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The results of a numerical calculation of the radiative absorption cross section for an electron in the field
of a neutral argon atom are reported. The atomic potential used is the same as used by Holtsmark in his
treatment of the Ramsauer effect. The light frequency is 4.318 X 10 cps. This exact cross section is compared
with three approximations which contain the phase shifts for elastic scattering. One of these approximations,
the one due to Holstein, is found to differ very little from the exact cross section over a large range of initial

electron energies.

INTRODUCTION

N this paper, attention will be directed to the cross

section for the absorption of a photon by an electron

in the field of an argon atom. Only transitions between

electron states in the continuum will be considered. The

process is usually called “free-free absorptive transition”
or “inverse bremsstrahlung.’”

The neutral argon atom is represented by a static
central potential which is the same potential used by
Holtsmark? in his treatment of the Ramsauer effect in
this atom. It is a Hartree atomic field modified by the
inclusion of a polarization term ~7~* for large distances
7 from the atomic nucleus. The frequency » of the light
used is 4.318X 10" cps which is the R; line of a ruby
laser at 300°K.3

For this system, the results of a numerical calculation
of the free-free absorption cross section will be reported.
This cross section will be called the ‘“exact” cross
section.

Even with the availability of high-speed computers,
the accuracy of a theoretical calculation of a cross
section is limited by the inherent complexity of the
many-electron system. The elastic cross sections have
been measured for a large number of atoms and mole-
cules over wide ranges of energy.* This is not true for
inelastic cross sections. It would therefore be useful if
the inelastic-electron-scattering cross section could be
expressed in terms of the elastic-scattering cross sections
or quantities derived therefrom, viz., the scattering
phase shifts. For the case where the neutral atom is
represented by a static potential, in the limit of vanish-
ing frequency of the radiation field one obtains the
well-known result that the free-free absorptive cross
section is proportional to the cross section for momen-
tum transfer. For finite frequency no exact direct con-
nection between elastic and inelastic cross sections

1H. A. Bethe and E. E. Salpeter, Handbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 35.

2 J. Holtsmark, Z. Physik 55, 437 (1929).

3 Bela A. Lengyel, Lasers (John Wiley & Sons, Inc., New York,
1962), Table I, p. 115.

4 Atomic and Molecular Processes, edited by D. R. Bates
(Academic Press Inc., New York, 1962).
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exists.® Approximations leading to this type of connec-
tion were used by Ohmura and Ohmura®’ for the ab-
sorption by H—, and by Somerville® for Hy~. They
include only the 0 — 1 and 1 — O partial wave transi-
tions where 0 and 1 are the angular momentum of the
electron and set the p wave scattering phase shift equal
to zero. Somerville’s expression was extended by Ashkin
and Emtage® to include higher partial wave transitions
and phase shifts. Similar approximations have been
used by Firsov and Chibisov.!? Recently Holstein! ob-
tained another approximate expression for the cross
section which can be calculated from the phase shifts.
This result was obtained independently of an earlier
field-theoretical work of Low!? which claimed validity
only when the light frequency is much less than the
initial electron energy for the case of absorption.

These approximations of Somerville, Ashkin and
Emtage, and Holstein have been evaluated numerically
using phase shifts which we obtained for the present
system and are compared with the “exact” cross
section.

THE FORM OF THE CROSS SECTIONS

We follow the method given by Landau and Lifshitz!®
to obtain the transition probability between wave
functions of the continuous spectrum. The initial- and

% An indirect connection between the elastic cross section and
the inelastic radiative cross section does exist in the following
sense. The effective scattering potential of a many-electron atom
fully determines the inelastic electron scattering in the potential
scattering approximation. V. Bargmann [Phys. Rev. 75, 301
(1949)], and I. M. Gel'fand and B. M. Levitan [Dokl. Akad.
Nauk SSSR 77, 557 (1951)] have developed methods for deter-
mining the potential of interaction between two colliding systems
from the differential elastic scattering cross section when the latter
is known as a function of energy and angle and in some cases
polarization.

¢ T. Ohmura and H. Ohmura, Astrophys. J. 131, 8 (1960).

7R. L. Taylor and B. Kivel, J. Quant. Spectry. Radiative
Transfer 4, 239 (1964.)

8 W. B. Somerville, Astrophys. J. 139, 192 (1964).

9 M. Ashkin and P. R. Emtage, 1964 (unpublished).

10 Q. B. Firsov and M. I. Chibisov, Zh. Eksperim. i Teor. Fiz.
%?’96117)50 (1960) [English transl.: Soviet Phys.—JETP 12, 1235

11 T, Holstein, Westinghouse Scientific Paper 65-1E2-GASES-P2,
1965 (unpublished).

2 F. E. Low, Phys. Rev. 110, 974 (1958).

BL. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press Ltd., London, 1958).
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final-state electron wave functions can be written
B @)= (1/k) ¥ Q1= O Ry (r) Polk-7) , (1)
1=0

where ¢ is the initial state and has the asymptotic
form
PP~ ek 1L outgoing wave, (2)

where ¢ is the final state and has the asymptotic form
Y~ L incoming wave. A3)

The wave vector k is related to the energy E by
E= (/k)?/2m, where m is the electron mass, Py(k-7) is
the Legendre polynomial of the /th order, and the carets
denote unit vectors. The radial function v (r) = Ry (7) /7
satifies the radial Schrodinger equation

dz‘l)kz(r) I:Z’}'}'LE 2m

(+1)
ar’ e

N 7?2

]‘Du=0 , @

where V(r) is the total potential seen by the electron
and v, satifies the boundary conditions

sz(0)=0 (5)
(7)) ~sin(br—3inl+6,(k)) for r—oo.  (6)

Equation (6) defines §;(k) the Ith scattering phase shift
evaluated at the energy corresponding to the wave
number %.

If we write the interaction of the radiation field as
eEqe-1 coswt, then the transition rate from the dirgction
£, into the solid angle dQ(k;) about the direction £; for
light of frequency w is

AW o(Bik))
= (QEks/ 1607 me?) | i, D, & Ve, ) [20Q(E)) ,
(7
where

(#)2m) (k= k&)=t ®)

Equation (7) involves the gradient of the potential and
is the most convenient form for our numerical
calculation.!

The free-free absorption cross section K(k;) is ob-
tained from dWgo(Bs,ky) by averaging over initial direc-
tions £;, integrating over final directions £y, and dividing
by the initial photon flux. The result per unit density of
scattering centers is

K (k:)=3%(32n%ac’) { (EL’k k)2 (ki )} cm®,  (9)

where a=e*/fic is the “fine structure constant,”
ao="?/me* is the “radius of the first Bohr orbit,” and
the quantity in curly brackets is in atomic units
(a.u.).’® In atomic units Ez, the energy of a ruby laser
photon, is

E;=3(k?—k#=0.0657.

14 Reference 1, p. 337.
15 Reference 1, p. 89.

(10)
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We have defined Z(%;,k) by

S(kik) =3 DM (ki kyi—1) |2

DM R, ka+1)[2], (1)

where

w v
MELEY)= / dr ‘Ukl(f')a_'uk'l' (r) (12)
0 ‘4

and v;;(7) satisfies Eq. (4) (in a.u.) and the conditions
stated in Eqgs. (5) and (6). The quantity K (k;) defined
by Eq. (9) is what we call the “exact” cross section.

Somerville’s approximation to the exact cross section
is8

4 gin? ;
Ku(k)= aosa(iﬂf) { k& sin®o(ky)-+ k7 sin®8 (%)
kPkEL}

cm’.
(13)

A modified form of this expression which includes

higher-order phase shifts is?
Ko (ki)= 8n°aac’/3){ks/Er*}Qa(k:) cm®,  (14)

where

Qulk) =% (+1)

=0
X (fs/Rsy* sin?[5y(ks)—b141 (k)]
+ (ki/kf)21+2 Sin2[:61(kf) - 5;.}.1 (k,,):l}

and k;/E;? in Eq. (14) is in atomic units. When
E<k#/2, we have k;=Fk; and

@r/kA)Qa(k:)= (4r/k2) El_‘, (I41) sin?

X [8:(ks)— 8141 (k) 1=Qa(ks) ,

where Qg(k;) is the cross section for momentum-
transfer collisions.’® When Eq. (15) is valid K3 may be
written

K (k)= (draad®/3){ (k3/E})Qa(k)} . (16)

Holstein" has developed an approximation to K
which reduces to Eq. (16) when E;<k;. This expression
may be written

(15)

K (k)=Ki(k)+Ks(ks) , (17)
where
8raas’ ( ks Es+E;
1 kz = — )2 0\Fvm,
Koy =— | e @y e 9
8raad (ks (BB
Katpy = | L) Quthn)| (19)
L

18H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic
Impact Phenomena (Oxford University Press, London, 1952). The
definition and notation given on p. 367 of this reference are the
ones used in this paper. :
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and %, is defined by
knld=k2+E; (a.u). (20)

In Eq. (18) Qs the total elastic-scattering cross section
Qolkm)=(4n/kn?) 2. (214+1) sindy(km)  (21)
1=0

and in Eq. (19) Q4(k») is the momentum transfer cross
section. We have written Kz as a sum of two terms in
order to display it in terms of the two elastic cross
sections evaluated at a mean energy.

RESULTS AND DISCUSSION

The value of K, K s, K 37, and K g for a range of initial
electron energies are given in Tables I and II. In Fig. 1
the exact and approximate cross sections are plotted
against the initial electron energy in Rydberg units of
energy (k2 in atomic units). The Schrédinger equation
was solved numerically for pairs of k; and %, related by
Eq. (10) and for pairs of / and /' to obtain the matrix
element M. The phase shifts for these % and / values
were also obtained and used to evaluate Qo and Q.

An examination of the tables and the curves leads to
the following conclusions. The Somerville approxima-
tion is seen to be a rather poor one for the present
system over the whole range of initial electron energies
studied. The modified Somerville approximation is in
fair agreement with the “exact” cross section for energy
20.2 Ry but is likewise a poor approximation for
smaller energies. These approximations are poor because
they reflect too strongly the Ramsauer effect when com-
pared to the exact cross section. i

The Holstein approximation, on the other hand, is
accurate over most of the energy range considered. The
relative  error |Ku(E)—K(E:)|/3(Kx+K) for
E;=~0.02 rydberg units of energy (=0.27 eV) is =209,
For E;=0.2 Ry (=2.7 eV) and E;=1.5 Ry (=20 eV),
the relative errors are =1.5%, and =6.5%, respectively.

When E,.>>E;, the estimated error given by Holstein
is |[Kg—K|/3(Kg+K)=EZ2(AE)? where AE is the

Tasre 1. The absorption cross sections K, Kg, and K.

Initial
electron . .
energy Absorption cross section
(Rydberg (107% cm?)
units) K[Eq. (9] Ks[Eq.(13)] Ku[Eq.(14)]
0.01 0.0238 0.0133 0.9900
0.0125 0.0236 0.0091 0.5372
0.015 0.0228 0.0065 0.3297
0.025 0.0247 0.0037 0.0943
0.04 0.0301 0.0083 0.0458
0.06 0.0395 0.0197 0.0469
0.1 0.0662 0.0485 0.0845
0.2 0.1877 0.1409 0.2417
0.4 0.6748 0.2933 0.7658
0.7 1.8891 0.4930 1.9468
1.0 2.4091 0.6009 2.5867
1.5 2.4805 0.6670 2.6749

RADIATIVE ABSORPTION CROSS SECTION
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Taste II. The absorption cross section Kg.

Absorption cross section

Initial electron energy (107%8 cm?)
(Rydberg units) Ky [Eq. 17)]
0.0143 0.0169
0.0343 0.0245
0.0757 0.0527
0.0870 0.0569
0.0907 0.0657
0.1057 0.0817
0.1257 0.1018
0.1343 0.1118
0.1457 0.1334
0.1657 0.1530
0.2657 0.3285
0.3343 0.4916
0.4657 0.9155
0.6343 1.6372
0.7657 2.1446
0.9343 2.4913
1.0657 2.5733
1.4343 2.5964
1.5657 2.6421

energy interval over which Qu(E) undergoes relative
variations of order unity. From the calculated values of
Qs we find AE=1 Ry for E=1.5 Ry, AE=0.4 for
E=0.2. This gives £/ (1 Ry)?*=1.6%, and E2/(0.4 Ry)?

4.0 T T T

7 i T

Absorption ross Section K (102 cmd)

.01, . LO
Initial Electron-Energy (Rydberg unit of energy)

¥ F1c. 1. Absorption cross section versus initial electron energy.
K is the “exact” cross section and is defined by Eq. (9) of the text.
K is Somerville’s approximation and is defined by Eq. (13). Ky
is a modification of Somerville’s approximation and is defined by
Eq. (}4). Kpis Holstein’s approximation and is defined by Eq. (17).
The light frequency »=c/27=4.318 X 10* cps.
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=~109% which are in agreement with the errors given
above. In view of the rapid variation of Q4(E,) when
E=E,=0.02 Ry the relatively small error in Ky is
remarkable.

Phelps'” has used Holstein’s approximation in a study
of gas breakdown at optical frequencies due to a focused
laser beam. Measured values of the elastic cross sections
were used. The results of the present paper show that
the use of Holstein’s approximation for the cross section
for free-free transitions in Phelps’ study and similar
applications is well justified except at very low energies.

17 A. V. Phelps, Westinghouse Scientific Paper 65-1E2-
GASES-P3, 1965 (unpublished).
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This approximation is particularly useful when experi-
mental values of Qp and Qg are available. In fact we
emphasize that the purpose of the present paper is to
compare an exact numerical calculation with approxi-
mate calculations of the transition probability for a
given model and not to provide accurate values of the
cross section. It is generally known that this model does
not reproduce exactly the experimental cross section.
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Electronic g Factors of the Low Levels of Ni I*

W. J. Camps, M. S. Frep, AND L. S. GoopMAN
Argonne National Laboratory, Argonne, Illinois
(Received 24 June 1965)

Electronic g factors have been obtained for the seven lowest levels in Ni 1 by means of the atomic-beam
magnetic-resonance technique. The results, in order of increasing excitation energy, are Fs, 1.24968(3);
3F3, 1.08285(3) ; 3F2, 0.66954(3) ; 3Ds, 1.33358(3) ; 3De, 1.15106(3) ; 3Dy, 0.49804(2) ; and ! Dq, 1.01297(7). A
re-analysis of the atomic spectrum involving configuration interaction with intermediate coupling has re-
sulted in an improved set of parameters. The g values so computed are compared with the experimental

results.

I, INTRODUCTION

IN recent years, hyperfine structure (hfs) studies have
yielded more and more information on the details
of atomic wave functions. Atomic species for which
these studies can be made on several spectroscopic
terms are especially attractive from this viewpoint.
Ni1 has three terms from two different configurations at
sufficiently low excitation energy that the Boltzmann
populations at atomic-beam temperatures should be
sufficient for detailed hfs studies in the odd isotope Ni®,
The present experiment was carried out to determine
precise values for the electronic g factors of these low-
lying states.

Of course, the measurement of atomic g factors with
sufficient precision provides considerable information
concerning the degree and nature of admixtures present
in the atomic wave functions even without hfs studies.
A computer program was employed to improve the fit
to the observed energy levels of Ni1 and from this de-
scription of the mixing to predict the g factors of the
states for which comparison with experiment was
possible.

II. EXPERIMENTAL DETAILS

The experiment was performed on the Argonne
Mark II atomic-beam magnetic-resonance apparatus

*#*Work performed under the auspices of the U. S. Atomic
Energy Commission.

which has been previously described.! Two-quantum
flop-in transitions of the type (J, my=1<>J, my=—1)
were detected in the even-even Ni isotopes with an
electron-bombardment universal detector using mass
analysis and a digital lock-in arrangement. The details
of the detector are given in Ref. 1.

The source of (Ni) beam atoms was a graphite oven
with a 0.010-in. slit, heated by electron bombardment.
The Ni attacked the graphite if the oven became too
hot, but because of the sensitivity of the detection
scheme a sufficient beam intensity for the present
purpose could be achieved at a modest temperature. A
different oven scheme will presumably have to be used
for hfs studies on Ni® for which the intensity will be
considerably lower (X1/300) as a result of both the
smaller isotopic abundance and the nonzero nuclear
spin.

The intensity of the homogeneous magnetic field in
which the Ni transitions were induced was measured by
observing resonances in the same field in a calibration
beam of K3 atoms from a separate oven. A surface-
ionization detector was used to detect the K beam.

The number of levels for which measurements could
be made is simply the number of levels for which the
population in the beam is sufficiently great. The
Boltzmann factor, which gives the expected relative

1W. J. Childs, L. S. Goodman, and D. von Ehrenstein, Phys.
Rev. 132, 2128 (1963).



