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Helicon Propagation in Metals near the Cyclotron Edge*
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The theory of Doppler-shifted cyclotron resonance with helicon waves is elaborated by calculating the
magnetic-field dependence of the surface impedance near the cyclotron absorption (Kjeldaas) edge. It is
found that the location of the edge, defined as that Geld for which the Geld derivative of the surface reactance
is a minimum, deviates significantly from the threshold Geld defined by the Doppler-shifted frequency
criterion. The deviations are large when co,v &50. The theory is coxnpared with the experimental work of
Taylor on Na and K. The data agree well with the free-electron model for Na, but there is a large dis-
crepancy (770 G for 10-Mc/sec helicons) in K. The surface impedance is also calculated for a metal with a
spin-density-wave ground state, in order to test the hypothesis of such a ground state, previously made to
explain other anomalies in K. The edge Geld derived for a spin-density-wave state appropriate to K is 730 G
less than that required by the free-electron model, and agrees with the published data.

I. INTRODUCTION
' ' "

ELICONS are circularly polarized electromag-
~ - ~ ~ netic waves propagating in an electron gas in the
presence of a magnetic Geld. A helicon has low damping
if the cyclotron period of the electrons in the magnetic
Geld is short compared to the average time between two
successive collisions of an electron, i.e., if or,v&)1 where
co, is the electron cyclotron frequency and r the electron
relaxation time. Now, if the frequency of the helicon co

is such that zo«co,«cov'/zo where co„ is the plasma fre-
quency of the electron gas, the complex wave number q
of the helicon is given by

q'= (qr+iqs)'= (47rosrte/Bc) f~.

In Eq. (1), 8 is the applied magnetic field, I the con-
centration of electrons, and —e the charge on the elec-
tron. Ke have assumed here that the wave propagates
parallel to the direction of the magnetic ffeld B which
we take parallel to the s axis of a Cartesian coordinate
system. The factor f~ is equal to &1 in the limit of
long wavelengths L ~ q ~

&&(co,/vv) $, but differs from unity
if

~ q~
& (co,/vv). The analytical expression for f~ is'

3
f~= d8 sin'OL—(qnv/oo, ) cosg&1+ (i/zo, r))—'. (2)

In the relations given above the upper and lower signs
correspond to left-circularly-polarized and right-circu-
larly-polarized waves, respectively. Of these, of course,
the right-circularly-polarized wave has a large attenua-

+ Supported in part by the Advanced Research Projects Agency
and by the U. S. Army Research ofBce-Durham.' P. Aigrain, Proceedings of the International Conference on Semi
conductor Physics, Pragzze, I960 (Czechoslovak Academy of
Sciences, Prague, 1961), p. 224. R. Bowers, C. Legendy, and
F. Rose, Phys. Rev. Letters 7, 339 (1961).' See for exam le, J. J. Quinn and S. Rodriguez, Phys. Rev.
133, A1589 (1964 .

CV, = g18z. (4)

If the radiofrequency co is kept Gxed and the magnetic
Geld is decreased from a value such that ~,&gee~ to
values which reverse the inequality, then one expects
an absorption edge' (called the Kjeldaas edge) at
co,=q1vp. This resonance is also called the Doppler-
shifted cyclotron resonance. ' The E.jeldaasresonancehas
been observed by Kirsh' in bismuth using conditions
appropriate for propag.",tion of Alfven waves~ and by
Taylor et al. ,

' and Taylor' using helicon waves in
sodium, potassium, and indium.

' This is true for the model considered in the text, namely, a
free-electron gas embedded in a uniform background of positive
charge of the same density. In a metal in which the conduction is
due to holes the right-circularly-polarized wave is undamped.

4 See T. Kjeldaas, Jr., Phys. Rev. 113, 1473 (1959) for a dis-
cussion of the edge in connection with the attenuation of ultra-
sonic shear waves propagating parallel to an applied magnetic
Geld. For helicons see E. A. Stern, Phys. Rev. Letters 10, 91
(1963).' P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962).

6 J. Kirsh, Phys. Rev. 133, A1390 (1964).
z S. J. Buchsbaum and J. K. Gait, Phys. Fluids 4, 1514 (1961).
s M. T. Taylor, J. R.]Merrill, and R. Bowers, Phys. Letters 6,

159l(1964).
e M. IT. Taylor, Phys. Rev. Letters 12, 497 (1964); Phys. Rev.

137, A1145 (1965).
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tion and need not be considered further. ' Typical experi-
mental conditions are, for example, v=(co/2zr)=10
Mc/sec, 8= 10 kG, and rt = 10"crn '. Then

~ q ~

=4&(10'
cm '. In this case, the phase velocity of the helicon is
approximately (oz/)q))=10' cm/sec. This velocity is
several orders of magnitude smaller than the Fermi
velocity e& of the electrons. Thus, an electron whose
component of velocity parallel to the direction of B is
v, experiences a periodic electric Geld of frequency

COa=O)~gyVz= ~glitz ~ (3)

Clearly, a resonant absorption of energy occurs when
co,=or, i.e., if electrons exist having a component v, of
the velocity satisfying the condition,
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where k~ is the Fermi wave number, and

f,=—(Reef (B,)1' '}'. (8)

Taylor has evaluated approximately the dependence of

f, on the collision time. f,=1.5 for ei,r)50, and de-
creases monotonically from this asymptotic value with
decreasing cv,r. We have verified this behavior by a more
precise calculation. For potassiuin (taking the lattice
constant' a=5.225 A) we find, for v= 10 Mc/sec,

B,((o,r= ~)=18.58 kG.

The calculation of the "experimental" edge B~ is
considerably more dificult than that of B,. The details
are given in Sec.II.The conclusions may be summarized
here:

(a) Bx—B,for large co, (18—)r (in excess of about 40)."
(b) Bx increases monotonically with decreasing r.

This behavior is the reverse of that found for B,.
(c) For the case of potassium at 10 Mc/sec, and

ro, (18)r 25, we find Bx to be about 18.73 kG. This is
to be compared with the edge observed by Taylor in
material of comparable collision time, which was 17.96
kG. There is therefore a discrepancy of 770 6, which
seems significant. In Table I of Taylor's paper he found
what appeared to be agreement between experiment
and theory for the free-electron model. It is clear that
this apparent agreement was a spurious consequence of
the conjecture which identified Bx with B,. It should
be appreciated that both of these quantities are inde-
pendent of the electron effective mass.

The existence of this large discrepancy has been veri-
fied independently by T. Kushida (private communi-

It is of the utmost importance to distinguish the
theoretical and experimental definitions of the edge.
The "theoretical" edge B, is

B,=—that field for which e~.=giv, (5)

where e, is the maximum value of the z component of
electron velocity on the Fermi surface, The experi-
mental definition of the edge is arbitrary. Because the
most salient feature of Taylor's data' is the sharp mini-
mum in dX/dB, where X is the reactive part of the
surface impedance Z, we de6ne the experimental edge
Bx to be

Bx—= that field for which dX/dB is a minimum. (6)

Taylor made the conjecture that Bx=B„an assump-
tion which we shall demonstrate to be generally invalid.

For the free-electron model B, is easily calculated.
Equation (1) together with v =vr yield

cation). The magnetic field near the Kjeldaas edge was
accurately calibrated by Cs NMR. Furthermore, the
shape of the Cs NMR was used to precisely determine
the pure resistance and reactance modes; and this was
verified by an independent experiment using (instead
of an impedance bridge) a Pound box, which auto-
matically selects the pure resistance mode.

(d) For the case of sodium the agreement found by
Taylor between experiment and the free-electron model
is pertinent because the specimen collision times,
ce, (25)r~100, were sufficiently long to justify the use
of conclusion (a), above.

In order to explore a possible reason for the large dis-
crepancy between experiment and theory for the case
of potassium, we have computed B~, assuming a spin-
density-wave ground state. "The details are given in
Sec. III. The calculated value of Bx at 10 Mc/sec is
18.0 kG, assuming, as above, ce, (18)r=25. The spin-
density-wave energy gap was taken to be 0.62 eV, the
value required" to explain the optical anomalies" in K.
The agreement between this calculated value and
Taylor's experimentally observed edge is an interesting
coincidence.

II. THE SURFACE IMPEDANCE

In this section we calculate the surface impedance of
a metal in the presence of a magnetic field B perpen-
dicular to the surface and of a radiofrequency electro-
magnetic field of frequency co&&e~,. The calculation is
carried out for the free-electron model. The numerical
applications that we give are for the case of potassium
with the parameters given in Sec. I. The surface im-
pedance of the material for a left-circularly-polarized
wave, assuming that the electrons are reQected specu-
larly from the surface of the metal, is given by the
relation

4m'
Z=R iX= (8ia&/c') —dq q'+ (o„—io,„)

0 C2

(10)

In Eq. (10) o.„and o.,„are components of the magneto-
conductivity tensor with respect to a Cartesian co-
ordinate system whose s axis is parallel to B.

We now show how to calculate o.;;(i,j=x,y,s) for an
electron gas with an arbitrary dispersion formula E(h).
This calculation is considerably more general than is
required for our purposes. However we give it here to
provide a basis for the analysis of Sec. III and because
of its intrinsic interest. The procedure we use is that
due to Eckstein. '4 We consider the electrons within a
metal in the presence of the dc magnetic field B and
of an alternating electric field 8 that varies as

'0 C. S. Barrett, Acta Cryst. 9, 671 (1956).
"We have deiIned for convenience the parameter cv, (18)r to

mean the value of ~,v when the applied magnetic field is 18 kG,
the approximate position of the Kjeldaas edge in potassium. Thus
au, (18)r is merely a measure of r and is independent of B.

A. W. Overhauser, Phys. Rev. Letters 13, 190 (1964).
i' M. H. El Naby, Z. Physik 174, 269 (1963); H. Mayer and

M. H. El Naby, ibid 174, 280, 289 (1.963)."S. G. Eckstein, Bull. Am. Phys. Soc.9, SSO (1964);and private
communication.
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exp(i~t —iq r). The Boltzmann transport equation for
the electron distribution function f= f(k, r, t) is

1
+—v ~f —s+ vx-p) v,f -(f—I',—)I, (,»)

Bt c

1.0

0.5

puce s lO at B a IS kG

s *—* lO Ntc/sec2%

where

f= fp+fr, (12)

where v is the velocity of the electron having wave
vector k and fp= fp(E(k)) is the distribution function in
thermal equilibrium. Equation (11) is linearized in 8
the usual way and its solution is found to be
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In writing Eq. (13) we found it convenient to express
k in terms of the new variables E, k„and u where u is
a quantity having the dimension of a time and which
describes the position of the electron on the orbit de-
6ned by the intersection of the surface E(k)=E and
the surface k, equals a constant when there is no radio-
frequency Geld present. Thus I is the time parameter in
the equation A(dk/du) =—(e/c) vX B which governs the
motion of the electron in k space in the presence of B
alone. The function R(u) is the position in real space of
an electron of energy E and component k, of the wave

»o. 2. &R/dB and dX/dB for potassium with ra, (18)r= 10.

(2s.)'k'c
dEI —

~

dk, T(E,k.) g V.V.*(
dE/

vector at the time I under these conditions. Thus, with
a suitable choice of origin k= —(e/Ac) R(u) XB, so that
R(u) describes an orbit in space which is identical to
that described by k but rotated by 90' in the clockwise
direction about an axis parallel to B and ampli6ed by
the factor kc/eB. Of course, the component of R
parallel to B is not determined by these considerations.
In Eq. (13) R is the function R(E,k„u) while R' is the
same function evaluated for the value I' of I, i.e.,
R'= R(E,k„u'). In the same manner v'= v(E,k„u'). We
can always separate R into two terms R, and R„so that
R= R,+R„.Here R„ is a periodic function of k while

R,= v, (E,k,)u increases linearly with the time u. Now

v, (E,k,) is the average velocity of an electron on the
orbit deGned by E and k,. In the free-electron model v,
is the component of the velocity parallel to the applied
magnetic Geld but in the more general case, to which our
discussion is applicable, v, can have another component
when the orbit de6ned by E and k, in k space corre-
sponds to an open orbit. Making use of the facts that the
volume element in k space dk= (eB/risc)dE dk, du and
that the electrical current density is j=L(—2e)/
(2n)sj J'vftdk, we obtain

j=e.8

where

-2.0—

12 14 16 18 20 22 24

8(lie)

FIG. 1. Derivatives of the surface resistance and surface re-
actance with respect to an applied magnetic Geld 8,"for a potassium
slab with the Geld J3 perpendicular to the surface of the slab. The
model used is the free-electron gas for a frequency of 10 Mc/sec
and co(18)r ,5=

1 (
X +pi o&——2s'tp —q v,

i
. (15)

T(E,k,)

In this expression T(E,k,) is the period of the motion in
k space of an electron having energy E and a component
of its wave vector equal to k, along the direction of B.
The quantities V„are the Fourier components of
v(E,k„u) expLiq R~(E,k„u)j considered as periodic
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functions of I, i.e., we have

v(E,k„N) expLig R„(E,k„g)j
Gsc& =40 at 8"-IB kG

v = —a IO Mc/sec

so that

P„(E,k,) exp, (16)
2"(E,k,)

dR

The application of these results to the case of interest
to us is particularly simple. We wish to consider the
components of the conductivity tensor e in the par-

I.O 2.0

1 r
V„(E,k,) =— dl v(E,k„m)

0

&&exp)i' R~(E,k„e) (27—rieu/T) J . (17)
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FIG. 4. dR/dB and dX/dB for potassium with cc, (18)r=40.
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are displayed in Figs. I—5. We notice that Bz increases
monotonically with decreasing r. We can understand
this physically as follows. For the case in which or,r is
not very much larger than unity the helicon is attenu-
ated and is not a single sinusoidal wave in space. If a
Fourier analysis of the wave is made one would And a
Lorentzian distribution of wave numbers q and there-
fore the condition for the absorption edge is reached
at higher magnetic fields for lower collision times.

In Fig. 6 we have displayed the variation of Bz and
of (DB) ' with r AB is d.efined as

DB—=Difference between the values of 8 for which a
minimum and a maximum of dR/dB occur. (19)

68 is a measure of the width of the resonance line and

-I.5
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FIG. 3. dR/dB and dX/dB for potassium with cc, (18)r=20

t csrct "-80 at 8 & IS kG

r = —= IO Mc/sec2%'

ticular situation in which the Fermi surface possesses
an axis of rotational symmetry about B. In such a case
we obtain t/'„+it/'„„=@~8„, „~~, where eL is the com-
ponent of the electron velocity on a plane perpendicular
to B. Then we obtain

g2

o ~a—zo ~y
——

4~2I2
dk, (18)

1+1(Mr Q)cr —qs r)

where m is the cyclotron effective mass. For the free-
electron model we use E(k) =fish'/2nz, where m is the
mass of the electron and assume that 7. is a constant
over the Fermi surface. The latter assumption is not
really necessary as long as or, v=)&1, where v. is an appro-
priate average collision time but we make it for the sake
of simplicity. In this case o.+——cr,—io-,„can be evalu-
ated in terms of elementary functions. The calculation
of Z has been carried out numerically and the results
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,'Fro. 5. dR/dB and dX/dB for potassium with ccc(18)r=80.
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Fzo. 6. Graph of Bx and (AB) r versus cs, (18)r corresponding
to a frequency of 10 Mc/sec for a free-electron gas with a density
of electrons equal to that of potassium.

0

we see that it is approximately proportional to v ' as
one would expect. For large values of r, (68) ' deviates
from a linear relation as might be anticipated, since
even for v = ~ the line should have a inite width. It
would be desirable to carry out experiments to verify
the 7 dependence of Bx.

III. HELICON PROPAGATION IN A
SPIN-DENSITY WAVE METAL

The anomalous optical reQectivity of potassium"
gives support to the hypothesis" that the electronic
ground state of potassium possesses a spin-density
wave" (SDW). In the SDW model the one-electron
sta, tes can be labeled by a wave vector k and have an
energy dispersion relation of the form

~(k) = e(k)+~(sQ —k*)—L~'(sQ —k*)'+sG']'" (2o)

which is valid for k,)0 in the vicinity of k, =Q/2. In
this relation k, is the component of k along the direction
of the wave vector Q of the SDW. The quantity G is the

1 r I

I4 IS IB 20 22 24
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FIG. 8. dR/dB for potassium with co, (18)r=30 for both the
free-electron and SDW models.
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energy gap at k, =Q/2, p=h'Q/2m, and e(k) fz'k=s/2m

In virtue of time-inversion symmetry we must have
g(—k) =E(k), a relation that defines E(k) for k,(0.
On the other hand, de Haas —van Alphen studies by
Shoenberg and Stiles'" and cyclotron resonance experi-
ments by Grimes and Kip" have shown that the Fermi
surface of potassium is a sphere to within a few parts

F(x)= Zmv, ]to

10--

l X=2k) /Q

-.-l0

QI. 0-~a0 ~
O

g5

vie

-2,0-

I
I
I
I
t

I
I
I
I
I
I
I
I
I
I
I
I

lf
II
Ir

I I I I I I

I2 I4 IS IB 20 22 24

S(l G)

FIG. 7. Schematic diagram showing'„e, versus k, for a~SDW
model of a metal.

"A. W. Overhauser, Phys. Rev. 128, 1437 (1962).

Fzo. 9.dX/dB for potassium with ce, (18)r =30 for both the
free-electron and SD% models.

"D.Shoenberg and P. Stiles, Proc. Roy. Soc. (London) A281,
62 (1964).

'r C. C. Grimes and A. F. Kip, Phys. Rev. 132, 1991 (1963).
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in a thousand. It is possible to reconcile these two
results by assuming that the wave vector Q of the SDW
orients itself parallel to a suKciently strong dc magnetic
Geld B.If this is correct, then the extremal cross sections
of the Fermi surface by planes perpendicular to 8 are
circles. The area of these circles is, however, slightly
less than their values for the free-electron model. This
assumption would explain why in a SDW model a ro-
tation of the specimen with respect to the magnetic Geld
would give rise to a configuration in which an extremal
cross section of the Fermi surface is a,lways a circle.

We consider now the position of the Kjeldaas edge
in the SDW model. Here we expect the edge to occur
at considerably lower magnetic fields. In fact the ve-
locity v, in this case is not linear in k, but behaves in the
fashion displayed schematically in Fig. 7. The position
of the Kjeldaas edge is at the value of the magnetic field
such that co,=q~v, . Now, in this case the dispersion
relation (1) is the same as for the free-electron gas pro-
vided we set f~ equal to

velocity of an electron perpendicular to B. Now

2Zp k'k, i 2p Q
kz

m m' iN 2

Q
|2 G2-1/2

+—~' —k. ~+—,(22)i

e .„=(AQ/2m) L1—(G/pQ)'"g'". (23)

For potassium, if we choose G=0.62 eV Land
Q=1.33(2n./a) where a is the lattice constant) to
obtain agreement with the optical data" we obtain
v, =0.714&&10' cm/sec which is to be compared with
the Fermi velocity tz ——0.864&&10' cm/sec in the free-
electron model. Now, the dielectric constant of the
electron gas in a SDW state appropriate to helicon pro-
pagation is e+ where"

for k,&0. In this equation Ep is the Fermi energy.
Equation (21) has been obtained using Eq. (18) in
Sec. II. The value of v, is

4s'iici'i'q t,a(o,/q+i/qr

In Eq. (21) mi is the magnitude of the component of aiid

e+= (e'Q'/2ir(Aq) U~, (24)

' (2&~/~Q) —i+—(1—
I
x I)+{(1—

I
x I)'+ (G/~Q)'&'"

—1 F(x)+ (Puu, /Iiq)+ (its/pqr)
(25)

In Eq. (25) the function F(x) is the ratio of the velocity
n, to (liQ/2m) as a function of x= 2k, /Q.

The surface impedance of potassium has been calcu-
lated using a SDW Inodel in the same way as for the
free-electron model. We have displayed the results for
the derivative of the real and imaginary parts of the
surface impeda, nce Z= R—ix with respect to the
applied magnetic field 8 in Figs. 8 and 9 assuming that
a&,r =30 at B=18 kG. The curves for dR/dB and dX/dB
are compared with the results for the free-electron gas
for the same value of co, (18)r. We see that the minimum
in (dX/dB) occurs at B=18.68 kG for the free-electron
model and at 8= j.8.0 kG for a model with a SDW
ground state. We see, then, that if potassium had a
spin-density-wave ground state, Bx at v=10 Mc/sec
would occur at a magnetic field of about 18.0 kG. It is
interesting to notice that this agrees with Taylor's ob-
servations, especially since the calculation employed no
adjustable parameter. Numerical methods that would
guarantee at least four 6gure accuracy &vere used
throughout the calculations.

It is surprising that Sz for the SDW model is only

4% less than Bx for the free-e)ectron model. One might
have expected a larger deviation because v for the
SDW model is 17%%u~ less than vi. In fact, such a large
shift is predicted for the location of the Kjelda, as edge
of acoustic waves. " Evidently the helicon dispersion
relation near the Kjeldaas edge is more sensitive to the
nature of the electronic model than is the case for
acoustic waves.
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