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A simple model accounts semiquantitatively for the Grst-order magnetic phase change observed recently
in UO& by Frazer, Shirane, Cox, and Olsen. The model assumes that the electronic structure of. the para-
magnetic U4+ ion consists of a nonmagnetic singlet ground state and a low-lying magnetic triplet, and that
only bilinear isotropic exchange interactions are present. In a molecular-Geld theory the triplet is split by an
internal field proportional to the magnetization. If the molecular Geld is suKciently strong, one of the
components of the triplet will lie, in the magnetic state, below the singlet, and a self-consistent magnetic
solution is obtained at T=0. Increasing the temperature causes the magnetization to be reduced, and the
lovr-lying component of the triplet is raised in energy. It is shown that a "catastrophe" may occur at some
critical temperature so that the magnetization is reduced discontinuously to zero. It is also found that, de-
pending on the ratio of the singlet-triplet energy difference to the molecular-field splitting of the triplet, one
obtains either no magnetic ordering, a Grst-order phase change, or a second-order transition.

I. INTRODUCTION

ECENTLY, Frazer, Shirane, Cox, and Olsen' have
shown that the paramagnetic-antiferromagnetic

transition which occurs in UO2 at about 30 K is a first-
order phase change. The transition is unaccompanied by
any discernible change in the lattice volume or struc-
ture, indicating that the order of the phase change is
inherently a consequence of the magnetic properties of
the system.

First-order magnetic phase changes have been con-
sidered by a number of authors in recent years. Bean
and Rodbelle pointed out that a magneto-mechanical
coupling could cause what would otherwise be the usual
second-order magnetic phase transition to become a
6rst-order transition with the associated discontinuous
change in the magnetization at the transition tempera-
ture. This theory predicts that a change in the crystal
volume should accompany the magnetic phase change,
so that it does not appear to be applicable to the case
of UOs. Later, Rodbell, Jacobs, Owen, and Harris'
showed. that the presence of biquadratic exchange in the
magnetic Hamiltonian could cause the temperature
dependence of the magnetization to become increasingly
steep near the Curie point and in some circumstances to
become discontinuous there. The magnetic properties
of MnO were interpreted by these authors as requiring
the presence of biquadratic exchange. Lines and Jones"
have recently questioned this interpretation, and they
suggest that the behavior of MnO can be understood
solely on the basis of bilinear exchange. The magnitude
of the biquadratic exchange integral is extremely
difficult to estimate theoretically, and the applicability

t Work performed under the auspices of the U. S. Atomic
Energy Commission.' B. C. Frazer, G. Shirane, D. E. Cox, and C. E. Olsen, Phys.
Rev. 140, A1448 (1965). A similar study has also been done by
B. T. Willis and R. I. Taylor, Phys. Letters 17, 188 (1965).' C. P. Bean and D. S. Rodhell, Phys. Rev. 126, 104 (1962).

3 D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, Phys.
Rev. Letters ll, 10 (1963).

4 M. E. Lines and E. D. Jones, Phys. Rev. 139, A1313 (1965).
s M. E. Lines (private communication).

of this to the explanation of the properties of UO2 is
not clear.

In this paper it is shown that a Grst-order magnetic
phase transition can occur solely in the presence of iso-
tropic bilinear exchange and of crystal-Geld splittings of
the proper magnitude and sign. It is shown that it is
plausible that the appropriate crystal-field effects should
occur in UO2. Good qualitative agreement is obtained
with the work of Frazer et al. on the basis of a simple
molecular-field calculation.

The proposed model can be discussed quite simply
with reference to Fig. 1. We assume that the electronic
ground state of the magnetic ion is a singlet, and that a
triplet level lies at an energy 6 above the singlet. The
magnetic properties of such ions are well known —they
are the subject of a problem in Kittel's book. ' In a
magnetic field the triplet level is split, while the singlet
remains unaRected. If the magnetic field is sufficiently
large, as in Fig. 1(b), the lowest state will be one of the
magnetic components of the triplet, rather than the
nonmagnetic singlet. At T=O'K, all of the ions will be
in this ground state and the system will have a net
magnetic moment. If the magnetic field is smaller than
A/gtts, however, the energy level diagram is as in Fig.
1(a), and the system is nonmagnetic at X=0'K. Sup-
pose now that the magnetic field is due to exchange
interactions between the various ions. On the basis of a
molecular-field approximation, the field is then given
by X3f, where X is a constant whose magnitude depends
on the size of the exchange integral. If X is sufficiently
large, the energy level diagram at low temperatures will
be as in 1(b). At absolute zero the magnetization is then
indeed saturated, as it must be in order to produce the
energy level diagram shown, so that a self-consistent
solution for M is obtained. A level scheme such as the
one in Fig. 1(a) is not, however, possible (if the mag-
netic Geld. is internal) at T=O'K, since the splitting of
the triplet requires a nonzero net magnetization, but
all of the ions are in the singlet state, so that no non-

C. Kittel, Irttrodgctiort to Solid State Physics (John Wiley gr
Sons, Inc., New York, 1956), 2nd ed. , p. 232.
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ta) (b)

FIG. 1. Energy-level diagram (a) for magnetic-field splitting
smaller than the singlet-triplet separation 6, and (b) for magnetic-
Qeld splitting larger than A.

zero self-consistent solution for the magnetization can
be found. The self-consistency condition requires that
the triplet be unsplit in this case. If the system is to be
magnetic, then, it is necessary that the exchange
splitting of the triplet be at least larger than the crystal-
Geld splitting d, at T= 0. The temperature dependence of
the magnetization can then be followed by noticing that
an increase of the teInperature leads to a population of
the excited states in Fig. 1(b), including the non-
magnetic singlet. This in turn leads to a decrease of the
magnetization, which in turn leads to a decrease in the
splitting of the triplet. At each temperature the
magnetization is determined self-consistently by these
e6ects.

A first-order phase transition can arise in these
circumstances if a slight increase in temperature leads
to a substantial increase in the population of the non-
magnetic singlet. The resulting reduction in the splitting
of the triplet could then lead to a "catastrophe" in
which a nonzero self-consistent solution is no longer
possible, or to a situation in which the free energy of the
unmagnetized state is lower than the free energy of the
magnetized state of the solid. This would involve a
discontinuous jump in the magnetization, i.e., a Grst-
order transition. That this does in fact occur is shown in
the following sections.

The model proposed here for UO2 is superGcially
similar to that proposed for europium metal by Bozorth
and Van Uleck, ~ and to several "induced moment"
systems treated by Sleaney, Trammell, ' and Grover. "
In the europium case there is indeed a nonmagnetic
singlet (J=O) level lying below a triplet (J=1) level.
The exchange interaction is not large enough to cause
a crossing of the singlet and one of the triplet states,
how'ever, and the magnetization is supposed due to the
induction by the exchange interaction of a moment in
the singlet. This proceeds via oQ-diagonal matrix ele-
ments of the exchange interaction between the J=0
and J= 1 states, similar to the well-known Van Vleck

temperature-independent paramagnetism, which is in-
duced by an external field rather than by the exchange
interaction. In the UO2 case we do not consider that the
Van Vleck mechanism plays a major role in the mag-
netization curve, although it may play a small part in
the size of the saturation moment. As will be seen, there
are no off-diagonal elements of exchange between the
singlet and the triplet, so that the singlet in U02 plays
a relatively inert role. Its major contribution to the
magnetization curve comes about simply by its being
occupied, and this is sufIicient to change the magnetic
transition to first order.

II. ELECTRIC STRUCTURE OF UO2

The form-factor measurements of Frazer eI al. show
that the electronic configuration of U'+ in UOs is (5f)'
The Hund's rule ground state, assuming Russell-
Saunders (JS) coupling is H~ 4. In the actinide series
it is well known that serious departures from LS
coupling are found, but we may still expect that the
ground state will be a J=4 level, even in the presence
of intermediate coupling. UO& crystallizes in the CaF2
structure, so that the U4+ ions fall on a face-centered
cubic lattice, and each of the ions in the center of a
cube, with eight 0'—ions at the corners. The effect of
the crystal field of such an array of ions on the (5f)'
conGguration has been considered by Hutchison and
Candela" and by Lea, Leask. , and Wolf."The J=4 level
is split in a cubic environment into a singlet (Pi), a
doublet (Fs), and two triplets (F4,Ps). Point-charge cal-
culation shows that in the cubal environment of UO~,
the U4+ ground state is either F~ or F5, and that the
factor which determines the lower of these levels is the
ratio of fourth-order to sixth-order cubic crystal-Geld
parameters. There is no point in estimating this ratio
with a point-charge model since the reliability of such
calculations is small for such relatively delicate con-
siderations. We will assume here that the I"~ singlet lies
below the I'5 triplet by an energy 6, and show that this
plausible arrangement explains the results of Frazer et at'.

The energy levels are then as shown in Fig. 2. The
magnetization process for UO2 will then be as described
in the Introduction, with the exchange interaction

I"ro. 2. Proposed energy-level dia-
gram for the low-lying states of U4+ in
U02. The singlet F1 is assumed to lie
lower than the triplet j. 5.

' R. M. Bozorth and J. H. Van Vleck, Phys. Rev. 118, 1493
(&960).' ll. Bleaney, Proc. Roy. Soc. (London) A276, 19 (1963).

s G. T. Trammell, Phys. Rev. 131, 932 (1963)."B.Grover (to be published).

"C.A. Hutchison and G. A. Candela, J. Chem. Phys. 27, 707
(1957).

1' K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem.
Solids 23, 1381 (1962).
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causing a splitting of the Fs level, so that one of its com-
ponents lies below the F~ level in the magnetized state.
If LS coupling is assumed, the magnetic moment of the
F5 level is calculated to be 2 Bohr magnetons. This is
quite close to the observed saturation magnetization
of 1.8pp, ' and it suggests that the F5 level is somehow
involved in the magnetism of the U4+ ion. It should be
noted that, although 2p& is the "spin-only" value of the
magnetic moment, the explanation proposed here is not
based on quenching of the orbital magnetic moment,
since the crystalline Geld has been assumed smaller than
spin-orbit coupling. The F5 level arises from the 'H4
ionic state, and its magnetic moment is predominantly
orbital. There are three possible causes for the dis-
crepancy between theory and experiment of 0.2p&. These
are (i) breakdown of L,S coupling, (ii) off-diagonal
crystal-field matrix elements, and (iii) off-diagonal
matrix elements of the exchange interaction. The effect
of (i) is easily shown to be to increase the moment of
2@~ of the F5 level. This is because the other 7=4 levels
('I4 and 'G4) which would be mixed into the 'H4 level

by spin-orbit coupling have larger Lande g values than
the H4 level. The effect of (ii) could go in either direc-
tion. Here the crystalline field mixes into the F5 level a
component which arises from a different J level. Ac-
curate calculation of this effect requires a knowledge of
the effects of (i), since these inhuence the energy de-
nominators in the perturbation calculation. It is quite
reasonable that a combination of (i) and (ii) should
account for the 0.2/is. The effects of (iii) are rather more
interesting than are those of (i) and (ii), since they can
conceivably inhuence the statistical mechanics of the
transition as well as the size of the saturation moment.
The exchange interaction transforms as F4 with respect
to a single ion, since it is a vector interaction. There are
therefore no matrix elements of exchange between the
F~ and Fs levels, so the situation in UO2 is quite different
from that found by Bozorth and Van Vleck in Eu metal.
We do not expect, then, that an appreciable moment
will be induced in the 1 & level by this mechanism. There
are matrix elements, however, between the F~ level and
the excited F4 level, as well as between F4 and F5. These
matrix elements will induce a small moment in the Fi
and F5 levels, but this should have little effect on the
statistical mechanics of the phase transition, since it
should be small compared to the inherent moment of
the F5 level. It can, however, make a contribution to
the difference between the observed moment and the
2pg of the F5 level. This contribution will be propor-
tional to the sublattice magnetization itself, and so it is
effective only in the antiferromagnetic region. It will
therefore give rise to a difference in the magnetic
moment as observed in the paramagnetic and antiferro-
magnetic states. The calculation of the effects of (i), (ii),
and (iii) requires detailed knowledge of a number of
parameters, such as the spin-orbit coupling constant,
the fourth- and sixth-order cubic-field constants, Cou-
lomb integrals (to estimate the energy of excited, mul-

tiplets), and exchange integrals. It does not appear to
be worthwhile to attempt such a calculation with the
limited data available for the izing of these parameters.
Accordingly, only the simple system consisting of the F&
and Fs levels separated by energy 6 will be treated.

=
gpss

e6/kT+I+egysH/kT+, e gpsH/kT- (2)

This reduces to the familiar Brillouin function for spin
1 if the term e~~~ in the denominator is ignored. Indeed,
if 6 —+ —~, so that the singlet level lies well above the
triplet, the Brillouin function is recovered. For positive

(singlet lowest) and for small magnetic 6eld, the
magnetization is zero at T=O'K, rises to a maximum,
and then falls off according to a Curie-gneiss law,
M ~ H/(2"+ 6/4k).

We now need to calculate the magnetization when
the magnetic field is an "internal" Geld, resulting from
exchange interactions between the ions. In the molec-
ular-Q. eld approximation for a ferromagnet in the
absence of an external Geld, we have H=XM, where X is
a constant which depends on the exchange integral. The
equations for the magnetization then become

M =gpa(e* e ~)/(e'/k~+ —1.+-e*+e *), —

x= g//HAM/kT; M= kTx/g//p) .
(3a)

(3b)

The familiar graphical solution of these equations is
not as easy here as for the simple case of a spin-1 ion.
This is due to the term ek/kr in the denominator of (3a).
In the simple case (6~ —~) the solution is obtainecl
by plotting M as a function of x according to Eq. (3a),
and looking for the point of intersection of this curve
with the straight line of Eq. (3b). Changing the tem-
perature then simply causes a change in the slope of
(3b), as in shown in Fig. 3. The Curie temperature is
then determined by the condition that the slope of the
straight line be equal to the slope of the other curve at
the origin. If 6 is finite, however, this graphical method
of solution is complicated by the fact that a change in
temperature causes not only a change in the slope of the
straight line (3b), but a change in the curve (3a) as well.
This can be remedied by substituting (3b) for A1' in

III. MOLECULAR-FIELD THEORY OF THE
TRANSITION

The partition function for a system having an energy-
level structure as in Fig. 1 in external magnetic field is

g—f+e k/kT(I—+egppH/kT+e-gppH/kT)

where g is the g factor of the excited triplet, pg is the
Bohr magneton, and B is the external magnetic field.
The magnetic moment M is given by

BF) 8
M=

~

= AT —inZ,
BEING 8H

egpgHj&T &
—gpgH/&T
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(3a), so that (3a) becomes

M= gran(e* —e )/(xh/e'»" ~+1+e'+e ') . (3a')

This is now an equation for M which must be solved
graphically itself before the usual graphical procedure
for the determination of M as a function of T is em-

polyed. Rewriting (3a) in dimensionless units by de-
fining M'=M/gran and 3,'=6/(gpn)9, , we have

M'= (e —e )/(e a'/~'+1+e'+e ') . (3a")

1.0

0.5

I.O

0.5

1.0 2.0 3.0 4.0 5.0

Fro. 3. Graphical solution of Eqs. (3), showing the case in which
the transition is second order. The straight lines are Eq. (3b) for
different values of T, and the curve is a plot of the solutions of
(3a') for 6'&0.3662.

38=0 is always a solution of this equation for 6'&0.
In the limit of large x, we have M' 1/$e~t~'/~' 'i+1(
so that M'= 1 is a solution of 6'(1, but for 6'& 1 only
the solution M'=0 exists. Hence there is no ordered
state for 6'& 1.This is physically quite reasonable since
for 6'&1 the energy-level diagram for the magnetically
saturated system is as in Fig. 1(a), i.e., the exchange is
not strong enough to overcome the crystal-Geld splitting
h. For 0.4 &6' & 1.0 the solutions of (3a") are as shown
in Fig. 4. At any temperature the intersection of the
straight line of Eq. (3b) gives either three solutions for
M', or only one (M'= 0 is always a solution). It is found
in the following that one of the three solutions maxi-
mizes the free energy while the other two give minima.
It is clear that there will be a discontinuous jump in the
magnetization from a Gnite value to zero at a critical
temperature, so that the phase transition is of the first
order. For 0.3662(h'(0.4 the solutions are as in Fig. 5.
Here there are ranges of temperature for which there
are (a) two solutions, (b) three solutions, and (c) one
solution for M' as a function of T. The phase change is
again of the Grst order, as there is a discontinuous jump
in the magnetization at the critical temperature. For
6'(0.3662 the situation is similar to the simple case
shown in Fig. 3, and the phase change is of the second
order, in that the magnetization goes uniformly to zero
as the temperature is increased.

To discuss the stability of the various solutions it is
necessary to calculate the Gibbs free energy as a func-

1.0 2.0 3.0
X

4.0 5.0

Fre. 4. Graphical solution of Eqs. (3) for 0.4&6' &0.5, showing
a first-order transition. The plot of the solutions of Eq. (3a') here
has two branches: Of the two intersections of the straight lines
with these curves one corresponds to a maximum of the free energy
and the other corresponds to a minimum.

tion of magnetization and temperature. This is easily
found with the help of the expression

G(M, T) = AT lnZ+—ZdM,

kT lnZ+-'s)tM—'.
On substituting Eq. (1) for Z with H=XM, writing
r=kT/5, and using the dirnensionless quantities M' and
6' introduced above, we Gnd

1—(G(M', r) —G(0,r))

(1+e—i/ r (I+eM'/ r/i'+ e M'/ ra'))—
rln!—

l )1+3e '/'

1
+ M" . (4)

2a'

The free energy is a minimum for the equilibrium state
of the system. In Fig. 6, Eq. (4) is plotted as a function
of 3P for different values of v and for 6'=0.43. We see
that for r=0.58 the absolute minimum of the free
energy occurs at M'=0. 7. As the temperature is raised
the minimum moves inward until, for v=0.6, the
minimum for M'= 0 and that for M'= 0.'7 have the same
free energy, so the two phases will coexist at this point.
As the temperature is increased the state with M'=0
becomes the absolute minimum, although the mag-
netized state is metastable. Finally, at temperatures
above ~=0.63 the only stable state is the unmagnetized
one. The two minima and the maximum in these curves
correspond to the three solutions of Eqs. (3) shown
graphically in Fig. 4.

In Fig. 7, similar curves are shown for 6'=0.39. Here
there are three types of curves. At temperatures above
v =0.790 the only extremum in the free-energy-
magnetization curve is for the unmagnetized state
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TABLE I. Summary of the properties of the transition for dier- which imp]ies
ent values of the ratio 6' of the crystal-Geld splitting to the
exchange splitting.

or
gl/&c —3 (10)

a'&0.5

0.3662(6' &0.5

~'(0.3662

No stable magnetically ordered state at any
temperature.

Magnetic state; Grst-order phase transition.
Discontinuity in magnetization at critical
temperature varies from 1.0 at 6'=0.5 to
0 at Z'=0.3662.

Magnetic state; second-order phase tran-
sition. Critical temperature given by
A'r, (e'~"+3)=2.

assumed that the external magnetic held is zero. Such a
6eld could stabilize a magnetic phase in a ferrornagnet. )

We have seen above that the phase transition is of
the first order for 6'&0.5. Numerical solution of the
equations for 3f' show that the discontinuity in the
magnetization at the transition temperature drops from
100o7o at d'= 0.5 to zero at 6'= 0.36. To And the lower
limit of this region of 6rst-order transitions and to
prove the remaining theorems in the table, we must
consider the behavior of the free energy in the vicinity
of u'=0. We and

pi ' ly
~(iv';) !

—
! +

2g')

r |'1
32(e"'+3)k4' )

1
!3f"+ . (7)

2(e'~'+3)' LVr) )
According to the theory of Landau-Lifshitz, "the critical
point in a second-order phase transition is determined

by the vanishing of the coeKcient of M" in (7), provided
that the coefBcient of 3f" is positive. Geometrically, the
vanishing of the coefficient of 3f" corresponds to the
maximum at M'= 0 becoming a minimum of y(M', r).
Such changes also occur in 6rst-order transitions, as is
seen in Fig. '7, but the minimum at the origin is only
metastable in this case, and it is necessary that the
coeKcient of M' be positive if the transition is to be of
second order. The vanishing of the coefficient of M" at
r= v, leads to the condition

6'r, (e""+ )=32

a&~(m„r,)j/m =0,
y(M„r,)=0. (13)

We have considered the determination of the mag-
netization as a function of the temperature for the case
of a ferromagnet. It is clear from the treatment of
Anderson" that for a face-centered cubic antiferro-
magnet with type-I structure (as found for UOs by
Frazer et al.) the behavior of the sublattice magnetiza-
tion versus T is exactly the same as for a ferrornagnet,
and the thermodynamic treatment is indentical for
positive or negative exchange interactions. A plot of M'
versus T/T, is shown in Fig. 9 for 6' =0.39 and d,

' =0.43.
Also shown are the experimental results of Ref. 1. The
agreement, for 6'=0.43, is quite good, probably better
than could be expected from a molecular-field model.
For 6'=0.43 the critical temperature was found to be

I.O—

0 0 5

r,= 1/ln3.

Combining (10) and (11) with (8) and noting that r,
decreases as 6' increases, we require

3 In3 =0.36620

for a second-order transition, as is indicated in Table I.
In the second-order region, the behavior of the magneti-
zation as a function of temperature is different from that
of the Brillouin function for spin 1, in that the magneti-
zation remains higher as T/T, ~ 1. As LV-+ —eo, the
steepness of the falloff of M' with T/T, is reduced, and
the normal Brillouin behavior is obtained. In the first-
order region the calculations have been done by
numerical minimization of the free energy. In Fig. 8 we
show r, and 3f, (the discontinuity in the magnetization
at the critical temperature) as a function of 6'. These
quantities are dered, for a erst-order transition, by
the conditions

for the critical temperature for those values of 6' for
which the phase change is of second order. This range is
dered by the condition on the coeS.cient of 3P'.
We have 0.56 0.4 .45 0.5

+C
0 9 FIG. 8. Critical temperature z, and value of the magnetization

1 ) 7', 1

12(e'I "~+3)kh'r. ] 2(e'I"+3~' &'r J 3I,' at this temperature versus 6'. Below d'=0.3662 3f,'=0»d
the transition is second order. Above d, '=0.5 no ordering occurs.

» L. D. Landau and E. M. Lifshitz, Statistica/ Physics
(Perga3non Press, Inc., New York, 1958), p. 430. '4 P. W. Anderson, Phys. Rev. 79, 705 (1950).
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„=kT,gg=0.60, so that the triplet level is expected to
lie st Q=kT, /0. 6=50 K for paramagnetic UOs, since
T, is found experimentally to be =30'K. A far infrared
measurement to test the validity of this prediction
would be worthwhile.

t.0 &= 0.43

IV. SUSCEPTIBILITY AND LATENT HEAT

The magnetic susceptibility of UO2 can be calculated
on our model by following the procedures of Anderson"
and Van Vleck. ." The face-centered cubic lattice is
divided into four sublattices such that the nearest
neighbor of a point on one sublattice consists of four
points on each of the remaining three sublattices (Fig. 1
of Ref. 14). The magnetic moment per atom induced in
sublattice g/ (gs= 1, , 4) is

ggIIBIInl If'T e
—gIIBIInl &T

0.5—

t

0.P. 0.4
l

0.80.6 1.0
T/Tc

Fro. 9. Magnetization versus T/T, for 6'=0.43 and g'=0 39
The circles are experimental points taken from Ref. 1. fhey faQ
quite close to the curve for 6'=0.43.M~= gpss

e/i/kT+ 1+eggaKn/kT+S ggnKn/kT

as follows from Eq. (2). Here H„ is the magnetic field

acting on the eth sublattice, given by

H„=H XQ M— (15)
m(gn)

where an interaction only between nearest neighbors
has been assumed. The constant X is related to the
nearest-neighbor exchange integral Jby X=2JZ/(g/in)',
where Z is the number of neighbors on an adjacent
sublattice (Z=4 for UOs). For T)T, we expand,
the exponential in (15) to obtain

M =ALII„'+ii/l/I„,

H =H„a+aH„, (20)2 (g//n)' H „
(16)

wherekT (ea/kT+3)
and

with the Curie-Weiss constant altered by the term —Q.
At the critical temperature, however, the condition
&((kT, may not hold. In that case, ea/k )1+5/kT,
and the susceptibility at T, will be lower than an extrap-
olation from high temperature (assuming Curie-&eiss
behavior) would indicate.

The susceptibility below the transition temperature
is calculated. for the separate cases (a) external Geld
parallel to axis of antiferromagnetism and (b) external
field perpendicular to this axis. For case (a) we start
with Eq. (14) and write

2(a/n)'
QH„

4 kT(ea/kT+3)

8H„=H
na(Qn)

2(un)'
(H—3AM)

k T (ea/kT+3) and where M„ is the equilibrium sublattice magnetiza-
tion in the absence of an external Geld. Expanding (14)
in a series in 8H„, we find.2(g/ n)'

H )
k T(ea/kT+3)+6K (g/un)' eggnKn /kT+S ggBKn / "T(g/ n)'

bM„= 5H„
kT &&/kT+1+&ggnK n/kT+e ggnHng/kT'where M is the average magnetic moment per atom. The

susceptibility is then given by

X =N(M/H)

2(g/ n)'&

kT(ea/kT+3)+6K(gpn)s
(18)

For the magnetic structure under consideration, (/l/I„')'
and

where E is the number of atoms in the crystal. For
h((kT this reduces to a Curie-gneiss law,

s(O n)'&

kT+-sale(g )/k+ns

» J. H. pan Vleck, J. Chem. Phys. 9, 83 (194&).

//g(T) = (sggBHn /kT+e ggBHng/kT)/—
(ea/kT+1+eggaKn /kT+s ggnHng/kT)—

a e i d pe d t of the p ti l bl tt'
field and magnetization of the sublattices differ from
one another only in sign. The additional magnetization



M. BLUM E

per atom induced by the external held is then

3I=!2-53'-= (1/»)(~(T) —(31-')')!Z.».,
= (1/»)(~(T)-(31-')')(JJ-»3I),

so that the susceptibility (for the external Geld parallel
to the magnetization) is

only nearest-neighbor exchange interactions is inade-
quate. In any event, we are left with a quantitative dis-
crepancy, although the qualitative features of the
transition are clearly displayed.

We consider finally the latent heat of the 6rst-order
transition. This is easily calculated from Eq. (4) for
the free energy by noting that the entropy 5 is given by

(~(T)—(3I o) )/V

AT+3K(q (T)—(3f ')')
(23)

p ~ 0 Xi 1 vanishes, and above the transition tem-
perature, where 3II„'=0, X„reduces to Eq. (18).

The perpendicular susceptibility Lease (b)j is ob-
tained by requiring the induced magnetization of a sub-
lattice to be parallel to the net field on the sublattice:

831„=i3I„'i (» /(H 'i)= (1/X)»„,

S(3/I, T)= (BG/r)T)//r

and the latent heat 1.per magnetic ion is

I.= T,(S(O,T,)—S(cV„T,)).
The calculation then gives

. (26)

so that
1

3II=—Q„»„=-(H—3)13I),

For 6'=0.43, 3f,'=0.7, 6=50'K, and v, =0.6, this is
=1.4&&10 ' kcal/mole or about 10 4 times the latent
heat for a solid-liquid transition.

X,=Z/4) . (24) V. CONCLUSION'

For a crystal with randomly oriented domains, or for a
powder sample the susceptibility for T(T, is

(25)

If the phase change is second order the sublattice
magnetization is zero at T= T,. It then follows from

(8), (25), and (18) that the susceptibihty is continuous,
as expected, at a second-order phase change, and that
X(T=O) =-,'X(T= T,), as was found by Van Vleck. In
the case of a erst-order transition, however, 3f ' is not
zero at T, and there is a discontinuity in the
susceptibility.

The susceptibility of UO2 has been measured by
Trzebiatowski and Selwood, "by Arrott and Qoldman, "
and by I.cask, Roberts, Walter, and Wolf."The results
are typical of antiferromagnets in showing a peak. at the
Neel temperature and a drop to a constant value as
T-+0. The theoretical results presented here match
this behavior qualitatively, as do all theoretical calcula-
tions for simple antiferromagnets, but the quantitative
agreement is poor, being as much as a factor of 2 too low

as T—+ 0. The agreement can be improved by choosing
parameters other than 6'= 0.43 and 6=50'K, but then
the agreement with the magnetization curve is worsened.
It can be argued that detailed agreement for the mag-
netization is not to be expected on the molecular-held

theory or, alternately, that the simple theory assuming

'6 W. Trzebiatowski and P. W. Selwood, J. Am. Chem. Soc. 72,
4504 (1950).

'~ A. Arrott and J. Go1dman, Phys. Rev. 108, 948 (1957).
'8 M. J. M. Leask, L. E. J. Roberts, A. J. Walter, and %'. P.

Wolf, J. Chem. Soc. (London) 75, 4'/88 (1968).

The model presented here gives a qualitative picture
similar to that observed experimentally in UO2. In
addition, it gives simple picture of a 6rst-order transi-
tion. In this respect it is similar to the hrst-order
transition found theoretically by Bragg and Williams"
in their treatment of order-disorder phenomena in
alloys of the type 238. The crossing of magnetic and
nonmagnetic levels brought about by the self-consistent
field shows more clearly in the present case the physical
reason for the erst-order change. A number of further
experiments on VO~ are suggested by the theory. First,
a far infrared investigation in the paramagnetic and
antiferromagnetic regions should be able to test the
validity of the assumption that the I'~ singlet lies lowest.
Also, neutron-scattering experiments near the transition
temperature in the presence of magnetic fields and at
high pressures should show the effects of the variation
of 5' and 6 on the magnetization curve. Measurements
on UO2 diluted with thorium are also indicated.
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