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Exact Solution of the One-Particle Model of Exchange Scattering in Solids*
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A solution of the Chew-Low equations describing exchange scattering of conduction electrons is presented,
which is exact within the one-particle intermediate-state approximation. This solution shares with earlier,
approximate ones the feature that for antiferromagnetic exchange the spin-flip scattering amplitude can
develop complex poles on the physical sheet. To examine this point further, the theory is generalized to an
interaction of Qnite range, analyticity in momentum transfer being assumed and spin-orbit coupling being
neglected. This still does not guarantee removal of the complex poles. However, the forward-scattering
amplitude appears to be free from poles in all these cases. Unitarity is satis6ed in the appropriate zero-
temperature limit.

1. INTRODUCTION

HE logarithmic singularity in the scattering of a
conduction electron by an impurity spin, obtained

by Kondo' in third-order perturbation theory, has
recently been examined by the nonperturbative ap-
proach of scattering theory, '' and also by a special
adaptation of standard many-body perturbation theory. 4

Both approaches strongly suggested that the singularity
in the cross section found in 6nite-order perturbation
theory is to be replaced by a scattering resonance. This
was indicated by a rather crude approximate solution
of the nonlinear scattering equations of Refs. 2 and 3,
a solution which was in remarkable agreement with the
result of a selective summation of certain perturbation
diagrams. 4 This agreement was the more disturbing as
the approximate result indicated that the forward
scattering amplitude (i.e., the self-energy in the lan-

guage of Ref. 4) could have a pair of complex-conjugate
poles on the physical sheet at suKciently low tempera-
tures, if the sign of the exchange is antiferromagnetic.

2. EXACT SOLUTION

In Ref. 3, the Chew-Low equations derived in Ref. 2
for impurity spin —,'and zero temperature were general-
ized to arbitrary spin 5 and temperature T(= 1/kP). In
the one-particle intermediate-state approximation, these
equations connecting the one-electron scattering ampli-
tude to in the S——, manifold with the amplitude t1 in
the 5+-,' manifold, are (s just above the real axis)
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to= t—2(S+1)r, tt ——t+25r.

According to Eqs. (1), the new amplitudes satisfy
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Equation (3b) is in the standard form of a Hilbert
problem' and is easily solved for r in terms of a given t.
On the other hand, it is difficult to solve (3a) for t in
terms of a given, arbitrary v-. However, we will show
that (3a) can be solved in terms of a r whose magnitude
is restricted to lie below a certain limit. Assuming ~ to
have this property, we are then able to solve (3b), and
verify that the magnitude of the solution does indeed lie
below that limit.

For s just above the real axis and Res& —ej, we see,
from (3a), that

Imt = —srp I
t

I

s—45(5+1)srp I
r

I
s. (4)

An equation of this form was studied by Ball and
Frazer' and also by Froissart~ in connection with the
effect of inelastic thresholds on pion-nucleon resonances.
Following Ref. 6 we attempt to satisfy (4) with an

s J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' H. Suhl, Phys. Rev. 138, A515 (1965).
3 H. Suhl, Physics (to be published).
4 A. A. Abrikosov, paper presented at Novosibirsk Conference

on Many-Body Problems, 1965 (unpublished). See also A. A.
Abrikosov, Zh. Eksperim. i Teor. Fiz. 48, 990 (1965) t English
transl. : Soviet Phys. —JETP 21, 660 (1965)g.

N. I. Muskhelishvili, in Singular Integral Equations, trans-
lated by J. R. M. Radock (P. NoordhoB Ltd. , Groningen, The
Netherlands, 1953), Chap. 5, para. 37'.

' J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961).
r M. Froissart, Nuovo Cimento 22, 191 (1961).

483

Here V is the spin-independent potential of the im-
purity, J is the exchange constant, p is the density of
single-particle states, per particle, f(px) is the Fermi
distribution function. (The normalization of the t's
differs slightly from that of Ref. 2.) We introduce
forward-scattering and spin-Rip amplitudes, t and 7,
respectively, by the relations
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ansatz describing inelastic scattering through a complex Then
I
in the absence of Castillejo-Dalitz-Dyson poles]

phase shift, Writing one obtains from (3b)

zrpt = —(1/2i) (e"'—1)

where 8= 8'+i8", we see that (5) satisfies (4) if we chose

e"'w+—e-""w—= 4zri —p tanh-,'px.

Writing ze=hl, where

e-4z"=1—a (6)

with tt=165(S+1)zrzpz. Equation (6) implies that (5)
is a possible form only if aI rIz&1, but the solution of
(3b) will presently be seen to satisfy this condition.

Some care is needed in keeping track. of the analytic
properties of p in the present artificial model which
assumes 8-function interaction and essentially constant
state density. (In Sec. 4, a more natural model will be
dicussed. ) For a parabolic-band model we would have
p(x) = (x+sr)'tz (recall that the Fermi level is taken as
the zero of energy). In Ref. 6, the definition of the square
root is taken to be p(x+irt) =sgnrt(x+eI)'tz for x) —ez.
In our present model, in which we wish to consider
x= 6J' to be synonymous with —tx), and to take p as
constant, we must still write

p(x+iz)) = (sgnrt) p.

If we now de6ne the complex phase shift by

lz(s) = exp( —2/zr) P'(x)/(x —s)] dx

is the simplest possible solution of the homogeneous
equation corresponding to (11), we see that

zt+—I = 4zrip tan—h-', px

Xexp 26"(x)+(2/zr)P dx' 0'(x')/(x' —x)

4zri—p tanh-', px

Xexp —(2/zr)P dx' h, (x')/(x' —x), (12)

where use has been made of Eq. (10). Since h tends to
unity as s —+~, it follows that

sgn Ims +" 8"(x') dx'
8(s) =

(x'—s)
—S„(s), (7) zz= C—2

dx p tanh-,'Px

where 8„(s) is the phase shift (real on the real axis)
corresponding to the ordinary potential-scattering
problem

Xexp (2/zr) I' d—x' 8„(x')/(x' —x), (13)

we see that

t.= V+
where C is a constant to be determined later. This result
may be simplified by noting that It, I

and b„s atisf ythe
dispersion relation

t(s) = —Li/2izrp(s)](ezt'&'& —1)

is a function satisfying the refiection principle, and is
acceptable as a scattering amplitude. We disregard the
fact that

1 8"(x')dx'
S'(x+ z~) =-Z (9)

7r g x zn

—8„(x+zz))

S'(x')+ S„(x')
8"(x)=—— dx', (10)

diverges, a feature which will be seen to disappear when
more reasonable, finite-range exchange coupling is con-
sidered. We will, in fact, proceed as though 6"(x') were
integrable Lz' with p)1. Then it follows from Eq. (&)
that'

=exp
'r

dx' b.(x')/(x' —x)

where
+" t„(x+irt) '

J.(s) = It„(s)/VIz C—2

(1Vote added i rt Proof. If the ordinary potential-scattering
problem has bound states, this relation must be supple-
mented by some pole-term factors. Since the poles are
located below —

ep, the extra factors do not materially
change our results. ) Gathering these results, we And,
just above the real axis'

where 8'(x') and 8„(x') are evaulated just above the
real axis.

Turning to Eq. (3b) we set r=1/w, and denote by
m+ and zv

—the values of m above and below the cut.

Hence
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The same result holds in the whole upper half-plane, but with
z E. C. Titchmarsh, Imtrodztctzom to the Theory of Foztrier INte ~t„(z)/U~' replaced hy t„(z)t r„(z)/U', where t„r is the analytic

grals (Oxford University Press, Inc. , New York, 1937), Chap. 5. continuation of t„(x—ip) into the nonphysical sheet.
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so that
Irl'= IF I'/(1+alF I').

The required reality of the square root would seem to
restrict the solution to suKciently small values of J.
However, this restriction is again a consequence of
having chosen a B function for J(r) (see Sec. 4), and has
no significance. The complete solution of the problem
on the real axis is thus

I
r I'= IF I'/(1+alF I')

(15)

8'(x) = —8.(x)+(1/4m)P dx'Pln(1+a
I
F

I
')j/(x' —x),

and it obviously satisfies the premise a
I
r

I
'(1.

The problem of complex poles in general still remains.
For, at s~, we have

Ir(») I
= I""'"'IIF(») I.

Only the imaginary part of 8(») contributes to the first
factor on the right. This imaginary part is

—ImB„(»)+(1/~) (y,5"(x')/L(x' —x,)'+yi2j}dx',

where xi+iyi »and y——i)0. The first of these two terms
is finite, and the integral obviously converges. Hence,
if IF(e) I

has a pair of complex poles, so has r. For
suKciently low temperatures, F(s) may have poles,
although this question depends on the precise variation
of t,/U with x. The result is especially simple if V is
taken to be zero so that t„/V —+ 1, independent of x.
A pair of complex poles then appears at a reciprocal
transition temperature given by

—',C= L(tanh-,'P,x)/xj dx.

The constant C is determined by the requirement
r(~) =xiJ. Since t„/V ~ 1 as e~~, F~ 1/C and so

C= (16/J' —a)' t'= (4/J)(1 —5(5+1)vr'p'J')"'.

and the exponents evidently remain finite Lor would
remain finite in a more physical model in which
B"(x) —+ 0 as x —+ ~ j.

As a 6nal check on the correctness of the solution
(15) we demonstrate that as P —+ ~, it is consistent with
the unitarity of the 5 matrix. LAs explained in Ref. 3,
Eqs. (1) describe a unitary process only in the zero-
temperature limit. This becomes evident by taking the
imaginary part of both sides of Eq. (1), and allowing P
to go to infinity. At finite temperatures it is convenient
to sacrifice unitarity in favor of the close relation of
Eqs. (1) to the Green's-function formulation. ) In the
low-temperature limit tanh~iPx tends to the signum
function. In the physical region (x)0) we may then
write

2npF = q. /(p iq) =—e'~ sine, (16)

where q=2~plt„/Vl', where p is a certain principal
value integral, and where tan%=q/p. The 5-matrix
element in the lower manifold is

5,= 1 27ri pt—o= e"'e '~"(1+—4i(5+ 1)wpF) .
Thus unitarity requires that

e""=
I 1+4i(5+1)~pF I

'=
I
1+2i(5+1)e'~ sin%'I 2 (17)

Computing the absolute value using (16), and recalling
that

e4~"= (1—a
I
r

I
2) ' = 1+16S(S+1)m 2p'

I
F

I

2

=1+45(S+1)sin'0'

we see that (17) is, in fact, satisfied. In the same way
we verify that

I1 4iS pFI'=e"",—
and so S~——1—2m.ipt~ is likewise unimodular.

We note also that the solutions (15) and (15a) behave
properly in various limits. For example, if we formally
set 5=0 and P=O, Eqs. (3a) and (3b) inunediately
give r= ~~JBt„/BU. On the other hand, Eqs. (15) give
r = 4Je ""It„/V I', which is, in fact, equal to 4JBt,/BV.
Also, if V=O, (t„/V=1), and

I
r

I

' is very small, so that
8" is very small, Eq. (15a) reduces to

and progresses from (0,0) at P=P, to (0, &iyi) for
P(P„where

B"(x')
7rpt = —— — dx'=45(5+1)~p2

7r X'—3

I
rl'

dX
q

—',C= pL(x tanh-', Px)/(x'+yi2) $ dx. as it should.

3. DISPERSION EQUATIONS IN THE CASE
OF FORCES OF FINITE RANGEIt also appears that the forward scattering amplitude t

does not develop poles. For, at ei ——xi+iyi, we have

1 2i +" (x'—xi) 5"(x')
~pt(») = ——exp — dx'

2i 7r (x' —x,) '+y, '

8"(x')
ch' 2it'. (s,) —t), (15a)—

(x'—xi) '+yi2

The Low equation has so far provided us with a suit-
able starting point only in the extreme case of a 5-func-
tion potential, since only in that case a solution exists
that is independent of momentum transfer. For Gnite-
range forces a direct solution of the Low equation is
probably out of the question. Further progress becomes
possible, however, if one succeeds in proving that the
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scattering amplitudes are analytic functions of both
energy and momentum transfer regarded as independent
complex variables (Mandelstam representation). A
partial-wave projection then leads to equations for each
partial wave that resemble closely the ones previously
discussed, except that the Born term is replaced by a
function with a branch cut in the energy plane ending
to the left of —er. (Recall that all energies are measured
from the Fermi level at zero. )

A proof of the existence of the Mandelstam repre-
sentation has so far been given only for potential scat-
tering. "However, the possibility of establishing ana-
lyticity in a limited domain in the momentum-transfer
plane at Axed real energy has been conjectured by
Blankenbecler, Goldberger, Khuri, and Treiman. "Their
inference was based on an analogy between the Low
equation and a formal solution to the integral equation
for potential scattering. We will argue that such limited
analyticity should indeed hold in the present problem
and will simply assume that analytic continuation to the
whole energy-momentum domain, except for cuts, is
possible. We first confine the discussion to the absolute
zero of temperature. In the notation of Ref. 2, we write

~A:= ~I

Tcu'k'cak(ek+zt/) Be'k', cak+A 1(ee k p ~kg ek+i'9)
+A2(ee'k, Mk', ek+ig),

where

A i(z) —=A i(e~'k', cok,z)

"(~'li'(k') I~& (~l J(k) l~&
p, (E„)dE„,

A g(z) =—A 2(ee'k, elk', z)

"(~'li(k) l~& (~li'(k') l~&
pk(E„) dE„,

where p, and p&, respectively, are the densities of states
with one electron or hole plus any number of pairs.
(We shall assume that no bound states occur. ) Alter-
natively, in configuration space

A i(z) =— d'r d'r'

(with 6=1).In the absence of a preferred direction, A

and hence T can depend only on q2 and 62, i.e., on c and
6'. The possibility of extending the above spectral
representation for A into the range eiA') 2nz(e+er) in
which the exponential factor e «' "' diverges at large
r—r', depends on the range of the matrix elements of

j and j~ in r space. Now these matrix elements may be
written as V(r) or J(r) times the expectation value of
sums over products of creation and annihilation oper-
ators which should show the slowly decreasing oscilla-

tory character typical of density fluctuation in a Fermi
gas. Hence the matrix elements of j and j~ should fall
off at least as rapidly as V(r) or J(r). If these are
essentially of Yukawa type, i.e. , decrease as e i'"jr,
then for e+e~&0, it will be possible to extend the
validity of Eq. (18) for Ai(e, h') up to eiA'(ki'. A similar
representation may be written for A2. By a direct
application of the methods of Ref. 12, we are then led
to the dispersion relation

1 " de' ImT(e+ig, 6')
T(e+irl, 6') =B(h')+

6 —C—2'g

where T and 8 are still matrices in spin space, where g
is in6nitesimal, and where the intermediate states have
been restricted to single-particle states. LThis means
that pk(E„)=0 for E (er.$ In arriving at (19) we have
assumed that there is no spin-orbit coupling, so that
momentum and spin can be treated independently. We
note that for local U and J, the Born term depends on
the cli6erence of the momenta 6, and if U and J are
spherically symmetric, only on 62. Finally, we assume,
without proof, that the integral in (19) is in fact analytic
in the product of the complex e, A2 planes cut respec-
tively along the real axes from —ey to + ~ and from
—4@2 to —~. In addition, it is easily seen that for the
e i'"(r potential, 8 is analytic in the LV plane cut from
—ki' to —~. Thus we may write (setting 6'=i)

p(",f')
df'

4p2 C

where p is a certain spectral function (or rather spectral
matrix in spin space).

This may now be resolved into partial-wave ampli-
tudes. The result is familiar Lsee Ref. 10$; we find, with

The plane-wave factor may be written

eih (r+r')/2eiq (r—r')

where 6=k' —k is the momentum transfer and
il= 2(k'+k). On the energy shell q'= 2m(e+e&) —6'/4

"R.Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (1960).

"See Ref. 10, end of Sec. B.

T(e,f)=2 (2~+1)T'"(e)~i(1—i /2(e+ er)),
L=O

that each partial wave T&'&(e) is analytic in the cut e

plane from —~ to —4ip' (this cut arising from two
terms: the Born-term cut from —4'p2 —ef to —~, and
another arising from the projection of the double inte-
gral onto I'i, which gives a cut from —p,

'—ey to —~).

"Y.Nagaoka, Phys. Rev. 138, A1112 (1965).
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The final result for the s wave is

T'"( )=&'( )+
" ImT&P&(p')

7

where 8'(p) consists of the s-wave projection of 8, plus
a contribution from p. (The important point is that it
has a left-hand cut from —pti' —pr to —pp).

From the last equation we may derive the appropriate
generalization of our previous treatment to interactions
of 6nite range. We 6rst note that

" ImT&P&(p')
dc

t(s) = —L1/7rp(s)]LE(s)e P'P'&*& —1g/2i,

where

(20)

2i
R(s) =exp —p(s)

and where, as before,

8"(x')
dx', (21)

—r (x'-s)t (x')

realistic model, it is worthwhile to also use a more
realistic density of single-particle states:

t()=(+ )"'
with a branch cut from —~~ to ~, the square root being
counted positive just above the cut and negative below.
Following Froissart, ' we write

"IrnT &P& (p')
de—

'r ImT ~P&(p')

d6 .

gogh T&p&(p) and T&p&(p) in the two integrands are in
the physical range; hence the unitarity relation may be
applied in their imaginary parts. (Pote added ie proof.
Strictly speaking, this use of the unitarity condition
restricts the subsequent treatment to T=O. This does
not matter insofar as the question of complex poles is
concerned. )

Finally, the crossing relation (which holds separately
for each partial wave) may be applied, with the result
that exactly the same equations as in the Chew-Low
treatment are obtained, with the exception that V and J
are now replaced by functions of e with the above-
mentioned left-hand branch cut."

(Note that now r ~ 0 as s ~~, and so the unpleasant-
ness about 8" remaining finite at inanity disappears. )
5„ is the phase angle corresponding to the solution of
the elastic problem

XO

t„=V +
xp+s —gf s x

(22)

l by p(x) we always mean p(x+i0) j.
The solution now proceeds just as in Sec. 2. Equation

(11) still holds, P(x+xp)/l r l
'=0 since r has a pole at—xp], with

oa g/I (x/)
dx' —8,(s)„(x'—s)p(x')

4. SINGLE-POLE APPROXIMATION = &'+i&" just above the real axis. (23)

Further progress is possible only through numerical
computation. However, there is one popular approxi-
mation which is amenable to analysis, that in which the
left-hand branch cut is replaced by a finite series of
poles. We shall analyze the case of one pole in detail.
If this does not remove the complex singularities in r,
it is very unlikely that a left-hand cut will. Because of
the remoteness of the Fermi surface (0) from the region
of the left-hand cut, any kind of singularity to the left
of —e~ should have much the same eRect as a single pole.

In this approximation, the s-wave equations take the
form (3a) and (3b), but with the replacement

y~ Vl x,/(x, +s)j,
g -+ JLxp/(xp+s)g,

where —xo is the position of the pole replacing the
branch cut (—xp( —pf). We have chosen this normali-
zation so that in the limit xo —+~, the results revert to
those of Sec. 2. Now that we have a slightly more

The solution once again has the form 1/r =hu, where

2 " 8'(x) dx)
!h= exp ——

x—s i'
and u+—u is given by the first of pqs. (12).

Although we no longer can use the Hilbert transform
(10) to simplify the result, it is still true (somewhat
remarkably) that

" S'(x') P " S„(x')
dx'= —— dx' —6"(x),

ef X X r —gf X X

as is verified by direct evaluation of J'dx'8'(x')/
(x'—x—ig) using Eq. (23). Hence, u+—u is still
given by

u+ —u = 4vrip tanh-,'P—x

Xexp —(2/m. )P dx' J„(x')/(x' —x) . (24)
"It is perhaps worth noting that the crossing relation proved in

Ref. 2 is valid mitholt restriction to one-particle intermediate
states. We must now solve (22) and (24) subject to t, and r
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having poles with residues Vxo and Jxo at —xo. These
solutions are standard; for t„we have:

" S„(x')
A(xo) = Uxo exp — dx'

/
7l —tf x +xop(x') dx'

2

Hence, we have(„=Vxo (s+xo) 1+Vxo(s+xo)

(s+xo)C " tanh2Px'p(x') dx'~
(s+xo) 1+

Q A (xo) „ i
x'+xo

i
(x'—s)A (xo) P " 5.(x')

exp —— dx'
S Xo X'

&f X —S where C is a constant. Also

,, (x xo) (x s) I+—I = —4nipL[x+xo~ ~t„(x) )/A(xo)j tanhoPx. (24a)

which is seen to reduce to the previous one in the limit Therefore we obtain
x, ~oo. To simplify (24), we again need a dispersion
relation for lnt„. This is found to be

2
h(x+ig) =exp ——

" 8'(x') dx'-

gf S X Zg

2
= exp —I 8.(x') dx'

XexpL —2ib(x+ig) j
Hence

= LA(xo)/Ix+xo [ [&. [ j exp[—2ia(x+ivp)].

(s+*o)C " ~i.(x')
~

taW-', px'p(x') d., —

=C(x+x,
l (&.(x) )s-"'&+' & A(x,)(s+x,) 1+

S go g

and, since lim ~x+xo~t, (x)= Vxo, we see that

so that, anally,

where
~.(x+~i)(x+xo)

F(x+ig) = ',J-
C=A(xo) J/4V,

r=s-"'F(s)

(x+xo) 1——,'J(s+xo)
I

~
t,(x')

~

tanh-', px'p(x') dx'-

~

V(x +xo) ( (x —x—ig)

We now show that complex poles still occur in the limit V ~ 0, in which
~
t„/V

~
+xo/~ x +xo (. Th—en

F(s) = ,'J (s+xo) -1——,'J(s+xo)xo
" p(x') tanh-', Px' dx'-

.~ (x'+xo)'(x' —s)

As p-+~, the integral in the denominator still shows

logarithmic behavior for small s, which is the principal
requirement for the existence of complex poles at arbi-

trarily small coupling strength.

5. CONCLUDING REMARKS

The problem remains of accounting for the complex

poles in the spin-Qip scattering amplitude. We no te that
omission of multiparticle intermediate states cannot
very obviously be held responsible. These will add an
additional discontinuity R(x) across the cut, but one

that strongly goes to zero at t.=0, i.e., just in the critical
range. If, in a non-self-consistent way, we simply regard
the multiparticle states as providing additonal inelastic
channels and apply the method of Froissart, ' we 6nd
that the poles in r remain unless the continuation of

R(x) into the complex plane happens to vanish at these

poles.
A possibility that is hard to discount is that the

asymptotic scattering states do not exhaust all the states
of the system, that there is a band of collective bound

states whose wave functions approach zero at an in6nite
distance from the impurity, and whose energy spectrum
covers the critical region around &=0. These states
would have to be included as intermediate states and
would add a nonvanishing discontinuity across the cut,
even at e =0, which might rule out the poles. This would
be the equivalent, in the language of scattering theory,
of the "instability of the Fermi surface" surmised by
Nagaoka. "The interesting question arises: can one use
scattering theory to derive the character of these states?
This is not entirely out of the question, since scattering
theory has been successful in uncovering ordinary
bound-state poles; both in regard to position and
residue. It may be that these techniques might be
adapted to the present problem.
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