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Three-Particle Oyerators for Equivalent Electrons
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Interaction between the electronic con6gurations (nl)n and (nl)~+'(n'l')"' can be represented for (nt)n
by the addition of e6ective three-particle operators to the Hamiltonian, the effective two-particle parts
being absorbed by operators already present in the elementary linear theory of configuration interaction.
For f electrons, the three-particle operators are decomposed into nine operators t; that are labeled by ir-
reducible representations of E7 and G2. The eGects of three of them can be reproduced by two-particle
operators; hence, only six additional parameters are required to describe the interaction. Tables of matrix
elements are given, and the properties of the operators t; with respect to symplectic symmetry and quasispin
are examined.

I. INTRODUCTION

~ 'HE use of effective operators is a common feature
of atomic spectroscopy. For example, the spin-

orbit interaction for a many-electron system is P; $(r;)
Xs,"l;; but within a given Russell-Saunders multiplet
it can be replaced by the effective operator ),S L, where
S and L are the vector sums of the spins s; and orbital
angular momenta I; of all the electrons i. The parameter
X depends on the detailed character of ](r), but for
the purpose of Gtting the levels of a multiplet, it is
often convenient to regard it as an adjustable parameter.

This principle can be extended to allow for the term
displacements produced by configuration interaction.
The effective operator crLs, which possesses eigenvalues
nl. (L+1), significantly improves the energy-level
structure of configurations of d electrons. ' This is
ascribed to its ability to represent the perturbing effect
of those configurations that involve two-electron
excitations. ' Formally, another operator PQ should also
be included to make the substitution rigorous to second
order in perturbation theory. Although more difficult
to detect, its existence is now beyond dispute. ' For f
electrons, a third operator is necessary to take into
account two-electron excitations; it has been introduced
by Trees' in his analysis of Pr rrr 4f' Aconvenie. nt
general form for these operators is

y&
—P (v, t ).vtt i)

where the tensor operator v(~& is related to the unit
operator u'"& by the equation' v&s&=uts&[kji~'. The
operator nLs, for example, is simply related to yi, the
remaining effective operators involve other scalar
products y& for which k is odd. Since the ordinary
Coulomb interaction within a configuration (nl)N can
be expanded in terms of the yI, for which /~ is even,
the total electrostatic Hamiltonian, including both

' R. E. Trees, Phys. Rev. 83, 756 (1951);84, 1089 (1951).
~ G. Racah, Phys. Rev. 85, 381 (1952).
3 Y. Shadmi, Phys. Rev. 139, A43 (1965).
4 R. E. Trees, J. Opt. Soc. Am. 54, 651 (1964).
e Here and elsewhere the traditional abbreviation Lx]=2x+1

is made for a single symbol (possibly subscripted) within square
brackets. Actual numbers (or X) within square brackets will as
usual stand for representations of a unitary group, however.

real and effective parts, can be expressed as a linear
combination of the y(k) for which 0&k&21.

The question how to represent the single-particle
excitations has been recently attacked by Rajnak and
Wybourne. ' They found that effective operators can
again be constructed to absorb such interactions; but
unlike those so far considered, these operators have
necessarily to include three-electron components of
the type

]k k' k"
V(kk'k") = Q

"«&i q, q', q" Eg g g

X (v (Ia)) (v, (k')) (v „(s")).

The reason for the occurrence of three-electron operators
can be most easily seen if the method of second quanti-
zation is used. '

The number of parameters that are needed to preface
the various operators V(kk'k") is not as large as might
at first appea, r. If either k, k', or k" is zero, V(kk'k")
reduces to an operator of the type yI, . It also turns out
that 0, k', and k" must all be even, and that an inter-
change of any two of them leaves V(kk'k") invariant.
Their upper bound is set at 2l by the triangular condi-
tions. For f electrons, these considerations limit the
triad (kk'k") to the ten possibilities (222), (224), (244),
(246), (444), (446), (266), (466), (666), and (226). This
accounts for the statement that ten parameters are
needed to completely describe the three-electron
operators. ' ' A partial parametrization has recently
been made by Rajnak, ' who greatly improved the fit
with the observed levels of Pr rrr 4f'. In order to probe
the nature of the perturbing configurations, she took
as operators the linear combinations

X(kk', l') =ZLk"hrtst k3-rtsfk'j-its

X V(kk'k"),

6 K. Rajnak and B.G. XVybourne, Phys. Rev. 132, 280 (1.963).
B. R. Judd, University of California Lawrence Radiation

Laboratory Report UCRL-16098, 1965 (unpublished).
e K. Rajnak, J. Opt. Soc. Am. SS, 126 (1965).
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where the sum runs over even values of k", excluding
k"=0. The various X(kk', t') for a given t' are sufhcient
to represent the three-particle part of the effect of
(zzl)N+'(zzV)+' on (zzl)N. The assumption that excita-
tions of the type f~ k can be neglected limits t' to 1
and 3, for which there are nine operators X(kk', t') in all.
However, Rajnak found that Ave of these operators are
sufhcient to obtain a good fit with experiment, and
that the inclusion of more operators leads to little
improvement.

There is little doubt that analyses of free-ion con-
figurations such as f', f', or f' will be attempted soon.
The usefulness of the three-particle effective operators
will then be tested much more critically than has been
possible for f' It is t. he purpose of this paper to present
a detailed analysis of these operators, thereby giving a
theoretical basis to the method of parametrization.
From a practical standpoint, the principal result is
that for f electrons the number of additional parameters
that are needed to represent the three-particle operators
are not ten, as appears from the argument above, but
only six. To arrive at this result, a study is made of the
symmetry properties of the operators. These properties
are of considerable interest in themselves, and strikingly
illustrate the great value of the theory of continuous
groups in atomic spectroscopy.

II. TWO-PARTICLE OPERATORS

In his analysis of the Coulomb interaction within
configurations of equivalent f electrons, Racah' con-
structed the following linear combinations of the
operators yI, .

ep= 7yp/2,

ei= 9yp/2+ys+y4+yp,

es ——143y&—130y4+35yp,

es ——11ys+4y4 —7yp.

In terms of the irreducible representations H/" and U
of the groups Rz and G2, respectively, these linear
combinations correspond to WU= (000) (00), (000) (00),
(400) (40), and (220) (22). By using W and U to label
the eigenfunctions as well, Racah was able to relate
matrix elements of each e; to others with similar 8'USI.
descriptions. This technique exposes the properties of
the Coulomb interaction in a striking and profound
manner. It also suggests an approach to the parame-
trization of the three-particle operators. For suppose
linear combinations t; of the V(kk'k") are constructed
that correspond to definite representations 8'U. If we
find a 8'U designation that has already arisen in the
treatment of the e;, then there is a possibility that the
effect of the corresponding operator t; can be taken up
merely by changing the parameters of the Coulomb
interaction.

' G. Racah, Phys. Rev. 76, 1352 (1949).

Since operators yI, for odd k have also been included
in the Hamiltonian, the number of irreducible operators
available for absorbing the effects of the operators 5; is
even larger than might at first appear. The possible
O'U designations that arise from this source are easily
found. The operators v('~, v(3&, and v&'~ transform like
the representation (110) of Rz (see Racahs); the scalar
products yI, must therefore correspond to the 5 states
that occur in the Kronecker product (110)X(110).
Including the appropriate representations U of Gg, we
find that the operators yI, for odd k can be assembled
into three linear combinations e4, es, and e6, for which
WU= (000) (00), (111)(00), and (220) (22), respectively.
A detailed construction (with arbitrary normalization)
gives

e4=yi+ys+ys,
es =—yi —2ys+y 4,

6 = i iy 1 3y5.

The operator e6 is identical to 0 of Racah. ' The eigen-
values of e4, t, 5, and e6, unlike those for e2 and e3, can be
easily expressed in terms of Casimir's operators 6 for
Gs and Rz. In order, they are 5G(Rz) 3E (for —e4),
12G(Gs) —10G(Rz) (for ep), and —',L(L+1)—12G(Gs)
(for es). The parameters E;associated with the operators
e; (z)4) are related to the parameters n, P, and y of
Rajnak and Wybourne' through the identity

E'$5G (Rz) —3Nj+E'L12G (Gs) —10G(Rz)j
+EPPl.(I.+1) 12G(Gs))—

=—~1.(Z,+1)+PG(G,)+~G(Rz)+S.

This corresponds to using

as the total two-particle part of the effective electro-
static Hamiltonian for the configuration f~

III. COUPLED TENSORS

The tensors v&'~, v('&, and v"~ are the basic operators
for the construction of the linear combinations t; of
the V(kk'k"). They comprise 27 components in all,
and transform according to the representations 8'U
= (200)(20). Since the t; must be totally symmetric
under the interchange of any two electrons, they must
all correspond to the representation $3) of the unitary
group U2z. The branching rules for the reduction of
several representations P.$ of Usz to representations W
of Ez are given in Table I. They can be unambiguously
determined by dimensional considerations and the
knowledge that L21 must contain the representations
associated with the completely symmetric operators
e; (0(i(3).The dimensions DP.j are included in the
table.
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TABLE I. Branching rules for the reduction U» ~R7.

DLQ

$1j (200)
378 L2j (000) (200) (22Q) (4PP)
351 $11$ (110)(310)

3654 L3j (000) (200)'(220) (222) (310)(400) (420) (600)
6552 $21j (110)(200)'(211)(22P) (310)s(321)(400) (42P) (510)
2925 L111j (110)(211)(31Q) (33P) (411)

TABLE II. Description of operators.

t3

t4

t6

tv

te

(000) (00)0
(220) (22)0
(222) (00)0
(222) (40)0
(400) (40)0
(420) (22)0
(420) (40)0
(420) (42)0
(600) (60)0

To 6nd the group-theoretical descriptions of the
operators t;, we have only to pick out the representa-
tions W that occur in [3) and that at the same time
contain a representation DK of E3 for which K=o.
Nine such representations exist; they are listed with
the accompanying representations U of 62 in Table II.
Each t; is a linear combination of the V(kk'k"). Since
we have given ten possible triads (kk'k") in Sec. I,
it might appear that Table II is incomplete. However,
V(226) is identically zero, since the triangular condition
on k, k', and k" is not satisfied. This fact, which reduces
the number of three-particle parameters to at most
nine, seems to have been overlooked in previous work.

The actual construction of the operators t, involves
coupling coeKcients in which representations of U27,

~7, 62, R3, and E2 appear. For some representations U,
a given representation of R3 occasionally occurs more
than once; the additional symbol z is then required to
make the designation unambiguous. The operator

t(WU) =Q([1)(200)(20)kq [1)(200)(20)k'q'~
[2)W'U'r'k" q") ([2)W'U—'r'k", q";—
[1](200) (20)k"q"

i [3)WUOO)

X (~ (s)) (t), (s')) .(g) „(s")).

where the sum runs over H/"U'v-'kk'k"qq'q", is the
scalar component of a generalized tensor transforming
as WU. On factoring out the vector-coupling (VC)
coefficients and summing over h/i& j, it becomes

t(WU) =g(kk'k"
~
WU) V(kk k"),

where the sum runs over even nonzero values of k, k',

and k", and where

(kk'k"
i WU)

([1)(200) (20)k

TAnLE III. The coeKcients (W'U'h" + (200) (20)h"
~
WUQ)

for W'A (400).

S"U'

(200) (20)

(220) (20)

(220) (21)

(220) (22)

(000) (00)
(220) (22)
(400) (40)
(220) (22)
(222) (00)
(222) (40)
(420) (22)
(420) (40)
(220) (22)
(222) (40)
(420) (22)
(420) (40)
(220) (22)
222) (40)
420) (22)

(420) (40)
(420) (42)

2

(5/27)' 3
—(55/126)I/2
(143/378) I/~

(5/2o16) I/2
—(5/27)~'

(715/21168)I/2

(325/784) I 2
—(143/784)»2

(100/693) I/2

(26/147) I/2
—(416/24255) I/2

(130/441) I/2

(325/1056) I/»
—(1/112) '/2

(7/2640)'
(1/168O) I/2

(17/35) IJ2

—(8/77)'/'—(130/231) I/2

(1/1694)»2
(1/3) 1/2

—(325/6468)I/2
(585/5929) I 2

(585/2156)I/3
(325/1386) I 2

—(16/147) '/3
-(676/24255)I/2

-(8O/441) I/2

(325/2178) '/2

(361/924)1 3

(7/5445) I 2
—(361/13860)1 2

—(51/385) I/2

(13/27) I/.

(91/198)I 3

(35/594) '/2

—(91/34848) I/~
—(13/27) I/3

(25/4752)I/3—(845/1936) I/~
—(5/176) I/3

0
0
0
0

(5525/34848)' 2

—(119/528) I/2

(119/87120)1 2

(119/7920)~—(21/55) I/2

The part that remains can be easily calculated in this
case by means of the Wigner-Eckart theorem. In this
way we get, for k, k' and k" even,

((200) (20)k+ (200) (20)k'
i
(200) (20)k")

= (7/55[k"))"'(f'(200) (20)'k)[ V(s')
(( f'(200) (20)'k")

((200) (20)k+ (200) (20)k
I
(220) Uk )

= (5/12[k"))"'(f'(200) (20)'k[i V&'&ii f'(220) U'k"),

((200) (20)k+ (200) (20)k'
~
(400) (40)r'k")

= (7/5[k")) (f (220)(20) k~(V&"')~~f (222) (40)r' k").

The reduced matrix elements of V(s') can be readily
obtained by using the relation V(s') =[k')'(sU(s') and
referring to the tables of Nielson and Roster. " The

"C. W. Nielson and G. F. Koster, Spectroscojic Coegcqents for
the p", d", attd f" ConJt gstrateons (MIT Press, Cambridge,
Massachusetts, 1963).

+[1)(200) (20)k'
i
[2)W'U' 'k")

X([2)W'U' 'k"+[1)(200)(20)k"
~
[3)WUO). (2)

The operators t; are identified with the t (WU) according
to the listing in Table II. Thus tr=—t((420) (40)).

To ftnd the coefficients (kk'k"
~
WU), the two coupling

co«cients of Eq. (2) must be calculated. It is con-
venient to use a theorem of Racah' to make the
factorization

([2)W'U'r'k "+[1)(200) (20)k" [ [3)WUO)
= ([2]W'+ [1](200)(

[3]W)'
X (W'U'r'k"+ (200) (20)k"

i WUO).

The factor ([1)(200)+[1)(200)
~
[2)W'), which arises

when an analogous decomposition is carried out for the
other coupling coeiTicient, can be taken equal to +1.
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TABL.E IV. The coefEcients ((400) (40)rk"+ (200) (20)k"
I
W UO).

TVU

(400) (40)
(420) (22)
(420) (40)
(420) (42)
(600) (60)

(1j./225)»2

(11/63) 'i2

—(1849/6300) 'i'
—(51/700) 'i'

(646/1575) '~'

(1/75)'"
—(16/189)'i2

(16384/51975)'~2
—(748/1575)'~2

(646/5775)'i2

—(238/825)»2
(34/297) '~2

(136/675) '~2

(32/225) '~'

(57/225) '~2

(76/279)'i'
(133/279) 'i2

(532/3069) '~2

0
—(238/3069) 'i2

—(3213/8525) '&2

(51/341)'i2
—(51/3100) '~2

—(31/100) '~2

—(114/775)'ir

numerical constants in the above equations are deter-
mined by insisting that the coefficients be normalized
according to

Z (W UrK
I
W1U1&1K1+W2 U2&2K2)

X (W1U1r1K1+W2Usr2K2
I
W'U'r'K)

=5(W,W')5(U;U')8(, ,"),
where the sum runs over UyU2~y~2EyE2.

The coefFicients (W'U'r'k "+(200) (20)k"
I
WUO) are

rather more difficult to evaluate, since some of them
involve representations t/t/" and U that do not occur in

the classification of the states of f".To deal with them,
we adapt the projection method used by Nutter and
Nielson for fractional parentage coeKcients. "Taking
the labels a and b to refer to the two parts H/" U'g'k"

and (200)(20)k" of a coupled system, we write

I
WUO) = Q (W'U'r'k"+(200)(20)k" I'WUO)

Ui ~I yiI

X I
tV U'r'k", (200) (20)k", 0)

and solve for the coefficients by operating 6rst with

SG(W) —SG(W') —SG (200)—4G(U)
+4G(U')+4G(20) (3)

and then with the equivalent operator 2(V,&2& Vs@&).

On equating the two results, a system of simultaneous

linear equations is obtained from which the coefficients

can be calculated. This is the immediate extension to
the group R7 of the method of Stevens for calculating

VC coeKcients. "
A difficulty arises in using (V, &2& Vs&2&). Its matrix

elements are given by

(W'U'k", (200)(20)k", Ol (V. V, &~ ) IW'U"r"k',

(200)(20)k', 0)
= —(I k']I k"g)-1&2(W'U'. 'k"IIV& &IIW'U"r"k )

X &(200) (2o)k"
II V"'ll (200) (20)k'),

but the reduced matrix elements for W'=(400) do

not appear in the tables of Nielson and Koster. '0

Fortunately, c((40) (10)(40)), the number of times the

"P. Nutter and C. Nielson, Raytheon Technical Memorandum,
T-331, 1963 (unpublished).

nK. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209
(1952).

(000)
(220)
(222)
(400)
(420)
(600)

(000)

0
0
0
0
0
0

W
(200)

(1/5)'
0

(5/11)'~
0
0

(220)

(4/5)'~

0
(5/9)'"

(400)

0
0
0

(6/11)'&
2/3

»]3. R. Judd, Operator Techrl~gees irI Atomic Spectroscopy
(Mcoraw-Hill Book Company, Inc. , ¹wYork, 1963).

identity representation occurs in the triple Kronecker
product (40)X(10)X(40), is unity. Moreover, (400)
contains the sole representation (40) of G2. Hence, we
can write

((400) U' 'k"
II

V&'&
ll (400) U" "k')

=~ ((222) (40)r'k"
II v&2&ll (222) (40)r"k').

The constant A is immediately found to be —2 by
picking out the states of highest weight and using the
fact that in terms of Weyl s operators B; for Ev, we
have Vs"& = (Pt—H2 —Hs)6 '"."

An accidental degeneracy occurs for W'= (400). For
both pairs (420) (40) and (600) (60) of WU, the expres-
sion (3) is 8/3. To separate the coefF&cients, we extend
the projection method to 62. As equivalent operators,
we use (V, &'& Vs&'&) and

2G(U) —2G(U') —2G(20)+k" (k"+1)/28.

By these techniques, the required coupling coe%cients
(W'U'r'k"+ (200) (20)k"

I WUO) can be found. They
are assembled in Tables III and IV.

The factor (L3jWI I
2jW'+I 1j(200)) remains. It

can be calculated for the 8"' of interest by demanding
that (kk'k" IWU) be symmetric with respect to the
interchange of any two of the triad kk'k". The results
are set out in Table V. The (kk'k"

I WU) themselves are
given in Table VI. This table completely defines the
operators f;. The rows are orthonormal in the sense that

g ~(kk'k") (kk'k"
I WU) (kk'k"

I
W'U')

=5(WW')8(UU'),

where the sum runs over the nine distinct triads

TABLE V. The coefiicients ($3jW ( $2$W'+Dg(200)).



B. R. JUDD

TAsr. E VI. The coefficients (kk'k" ~WU).

(000) (00)
(220) (22)
(222) (00)
{222)(40)
(400) (40)
(420) (22)
(420) (40)
(420) (42)
(600) (60}

{222}
—(11/1134)'/'

(605/5292) '/'

(32761/889056) '/'

{3575/889056)I/2
—(17303/396900) '~'

—(1573/8232)'/'
(264407/823200)'~'
(21879/274400)'i'

—(46189/231525}»'

{224}

(4/189) '&

—(6760/43659) '/'

(33/13/2)'/'
—(325/37044) '/'

{416/33075)'/'
—(15028/305613)'~'

(28717/2778300) '/'
—(37349/926100)'"
—(8398/694575)'/'

{kk'k"}
{244}

(1/847) '/2

—(1805/391314)'/'
—(4/33957) '/'

—{54925/373527) '/'
—(117/296450) I/~

(4693/12326391}i/&
—(1273597/28014525)'/'

(849524/9338175) '/'
—{134368/3112725)'/'

{246}

(26/3267) '&
—(4160/754677)»

—(13/264)»2
(625/26136) '&

(256/571725)'/'
(1568/107811)'/2

{841/1960200)'&
—(17/653400) '/'

—(15827/245025}1/2

(000) (00)
(220) (22)
(222) (00)
{222)(40}
(400) (40)
(420) (22)
(420}{40)
(420) (42)
(600) (60)

{444}
—(6877/139755) U'

(55016/717409) 'i'

(49972/622545)'"
{92480/1369599)'/'
(178802/978285)»'

—{297680/5021863)»'
—('719104/2282665) '/'

—(73644/2282665)'/'
—(2584/18865) 'i'

{446}

{117/1331)'/'
—(195/204974)»'

(52/1089) '/'

(529/11979)»'
—(2025/18634) 1/2

—(49/395307)»
—{1369/35937)'/'

{68/11979)»2
0

{266}

{2275/19602)»2
{1625/143748)«2
(325/199584) 'i'

(6889/2195424)»'
71/198

—(1/223608) '~'

(625/81312)»2
(1377/27104}'/'

(323/22869)»'

{466}

(12376/179685)'/'
(88400/1185921)'/'

—(442/12705)'i'
—(10880/251559)»2
—(1088/179685)'&i

—(174080/8301447)i&i
—(8704/3773385)'&i

—(103058/1257795) &/2

—(19/31185)»2

{666}

(4199/539055}1/~
(29393/790614) '/2

(205751/784080)»'
—(79135/1724976) '/'

(2261/1078110)'/2
{79135/175692)'/'
(15827/319440)'/'

—(8379/106480) '/'
—(98/1485) '~'

It foHows that for the complete scalar t~,

&,= (28/1485)'~' PLk/Lk'jX(kk' 3)

where the sum runs over even nonzero values of k and 4'.

TABLE VII. The numbers ii(kk'k").

{kk'k"}
{222}
{224}
{244}
{246}
{444}

{266}
{466}
{666}

N(kk'k")

1
3
3
6
1
3
3
3
1

IV. MATRIX ELEMENTS

By means of Eq. (1) and Table VI, the matrix
elements of the operators t; can be rapidly expressed in
terms of those for V(kk'k"). The latter were very
kindly supplied by Dr. K. Rajnak, who had already
calculated them as an intermediate step to ending the

(kk'k"), ea.ch with associated degeneracy n (kk'k").
For convenience, n(kk'k") is listed in Table VII.

It is interesting to note that

(kk'k" [(000)(00))

k
= (28+jLk'jLk"j/1485) i/s

3 3 3

matrix elements of X(kk', l'). s The results for the /;
are given in Table VIII; the numbers Il are multiplica-
tive constants common to all members of a column.
The abbreviated notation of Nielson and Koster" is
used to label the states ik and 1t

' of f'; for example, 45
stands for (111)(00)'5,and 2D1 for (210)(20)'D.

Table VIII is extremely rich in examples of a group-
theoretical nature. Every zero corresponds to the ab-
sence of an identity representation in a triple Kronecker
product, that is, to the vanishing of c(WW'W") or
c{PP'fj").For example, the equation c((11)(22) (21))=0 implies (2H1~ts~2H2)=0, since 2&1, /s, and 2&2
correspond to the representations (11), (22), and (21)
of G2. When an identity representation occurs once in
a triple Kronecker product, the signer-Eckart theorem
can often be applied to relate the matrix elements of
di6erent operators. For example, the equations

»4{26)"'(f'(2«)(11)'Lll.lf'(»0) «1) L)
= 22 (35)'/'(f'(210) (11)'L

~
&,

~

fs (210)(11)sL)
=5 (13)'/ (f'(210) (11)'L

~
es

~
f'(210) (11)sL)

hold for both values of L (1 or 5) because /&, /s, and cs
all corresPond to the rePresentation (22), for which
c((11)(22) (11))=1

Sometimes the numbers c{WW'W") and c(I/f j'U")
exceed unity. Instead of being simply proportional the
matrix elements of operators belonging to the same
representation are now related by linear equations. For
example, c({21)(40) (21))= 2. For the operator es
Lwhich corresponds to U= (40)j, Racah' introduced the
quantities ((21)

~
Xi{L)

~
(21)) and ((21) ) Xs(L) ( (21)), in

terms of which the matrix elements of e2 can be ex-
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TABLE VIII. The matrix elements (g ~
t; ~g').

4S 4S
4D 4D
4F 4F
4G 4G
4I 4I
2E 2P
2Di 2D1

2D2
2D2 2D2
2F1 2F1

2F2
2F2 2F2
2Gi 2G1

2G2
2G2 2G2
2H1 2H1

2H2
2H2 2H2
2I 2I2' 2E
2L, 2I

6
6
6
6
6—1—1
0—1—15
0—1—1
0

—1
0

—1—1—1

0
1694

0
616—1078—385—319

36(33)»—423
0

231(22)»—21—116
3 (4290)»

11
105

0—399
203
56

336

288
8—72
8
8—48

32
0—3
0
0—3

32
0—3

0—3
32—3—3

t; t3

F (33/6860)'~' (2)»/2156 (6720)» 1/56 (15015)»

0—8008
0

7280—1960
0—1144

468 (33)'/'
3237

0
0

1365
1040—24 (4290)»—2475

0
84(455)»—1995—280

1827—525

0
0
0
0
0
0

286
156(33)1/2

—377
0
0—455—260—8 (4290)'"

561
0—28 (455) '~'

—49
70

315—245

0
0
0
0
0—30030

12870—624(33)'/2—1677
0
0

1365
4680—52 (4290)»
1221
8190

0—2709—8190—252
1260

t6

3/49 (17160)» 1/924 (455)» 1//168 (5005)'/'

0
0
0
0
0
0

10296
156(33)'/'—1833

0
0—1365—9360—8 (4290)»

1947
0

252 (455)»
567

2520
21—315

t8 t9

(16336320)» 1

0 0
0 0
0 0
0 0
0 0
0 0
Oj 0
0 0

4641 0
0 0
0 0—3315 0
0 0
0 0

1309 0
0 0
0 0—1071 0
0 0—1071 0

945 0

pressed for any representation (21) in the f shell. These
quantities can equally well serve as suitable basic sets
for the operators t4, t5, and tz, all of which correspond
to (40). Thus we find

112(f'(210)(21)'L
I t4I f'(210) (21)'L)

= (15/1001)"'((21)
I xi(L) I (21))

+3(21/715)"'((21)
I
Xs(L)

I (21))

112(5005)'~'(f'(210) (21)'L
I tz I f'(210) (21)'L)

= —3 ((21) I Xi(L) I (21))—7 ((21) I
Xs (L) I (21))

for all L.

V. PARAMETERS

The methods of the previous section can be extended
to solve the parametrization problem raised in Sec. II.
To begin with, we note that c(WW'(600))=0 for all
representations t/t/' and t/t/"' that occur in the classification
of the f-electron states. It follows that the matrix
elements of tg are always null, and hence this operator
can be dropped from the effective Hamiltonian.
Secondly, c(WW'(400)) is zero for all pairs W and W'

that occur in f' except one, namely that defined by
W=W'= (210). In this case it is unity. Hence the
matrix elements of ts Lwhich corresponds to (400)) are
proportional to those of e2. From Table VIII, the exact
relationship is found to be

14(4290)"'(f'll
I
ts I

f'p') = —(f'll
I
es

I
f'p') .

Since t5 is a three-particle operator while e2 is a two-
particle operator, the generalization to fN runs

14(4290)'"(f +
I ts I

f"+')= —(&—2) (f"+
I
cs

I
f"+') .

It is clear that the effect of t5 in the effective Hamil-

tonian is completely absorbed by the parameter E'
associated with the operator e2.

The matrix elements of the complete scalar t~ are
diagonal with respect to all quantum numbers. For f',
they take on just three values, corresponding to
W= (111), (100), and (210). However, the two-particle
effective Hamiltonian already contains three independ-
ent completely scalar operators, namely eo, e~, and e4.
It follows that the effect of t& can be absorbed by the
parameters E', E', and E'. (In actual fact, E' and E'
suffice. ) Thus ti, like ts, can be dropped from the
effective Hamiltonian.

Although this is as far as we can go on strictly general
grounds, there remains the possibility that other
operators are dispensable. This would be the case if the
matrix elements of t2 were reproducible by some com-
bination of those of es and es (which correspond to the
same WU as ts) for all the states of f', or if the matrix
elements of ta could be constructed from those of eo, e~,
e4, and es I

which, like ts, correspond to U= (00)j for
all the states of f'. Detailed analyses show that fortu-
itous simplifications such as these do not occur. Nor
does any linear relationship exist for all the states of f'
between matrix elements of t4, tz, and e~, although the
operators all correspond to U= (40). The actual
numerical values of the matrix elements of the operators
t; do not permit us to go beyond what is allowed on
general group-theoretical principles. We conclude
that the effect of the three-particle operators can be
adequately represented by the addition of

tsT'+tsT'+t4T'+tsT'+tzTz+tsjs

to the two-particle Hamiltonian, provided the param-
eters E' and T' are regarded as freely adjustable. Thus
only six, and not ten, additional parameters are required
to describe the effect of the three-particle operators.
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It is extremely likely that this is the reason why
Rajnak found that more than Ave additional parameters
led to little improvement in the fit between theory and
experiment for Pr In. The objection that she reached
the limit with Ave rather than six parameters largely
disappears when it is noticed that the upper 'F multiplet
has not been observed experimentally. Being essentially
of a lower seniority than all the others, it is quite
likely that its future inclusion in the analysis will
demand a sixth additional parameter. However, too
much weight should not be put on arguments of this
kind, since the residual discrepancies between experi-
ment and theory are of the same order of magnitude as
neglected interactions, such as spin-spin and spin-orbit;
and what constitutes a meaningful improvement in
the 6t is not altogether clear.

To express the strengths of the operators X(kk', l'),
Rajnak introduced the parameters F'(ttk', t'). For
l'= 1 and 3, there are nine of them in all. Unfortunately,
they cannot be unambiguously related to the param-
eters T'. This is because the operators X(kk', P), on
close examination, turn out to be related through the
equation

11X(22,1)+24X(22,3)+3(22)'t'X(42, 1)= 66X(42,3) .

They are therefore not linearly independent, and a set
of T; values cannot imply a unique set of F (Ut', P) But.
we can, of course, represent any set of F(kk', t') by
means of the T;, since the operators t; must accomrno-
date all special cases. For the final column of Table II
of Rajnak, s we obtain (in cm ') Ts=391, Ps=35,
T4=86, T6= —262, T7=320, and T8=316.These num-
bers should be useful as starting values for more elabo-
rate calculations.

VI. SENIORITY

The treatment so far has been con6ned to the
configuration f' The straigh. tforward way to find the
matrix elements of the operators t; for any configuration
f~ is to set up a chain calculation with f' as its starting
point. The matrix elements for f~ are related to those
of f~ ' by means of the formula

Tasz,x IX. The numbers c(WW'(222)).

W (000) (100) (110)

(000) 0 0 0
(100) 0 0 0
(110) 0 0 0
(200) 0 0 0
(111) 0 0
(210) 0 0 0
(211) 0 0 1
(220) 0 0 0
(221) 0
(222) 1 1 1

W
(200) (111) (210)

0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 2
1

(211) (220)

0 0
0 0
1 0
0 1
1 p
1 1
2 1
1 1
2 1

1

(221) (222)

0
1 1

1
1 1

1
2 1
2

1
2 1
1

Kronecker products listed by Nutter" were extremely
useful in constructing these tables. Their function is to
allow us to extend the arguments used in Sec. IV to
relate the matrix elements in different configurations.

TxnLz X. The numbers c(WW'(420)).

W (000) (100) (110) (200)

(000) 0 0 0 0
(100) 0 0 0 0
(110) 0 0 0 0
(200) 0 0 0 0
(111) 0 0 0 0
(210) 0 0 0 0
(211) 0 0 0 0
(220) 0 0 0 1
(221) 0 0 0 0
(222) 0 0 0 0

W'

(111) (210)

0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0
0 1
0 0

(211) (220) (221) (222)

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
1 1 1 0
1 1 0 1

0 2 1
0 1 1 1

For example, the fact that c((21)(21)(42))=1 implies
that the number A in the equation

(f~W(21)SL
I ts I

f~W'(21)SI)
=2 (f'(210) (21)SL

I
ts I f'(210) (21)SL)

is independent of I.. A detailed description of such
methods is given elsewhere. "

No use has yet been made of the idea of seniority or
of its group-theoretical counterpart, symplectic sym-
metry. It might seem scarcely worthwhile to pursue
the subject, since the basic operators v&'&, v~4), and

TABLE XI. The numbers c(UU'(42)).

where the sum runs over 4 and O'. The fractional
parentage coefficients (+II%) and (O'III') have been
tabulated by Nielson and Koster. "Equation (4) is the
extension to three-particle operators of Eq. (1) of
Racah. e

Although Eq. (4) completely solves the problem
of ending the matrix elements of the operators t;,
it is of great interest to investigate the implications of
group theory. Many of the numbers c(UU'U") and
c(WW'W") that are required have already been given
by Racah in his analysis of the operators e, ; those that
remain are set out in Tables IX, X, and XI. The

(00)
(10)
(11)
(20)
(21)
(30)
(22)
(31)
(40)

(00) (10)

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

(11) (20)

0 0
0 0
0 0
0 0
0 0
0 0
0 1

1
0 1

Ul

(21) (3o)

0 0
0 0
0 0
0 0
1 1
1 1
1 1
2 3
2 2

(22) (31) (40)

0 0 0
0 0 0
0 1 0
1 1 1
1 2 2
1 3 2
1 2 2
2 5 4
2 4 4

"P. 3. Nutter, Raytheon Technical Memorandum T-544,
1964 (unpublished).
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TABLE XII. Description of operators.

Q1
Q2

Q3

Q4
Qg

Q6
Q7

Qs

Qg

Qlp

Qj,p
Q1$
Q],4
Qxs

Qj6
Q1y
Q~
Qxo

Qyp

Qu
Qmg

Qgg

Qg4

Q2fv

Qgp

Qgy

Q28

Qpg

Qgp

(c)WU«K

(0000000) (000) (00)00
(1111000)(220) (22)00
(2200000) (000) (00)00
(2200000) (111)(00)00
(2200000) (220) (22)00
(2200000) (400) (40)00
(1111110)(222) (00)00
(1111110)(222) (40)00
(2211000)(111)(00)00
(2211000)(220) (22)00
(2211000)(222) (00)00
(2211000)(222)(40)00
(2211000)(311)(22)00
(2211000)(311)(40)00
(2211000)(321)(22)00
(2211000)(321)(40)00
(2211000)(420) (22)00
(2211000)(420) (40)00
(2211000)(420) (42)00
(3300000)(000)(00)00
(3300000)(220)(22)00
(3300000) (222) (00)00
(3300000) (222) (40)00
(3300000) (311)(22)00
(3300000)(311)(40)00
(3300000)(400)(40)00
(3300000) (420) (22)00
(3300000) (420) (40)00
(3300000) (420) (42)00
(3300000)(600)(60)00

v"I from which the t; are constructed do not span a
complete representation of the symplectic group Spi4.
Hence it appears that we cannot assign irreducible
representations (c) of Spi4 to our operators. However,
it is only necessary that the matrix elements for a given
t; within f' be proportional to those of an operator of
well-dined symplectic symmetry for us to enjoy the
advantages of this symmetry throughout the entire f
shell. Even if a direct proportionality of this kind is
unobtainable, there is always the possibility that two or
more operators of well-defined symplectic symmetry
can be found to reproduce the matrix elements of the
given operator t;.

To this end, we introduce the three-particle operators

(««' «") (k k' k")
W(-"" kk'k") =XI

4r ~' ~") Eg g' g")

y (~ (gs)) (rv, , (s's')) .(rv „„(a"s")) .

where the sum runs over ~z'~"gq'q" and h&i&j.
The amplitude of the double tensors w'"~) is de6ned by

(sl)~wi""&j(sl) = P«]'I Lk]'i'.

The tensors w&"s& for «+k even transform according to
the representation (1100000) of Spi4."Just as we found
the permissible representations S" and U to which the
linear combinations t; of the V(kk'k") belong, we may
find the representations (o) of Spi4 to which the linear
combinations u; of the W(««V', kk'k") belong. We
impose the condition that «+k, «'+k', and «"+k"

T«nLE XIII. The numbers c((v) (v') (2211000)).

0 1 2 3 4 5 6 7

T«nLE XIV. The numbers c((v) (v') (1111110)).

0 1 2 3 4 5 6

be even. The branching rules U27 ~R7 are replaced by
Use~ Spi4. The complete tensorial character of the u;
may be found by studying the reduction SP&4-+ SU«
&(R7, which separates out the spin and orbital structure.
Representations of SUg are written D„.The descriptions
of the operators I; are given in Table XII. There are
30 of them; this number coincides with the number of
possible operators W(««V', kk'k") that can be con-
structed from the wi"'& (with «+k even) without
violating any triangular conditions.

At 6rst sight, Table XII appears discouraging, since
every WU used in labeling the t; (i=2, 3, 4, 6, 7, 8)
occurs against at least two diferent operators I;. This
seems to imply that every t; has erst to be expressed as
a linear combination of the I;before useful applications
can be made. However, the irreducible representations
(0) used to describe the states of fN are all of the type
(11 ~ 10 0), in which v symbols 1 and 7—v symbols 0
appear. /Such a representation is conveniently ab-
breviated to (v).j It turns out that c((v) (v') (3300000))
=0 for all v and v'. Hence the 11operators u, (20&i&30)
all have zero matrix elements, and can be ignored.
Thus the matrix elements of t6, t7, and ts are propor-
tional to those of N~q, njs, and N~g, since these are the
only three u, remaining that correspond to W= (420).
I"or calculating their matrix elements, the operators t6,
tv, and t8 can therefore be regarded as belonging to the
representation (2211000) of Spq4. The numbers c((v) (v')
(2211000)) are given in Table XIII.

The representation (222), corresponding to the
operators t3 and t4, occurs in the decomposition of both
(1111110)and (2211000). The situation for ts is worse,
since (220) occurs in the decomposition of three
representations (0). In these cases, the operators



B. R. JUD D

themselves must be broken down to determine how
their matrix elements stand with respect to seniority.
In doing this, it is convenient to introduce the concept
of quasispin, this being the most natural way to study
the dependence of the matrix elements on E. For
completeness, c((&&) (&&') (1111110)) is given at this
point in Table XIV.

:This result follows from an application of the Wi'gner-

Eckart theorem to quasispin; a detailed account is
given in Ref. 7. It may happen, of course, that a given
t; does not correspond to a unique rank E. In this case,
it must be decomposed into component operators with
well-dined E values.

To begin the program of assigning ranks E to the
operators t;, we use the fact that for f electrons the
X&x"~& with E+&&+k odd can be regarded as the
infinitesimal operators of the group 8~8. Furthermore,
the states of f~ with even E form the basis for the
irreducible representation (s, s

i. s, is); those with
odd 7 span (s, s . .s, —s). These results are proved
elsewhere. ' It can also be shown that

(i i l ~l)X(l 1. . . 1. yl)
= (p p)+ (110 0)+ (11110 0)+

+(11 1+1), (6)

in which either the upper or the lower sign is taken
throughout. If we construct operators that transform
according to irreducible representations (w) of Res,
only those corresponding to the representations on the
right-hand side of Eq. (6) have nonzero matrix elements.
Now X&"'& and X&'"~& (with «+k odd) form the

VII. QUASISPIN

The theory of quasispin can be based on the triple
tensor operators a«"), which are related to the usual
creation and annihilation operators by the equations

~&m, mg
= d'm, mg p

(e«) — t

(qsl) ( $) s+l+mtr+m)+
m~ m$ ~

The coupled tensors X&x"s&= (a«"&a«'&) & "~& contain
as special cases the second-quantized forms for the
double tensors P;(w&"~&);. For examPle, S=—lsI lf'ts

X X«"&. The quantity ——'I lg"'X&"'& is defined as the
quasispin Q. Its quantum numbers (Q,M&&) can be
used to label eigenfunctions, and it turns out that for
the states of P with seniority e,

Q= (2l+1—t&)/2, M &&= —(2t+1—E)/2.

If we know that one of our operators t; behaves as a
tensor of rank E with respect to quasispin, then the
dependence on S of its matrix elements between states
of fixed quasispin Q and Q is contained in the expression

Q E Q'
(—1)~"'I

k —M&& 0 Mq)

TABLE XV. Branching rules for the reduction 228 ~ SU2)(SP14.

(0 0)
(110 0)

(11110 ~ 0)

(1111110 0)

'(0000000)
'(2oooooo)
'(0000000)(1100000)
'(0000000)(1100000)(2200000)
'(1100000)(2000000) (2110000)
'(0000000) (1100000)(1111000)
'(2000000) (2110000)(2220000)
'(0000000) (2200000) (1100000)'

' (1111000)(2110000)(2211000)
' (1100000)(2000000) (2110000)

' (1111000)(2111100)
'(0000000) (1100000)(1111000)(1111110)

operators of the subgroup SUsXSpi4 of Rss. Hence we
have only to And the decomposition of those representa-
tions of Rss on the right in Eq. (6) into representations
of SUsXSPl4 to obtain the association between quasi-
spin and symplectic symmetry. In the quasispin
formalism, an r-particle operator is expressed as sums
over 2r-fold products of the operators a«"). The 28
components of a«"& transform like (10 0) of Rss, so
it is clear that for three-particle operators we may
restrict our attention to representations (11 10 0)
which contain no more than six symbols 1.The branch-
ing rules for the relevant representations of 828 are
given in Table XV. The quasispin multiplicity is
represented by a superscript to the representations
(0) of Spl4.

VIG. OPERATORS

"G.Rscsh, Phys. Rev. 63, 367 (1943).

It can be seen from Table XV that the representation
(2211000) of SPl4 occurs once only, and with a quasispin
rank. E of 1. It follows that the dependence of t6, t7,
and ts on X is contained in the expression (5) if we put
K=1.Thus, we obtain

(f &+It'If~&+') =E(7 T&T)/(7 ~)j—(f"s+It'If"s+')
(f~.+It, I

f~.—2e') =I-(16—.—Z)
X (&+2 i&)/4:(g t&)ji"—(f"&&+

I
t,

I

—f"&& N"), (7)—
where, in both equations, i = 6, 7, or 8. These equations
completely solve the problem of the X dependence of
the matrix elements of t6, t7, and t8 taken between states
of given seniority. The coeKcients in the above equa-
tions are characteristic of E= 1 tensors and are identical
to those in Eqs. (69b) and (67) of Racah, " which
correspond to the component '(1100000) in the reduc-
tion of (110. 0) of Rss.

The operators ts and t4 correspond to W= (222), and,
as mentioned in Sec. VI, they share the characteristics
of (2211000) and (1111110).For f', their only nonzero
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TABLE XVI. The matrix elements (g (t P') and (f (t;"(P'). The singly primed operators correspond to quasispin %=3; the doubly
primed to E= i. Matrix elements for t2' and t~" are broken up into contributions from the two-particle part and the three-particle part,
given in that order.

4S
4D
4.F

4I
2P
2D1

2D2
2F1

2F2
2Gi

2G2
2Hi

2H2
2I
2E
2L

yf

4S
4D
4F

4I
2P
2D1
2D2
2D2
2Fi
2F2
2F2
2Gi
2G2
2G2
2H1
2H2
2H2
2I
2E
2I.

(0lt 'l0')

72
2—18
2
2—48

32
0
3
0
0—3

32
0—3—48
0—3

32—3

(u It "Ip')
—288—8

72—8—8—48
32
0—3
0
0—3

32
0—3

48
0—3

32—3—3

(alt 'l0')

0—2002
0

1820—490
0

1144
468 (33)'~'

3237
0
0

1365
1040—24 (4290)'~'—2475

0
84 (455) '~'
—1995—280

1827—525

(0 I
t4"

I
0')

0
8008

0—7280
1960

0
:—1144

468(33)'"
3237

0
0

1365
1040—24 (4290)'~'—2475

0
84(455)'"—1995—280

1827—525

9 I't 'l0')

0+0—231+77
0+0—84+28

147—49
231—77
165—55

(—36+12)(33)'~
171—57

0+0
(63+21) (22) '~'

—189+63
60—20

(—3+1)(4290)'~'—165+55—63+21
0+0

315—105—105+35
42 —14—126+42

(0 I

tm"
I
0')

0+0—616—308
0+0—224 —112

392+196
616—112

440—40
(—96+432/11) (33)'~'

456+468/11
0+0

(168—84) (22)')'—504+4368/11
160—160/11

(—8+36/11) (4290)!i'—440+320—168+336/11
0+0

840—2940//11—280+280/11
112—1484/11—336—588/11

matrix elements are diagonal with respect to (111)and
(210). Moreover

c((111)(111)(222))=c((210)(210)(222)) = 1.

So, in constructing other sets of matrix elements corre-
sponding to (222), we have only one useful parameter-
the magnitude of the matrix elements of the quartets
relative to those of the doublets. A particular value of
this parameter will give the matrix elements of N7,

corresponding to (1111110)(222)(00). Now the grand-
parents of '0 of f' are 'I, 'I, 'E 'L, and the two 'H
terms of f' But '0 h.as a seniority of 5, for which

c((5)(5) (1111110))=0; hence, the matrix element
('0

~
ur ~'0) must be zero. This condition can be used to

fix the parameter in question and thus determine the
matrix elements of ur for f' They are ta.bulated with a
convenient normalization under the beading Q ~ts'~P')
in Table XVI.The matrix elements of N~~, corresponding
to (2211000)(222) (00), are easily obtained (apart from
an arbitrary normalization) by interpreting the orthog-
onality of functions corresponding to (2211000) and
(1111110) in terms of matrix elements. They are
entered in Table XVI under the heading (It ~ts" ~p').
A precisely similar analysis can be performed for t4,.
the entries in Table XVI under t4' and t4" correspond to
(o)= (1111110) and (2211000), respectively. The
equations

40(105)'"ts= 8ts' —3ts",
280(15015)"t4= St4'—3t4", (8)

decompose t'3 and t4 into parts that correspond to
(1111110)and (2211000). From Table XV, we see that
(1111110) is associated with the unique quasispin
E'=3; and we have already found that (2211000)
corresponds to K=1. The dependences on X of the

matrix elements of the component parts of t3 and t4,
taken between states of given seniority, are thus
completely determined. For our purposes, the primed
and doubly primed operators are closely enough defined
by the entries of Table XVI-and the knowledge that
they behave like three-particle operators. Equation (4)
can be used to construct their matrix elements for
states for which v&3.

There only remains ts, for which W= (220). This
operator is more complicated to treat than tg or t4, but
the general approach is similar. The only new feature is
that the representations (1111000) and (2200000)
)which both contain (220)j occur in the reduction of
(11110 0) of Res as well as (1111110 0). This
means that operators of well-defined E may comprise
both three-particle and two-particle parts. The final
result may be written in several diferent ways. The
most convenient appears to be

1400tsv2 = Sts' —3ts"+20ts'". (9)

In this equation, the operator t2' possesses a quasispin
of 3 and corresponds to (o.)= (1111000);the operator
t2" possesses a quasispin of 1 and corresponds to a
mixture of (1111000) and (2211000). The matrix
elements of ts' and ts" for f' are given in Table XVI;
each column has been broken down into contributions
from the two-particle part (listed 6rst) and the three-
particle part (listed after a plus or minus sign). To
construct the matrix elements of t~' and t~" for states
of fN for which e)3, we must use Eq. (4) for the
three-particle part and Eq. (1) of Racah' for the two-
particle part. At each stage of the chain calculation, the
two-particle parts cancel when the sum St2' —3t2" of
Eq. (9) is performed; but it is essential to preserve them
in order to generate sets of matrix elements correspond-
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ing to unique values of the quasispin E. The operator
t2"' is a three-particle operator whose matrix elements
for f' are identical to those of ea., hence,

(f"~it.'"If"~')=(&-2)(f"~leal f"~'). (10)

The quasispin of t2"' is ill defined, but since we may use
the tables of Nielson and Koster" to evaluate the
right-hand side of Eq. (10), this disadvantage is of no
practical importance. Moreover, if the T' and 8' are
treated as freely adjustable parameters, the effect of
t2'" can be absorbed into ee. There is thus no need to
evaluate the matrix elements of t2'" at all.

We conclude this section with an example of the
use of Eqs. (8) and (9). Suppose the diagonal matrix
element of ta is required for the term 'I (v=3) of f'.
We put Q=Q'=2 in expression (5), corresponding to
m=3. The ratio

r2 E 2l (2 E 2)

E1 0 —13 E2 0 —2)

is —2 for X=3 and —', for X=1. From Eqs. (8) and
Table XVI, we find

(f' &'Ilt&if'&4I)=i 8( 2)(2) 3(1/2)( 8)g/40(105)'~'
=—(420)—'~'.

IX. CONCLUSION

The main result is this: When configuration interac-
tion is extended from two-particle excitations to include
the interaction between fN and excited configurations
of the type f~+'(eV)+' the effect on the levels of fN

can be adequately represented by the addition to the
Hamiltonian of the six terms t,T' (i = 2, 3, 4, 6, 7, 8).
The T' are parameters, and the t; are three-particle
operators whose matrix elements for f' are given in
Table VIII. The dependence on E of matrix elements

involving states of given seniorities can be found from
Eqs. (7), (8), (9), and Table XVI. Equations (8)

and (9) can be regarded as the analogs of Racah's
decomposition

ea= (ca+0)—0,

which breaks e3 up into operators corresponding to
quasispins E= 2 and X=0, r'espectively.

i
The operator

e2 is a pure E=O operator, which accounts for the
simplicity of Eq. (73) of RacahP]

All parts of the operators t; that are not absorbed by
the e; possess odd quasispin. For a half-filled shell,

Mo ——0, and the 3-j symbol of (5) vanishes if Q+Q' is
even. The Coulomb interaction within the half-filled
shell leads to states p which are mixtures either of Q
odd or of Q even. r It follows that all matrix elements of
the t; not absorbed by the e; are zero if diagonal with
respect to qk In other words, there is no need to consider
any three-particle operators at all for fr, provided the
configuration is close to Russell-Saunders coupling and
that their effect is suKciently small that matrix elements
off-diagonal in p can be neglected.

The methods described above can be extended to
other configurations of the type P. An analysis by
Feneuille" indicates that for d~, four three-particle
operators t; can be constructed, corresponding to the
representations (00), (22), (42), and (60) of Re. The
first can be absorbed into coexisting two-particle
operators, and the last ignored because its matrix
elements are all null. Only two parameters are thus
required to describe the three-particle operators in d~.
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