu-
nately, there has been no information published to
date concerning the magnitude of the distortion parame-
ter 6„.Nevertheless, using Eqs. (4.4) and (4.13), we
And

J,ei&~= 3N(r& Ji/&r)'(8)'/Ca, (6.5)

which indicates that the first term in (6.4) is neces-
sarily a positive quantity. We have, therefore, two
possibilities:

(i) that ji is positive, in which case we find

Jg~gh, ~&~0.2'K.

jg& 0.006'K, (6.6)

(ii) that ji is negative, in which case both Jieih„
and j& could have somewhat larger magnitudes but be
opposite in sign These two possibilities will be dis-
cussed in more detail in Sec. 7.

Using the result that pi+—gi is very small in n-MnS
allows us now to compute 8(0), the average spin value
per site at T=O'K. We find the result 8(0)=2.420, a
zero-point spin deviation of 3.2%.

Mn55 ÃMR Linewidth in O.-Mns

The contribution to the NMR linewidth from the
indirect nuclear spin-spin interaction has been treated
in detail for MnO in Part II. Since we have not made
a direct experimental observation of the linewidth for
n-MnS, we shall only perform an order-of-magnitude
calculation for O.-MnS at the present time. If we assume

From Eq. (6.2), it is evident that fv(0) —v(T) j/v(0)
=L8(0)—S(T)j/8(0). The experimental data are
shown in Fig. 6, where 8(0)—8(T) is plotted as a
function of temperature. The error in the experimental
measurements is given by the brackets on the data.
Also shown in Fig. 6 are the computed spin-wave
results obtained by use of Eq. (4.20). We have com-

puted the spin deviation as a function of temperature
for several positive values of the parameter rIi+—rIi

(negative values would destroy the stability of our
basic spin pattern, which is the spin arrangement
reporteds from low-temperature neutron-diffraction
experiments; i.e., the fcc type-2 order with spins aligned
in ferromagnetic $111jsheets). Also noted in the caption
to Fig. 6 is the sensitivity of the curves to variations of
Js about its estimated value of 12.5'K (the curves are
much less sensitive to variations of Ji). Since our
estimate for Js should be good to better than 10%, we
see from Fig. 6 that pi+ —gi ( 0.1'K. We may also
note that the presence of magnetostrictive and bi-
quadratic riext-nearest-neighbor effects (which modify
Js in the spin-wave region by possibly a percent or two)
are completely negligible when compared with the
sensitivity of the curves to pi+—rIi—.Using Eq. (4.23),
we conclude that, for o,-MnS,
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that the ratio of "in-plane" to "out-of-plane" anisotropy
Ds/D~ is the same for a-MnS as it is for MnO, i.e.,
Ds/D& 10 s to 10 s, then it is easy to show from Part
II that, for small anisotropies,

oH ~ A'/JgD".

Thus it follows that

(6.7)

~a—Mns ~1 Mao
(~H) a—Mns

—~Mno — -Jla—Mns-

DMno

-Da—MnS-
(bH)M o. (6.8)

V'. DISCUSSION

The comparison of spin-wave theory with experi-
mental measurements of the temperature dependence
of sublattice magnetization in o.-MnS has led to the
conclusion that the parameter g~+—g~ t Eq. (4.23)$
is very small indeed for this salt. This parameter is
made up of the sum of two parts, one representing the
effects of anisotropic distortion L—',J~e~A~] and the
other the eGects of nearest-neighbor biquadratic ex-
change j&.The fact that this parameter is sa small would
seem to rule out the possibility of a magnetic first-order
transition at the Neel point, of the type that is expected
to occur in MnO (see Part II). It would also suggest
that the sublattice magnetization deviates very little
from the molecular-field 85/~ curve.

As was pointed out in the previous section, very
little experimental vrork has been reported to date on
n-MnS. This is unfortunate, because a knowledge of
the magnitude of the lattice-distortion parameter h, q

at lovr temperatures, coupled with a measurement of
the elastic constant C~, would allow us to calculate
J&e&A~ and hence to obtain a value for j& from (6.4).
In the absence of this information, we are left vrith two
possibilities depending on the sign of j~.

If j& is positive, which has been the assumption made
by all previous authors who have discussed the sta-

Using the values of A, J~, and D appropriate for O,-MnS
and MnO, and putting (8H)M o=500 Oe, gives
(8H) ~ M~a=850 Oe. In this estimate, however, we have
ignored the effect on linevridth bH of the lattice dis-
tortion terms, vrhich appear to be very much smaller
in O.-MnS than in Mno. Including such an effect in-
creases (8H) M s further (probably by about 20 or
30%), giving us a final estimate

(8H) ~ srns 1000 Oe,

and therefore probably accounts for our failure, thus
far, to observe the Mn'5 zero-field NMR in ~-MnS
using cw techniques. Such a value is also consistent
with our experimental estimate obtained from the
sideband responses of the super-regenerative uhf
oscillation.

tistical problem of biquadratic exchange in the fcc
antiferromagnets, then the results J~e~h~& 0.2'K
and j&( 0.006'K follow. This would indicate a value
j~/J~ for o.-MnS of less than 10 ', which is at least an
order of magnitude smaller than any previous estimate
of such a ratio. It would also mean that (rBJ~/Br)'/C~
is at least an order of magnitude smaller in o.-MnS than
in MnO (where the derivative is taken for r equal to
the nearest-neighbor distance).

Neither of these results is impossible, or even par-
ticularly unlikely, since most of the larger estimates' "
for biquadratic exchange have resulted from use of the
molecular-Geld approximation which is highly suspect
(see Part II) when applied to the fcc antiferromagnets.
Even so, we think that some thought should be given
to the possibility of j& being negative in O.-MnS. In
this case, the very small value found for g&+—g& in
the spin-wave region could result from a cancellation
of somewhat larger distortion and biquadratic terms
which are of di6erent signs. If this is the case, a tenta-
tive exp]anation can be put forward for the peculiar
double-cusped nature of the heat-capacity curve found
for e-MnS by Anderson. "He observes that the heat
capacity reaches a cusped peak at 139'K, after which
the downward part of the curve Qattens o8' to about
147'I, at which point it drops discontinuously to a
lower value. Since we have found that the NMR in
the paramagnetic region disappears as the temperature
is lowered through l47'K, it would seem that this is
the temperature at which long-range order sets in, i.e.,
the Neel point. It is possible that the cusp at 139'K
marks the change from one type of antiferromagnetic
fcc type-2 order to another.

It was pointed out in Part II that the single-axis fcc
type-2 order, which is observed by neutron diffraction
in O,-MnS, is not stable in the absence of distortion and
biquadratic terms. The stability of this single-axis
order depends, in fact, on the sign of g~+—g~—,being
stable for positive values of this parameter. The Eq.
(4.23) for g&+—g& has been derived for the very low

temperature region only. At higher temperatures, both
the distortion and the biquadratic contributions to this
parameter will be temperature-dependent. The dis-
tortion term is known to vary closely as (8)'. The
behavior of the biquadratic contribution is less well
known because of the difFiculty of treating such terms
in any but the simplest of molecular-field approxi-
mations. The work of Sec. 2 however, suggests that this
term might also vary fairly closely as (8)'. It is unlikely,
however, that these terms would have exactly the same
temperature dependence, and it is quite possible that
for the case of jI negative there could be a temperature
for which g&+—g& changes sign. This is most likely to
occur at a temperature for which S is considerably
relnoved from its value in the spin-wave region, i.e., a

~' G. Will, S. J. Pickart, H. A. Alperin, and R. Nathans, J.
Phys. Chem. Solids 24, 1679 (1963).
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temperature not too far below the Neel point. If such
a transition does indeed take place at 139'3, the type-2
order in the 139—+ 147'K temperature region will most
likely be a multiaxial one, since a negative j& would
tend to favor such a structure.

In the light of the results obtained in the present
series of papers on MnO and ~-MnS, it is possibly
worthwhile to re-examine the evidence available for
the existence of biquadratic exchange in ordered mag-
netic systems. The major piece of evid. ence has been
cited'" to be the anomalous temperature dependence
of sublattice magnetization in MnO, NiO, and EuTe.
A certain temperature variation of perpendicular
susceptibility for T& TN in MnO and NiO has also been
mentioned. ' It is interesting to note that all of these
salts have the same crystal structure and spin pattern,
namely the fcc type-2 antiferromagnetic order. This is
probably significant since we have shown that this
particular order is likely to be far more sensitive to
smajl distortions and biquadratic terms than most
others. Previous authors have made a molecular-field
analysis with various simplifying assumptions, e.g.,
putting nearest- and next-nearest-neighbor biquadratic
terms equal, and calculated ratios j/Jwhich are 'typi-
cally of the order 0.015 to 0.05.

The calculations of Part II and Part III of the
present series of papers have shown that the molecular-
field theory almost certainly seriously underestimates
the effect of distortion and biquadratic terms on sub-
lattice magnetization. An important result is that the
shape of the magnetization curves is very sensitive to
anisotropic distortion and nearest-neighbor biquadratic
terms j&, but is rather insensitive to an isotropic vari-
ation of lattice parameters and to next-nearest-neighbor
biquadratic exchange j2. %e find, in particular, that
the reported anomalies of magnetization and of per-
pendicular susceptibility in MnO may both be ade-
quately explained by the presence of anisotropic dis-
tortion alone. The published measurements26 of sub-
latice magnetization in MnO, however, do not extend
over the entire antiferromagnetic temperature range,
and more complete experimental information is required
in order to determine more precisely whether any
biquadratic exchange is possibly present in addition
to the distortion. The existing experimental evidence

"C. G. Shull, W. A. Strausser, and E. O. Wollan, Phys. Rev.
83, 333 (1951).

therefore provides no evidence for the existence of
biquadratic exchange.

It seems quite possible that the observed anomalies
in NiO are also very largely due to the anisotropic dis-
tortion. The case of EuTe is a little more puzzling since
Rodbell et ul. '7 have failed to observe a rhombohedral
distortion in this salt for T&T~, although their com-
ment' that this lack of distortion is to be expected
because of the small value of J~ in EuTe is not correct,
since A„depends on exchange only as BJ&/Br, and this
derivative does not necessarily become vanishingly
small in the limit of small J~. The theoretical problem
for EuTe, however, is complicated by the fact that the
dipolar anisotropy for this salt is comparable in mag-
nitude to the isotropic exchange energy. Such a 1arge
dipolar anisotropy could conceivably give rise itse1f to a
magnetization anomaIy of the type observed in EuTe
and, in the absence of quantitative calculations for this
more complicated situation, it would be hasty to con-
clude that there is evidence for biquadratic exchange
in this particular magnetic property of EuTe. Indeed,
it would be surprising if the first experimental evidence
for the existence of biquadratic exchange in magneti-
cally ordered systems should be found in a rare-earth
salt, since the ratio j/J is surely very much smaller in
the rare earths than it is for salts of the transition-metal
lons.

Perhaps the most significant result concerning bi-
quadratic exchange, therefore, is the one obtained in
the present paper concerning the nearest-neighbor
interactions in u-MnS. For this case, j&/J&&10 and
is at least an order of magnitude smaller than any
previous estimates made for Mn++. This result does
not necessari1y tell us anything about the situation for
other Mn++ salts or even about js/Js in rr-MnS, but
it is an indication that the importance of biquadratic
exchange in magnetically ordered systems could be
considerably less than has previously been supposed.
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