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an obvious absurdity. Thus, the argument is com-
pleted. The only solution of Eq. (14) is not a solution of
Eq. (12a) and thus Eqs. (12a) and (12b) have no
common solution.

mation on the basis of the WM paper. WM used the
Hartree, rather than the Hartree-Pock, approximation
and our proof in Sec. III indicates that the 6rst-order
functions for the two models are diferent.

IV. DISCUSSION

WM characterize their results for the energy of helium
through third order as "somewhat discouraging" and
a number of physicists have taken the WM calculation
to indicate that the Hartree-Pock approximation is a
poor zeroth-order approximation for perturbation
theory. We have shown, on the contrary, that eo con-
clusion may be drawn about the Hartree-Fock approxi-
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Symmetry Considerations in Pressure-Broadening Theory

A. BEN—REUVEN*

National Bnreats of Standards, Washsngton, D. C.
(Received 11 August 1965)

Symmetry properties of the Zwanzig-Pano relaxation matrix are studied. Its invariance under rotations
and inversion is proven for isotropic gases, to all orders in the gas density. Each multipole radiation operator
is confined to a distinct invariant subspace in the Liouville space of operators. These invariant subspaces
form the basis for the reduction of the relaxation matrix; therefore, the various multipole spectra are
broadened independently. Properties of the relaxation matrix under Liouville conjugation are studied, and
expressions are given relating matrix elements in which Liouville-conjugate pairs of vectors are involved.

1. INTRODUCTION
'
QRESSURE-broadening theory has progressed con-

siderably since the pioneering work of Anderson'
who erst introduced systematically quantum-mechan-
ical methods to describe the effects of collisions of
molecules on the spectra of dilute gases. Notable steps
in the development of the theory were the extension to
overlapping lines by Baranger' and by Kolb and
Griem, ' the full quantum-mechanical treatment, in the
impact approximation, by Baranger, ' and the intro-
duction by Pano' of statistical-mechanical methods to
present pressure broadening as a relaxation process, and
to include non-Marko%an effects of the collisions.

"A step initiated by Baranger, and fully appreciated
and developed by I'ano, was the introduction of a
convenient language for the description of pressure
broadening, i.e., the I iouville-space formalism. The
Liouville operator describes the infinitesimal variation
in time of the density matrix in statistical mechanics.
Its eigenvalues are resonance frequencies rather than

+ Present address: Weizmann Institute of Science, Rehovoth,
Israel.

r P. W. Anderson, Phys. Rev. 76, 64'I (1949).' M. Baranger, Phys. Rev. 111,481; ill, 494; 112, 855 (1958).' A. C. Kolb and H. Griem, Phys. Rev. 111,514 (1958).
4 U. Pano, Phys. Rev. 131, 259 (1963), to be referred to here-

after as F.

energy levels of a system; and its eigenvectors are the
corresponding transition operators. 5 This formalism is
appropriate because pressure broadening concerns each
transition as a whole, and cannot be simply related to
the relaxation of the individual energy eigenstates. In
the limit of zero pressure the resonance frequencies are
simply related to the energy levels by the combination
principle 6

co 'f —E'—Ey

The effects of collisions on the energy eigenstates can
be described by a transition matrix t(E) which obeys
the I.ippmann-Schwinger equation. Fano similarly
defines a transition matrix m(oo) which obeys a Lipp-
mann-Schwinger equation in Liouville space, and from
which all pressure-broadening effects may be derived.
However, the relation of m(oi) to t(E) is the monstrous
Eq. (55) of Ref. 4.

The I iouville-space representation expresses the
shape of the spectrum by a set of parameters, which
form the so-called retaxatiol matrix' (M, (~o)). In the

' U. Pano, Rev. Mod. Phys. 29, N (195't).' The same units (i.e., rad/sec) will be used throughout this
work for frequencies as well as energies.

s Defined in Ref. 4 by the methods of R. Zwanzig )Leotrsres tn
Theoretical Physics, edited by W. E. Brittin, B.W. Downs, and J.
Downs (Interscience Publishers, Inc. , New York, 1961), Vol. III,
p. 106$.
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srnpac/, approxAnatioti, s where the relaxation matrix is
independent of the frequency, and proportional to the
pressure, the line-shape expression, as a function of the
frequency and the pressure, attains a particularly
simple form, notwithstanding the great difhculties
encountered in actual theoretical evaluation of the
relaxation matrix elements. The advantage of this
approach has been recently demonstrated in explaining
the behavior of the ammonia inversion spectrum in the
microwave region, which had not been understood
hitherto. ' It appears now that this peculiar behavior is
of a quite broader occurrence in microwave spectra at
elevated pressures.

The problem of microwave line shapes, in general, and
of the ammonia inversion spectrum, in particular, form
the subject matter of a separate publication. The
purpose of this article is to study further the formal
properties of pressure broadening in its Liouville-space
representation, in the spirit of complementing the work
of Pano.

An opening section is devoted to discussion of some
of the underlying hypotheses of the theory. Next
follows a discussion of invariance under the rotation-
inversion symmetry group, and the resulting reduction
of the relaxation matrix. It is concluded that lines
belonging to diGerent multipole spectra are never
coupled when pressure broadened by isotropic gases. In
case the same transition is allowed by several multipole
selection rules, it may be considered as a superposition
of lines of distinct multipole species, each broadened
and shifted differently.

In the final section the concept of Liouville conjuga-
tion is introduced. This operation interchanges the
initial and Anal states of any transition and reverses the
sign of all resonance frequencies. Relations are derived
for relaxation-matrix elements involving conjugate
pairs of Liouville-space vectors.

2. A HIERARCHY OF APPROXIMATIONS

The absorption coefficient rr(&u) of a gas is usually
delned in the limit of weak radiation fields, where the
gas is assumed to be in thermal equilibrium. If we knew
the complete energy spectrum of the gas, we could
write down the absorption coef6cient, for radiation of a
particular multipole species, as

~(~) =constX'0 —'~Ps/3(~ —~/s) (ps —pr) ~Xsr ~', (1)

where l,P are the sets of quantum numbers labeling the
upper and lower levels, respectively, giving rise to a
transition with frequency ~~p ——co., 'U is the volume of
the gas sample, X is the total multipole operator of the
gas, and p is its (equilibrium) density matrix. The
difference pp —pl expresses the subtraction of induced
emission from absorption. Thanks to the Dirac 8 func-

A. Ben-Reuven, Phys. Rev. Letters 14, 349 {1965}.' A. Ben-Reuven (to be published).

tion in (1), we may insert

—(es /sF 1)p

and con6ne the calculation to, say, induced emission
alone. In terms of the Liouville operator L LEq. (F8)$,
Eq. (1) becomes

n(&u) = —const&& (7r'0) 'cu(e""/s~ 1—)
XIrnTr f X((u—L) 'px) . (1a)

By the resolvent (oi—L) ' we mean (ra+is —L) ',
where e is a real positive increment, made to vanish in
the final expression.

Pressure-broadening theory avoids the formidable
task of reckoning with all the degrees of freedom of the
gas. This is achieved by dividing the sample into a large
number of small identical cells, or systems, and concen-
trating on a single system, upon which the remaining

gas acts as a thermal bath.
As a result, Eq. (1a) is replaced. by Lsee Eq. (F18)j

rr(~) =—const(s%) 'N, o~(es"/sr —1)

XlmTr~, ~
I&'~ p (8)x(s) (2)

cu —L&'&—(M (cu))

where E, is the number of "systems" in the sample, and
the label (s) signifies the system subspace. A single

system may be, in principle, of any size; i.e., of any
number of individual molecules each. In the usual case,
such as the one dealt with explicitly in Ref. 4, the
system particles consist of one molecule each. In this
case Ã, is the number of molecules of the absorbing
kind, and n(oi) is proportional to the density /V, /'U. The
operators M and M, of Ref. 4 (Eqs. (F32) and (F33)j
are then defined, with 1.; LEq. (F39)] representing the
interaction between a single system molecule and a bath
molecule, and expanded in power series of the bath
density.

However, by such a restriction we exclude an increas-

ingly large body of experimental data usually referred
to as iridgced spec/ru, m in which the energy levels and
multipole moments of combined pairs of molecules are
involved. A considerable part of these spectra arises
from rnetastable states of the pair (i.e., from a con-
tinuous energy spectrum with resonance structure)
whose lifetime is an intrinsic property of the pair. We
therefore may encounter "lines" whose integrated
intensity varies as the square of the gas pressure (or
product of partial pressures with heterogeneous pairs)
while their apparent width is, to the 6rst approxima-
tion, independent of the pressure. "

I H. L. Welsh and J. L. Hunt, J. Quant. Spectry. Radiative
Transfer 3, 385 (1963);3. Vodar and H. Vu, ib/d. 3, 39'/ (1963);
S. Bratoz and M. L. Martin, J. Chem. Phys. 42, 1051 (1965);and
references thereof.

"D.H. Rank, B. S. Rao, and T. A. jiggins, J. Chem. Phys.
37, 2511 (1962).
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There is actually no need to restrict the size of the
system particles; in case the intensity includes terms
proportional to the mth power of the density it is
necessary to consider systems of e molecules each. One
should notice, however, that all terms with lower
powers of the density are included in this level of
approximation.

In writing down Eq. (2) we have not considered the
cases in which the resolvent operator connects excita-
tions of one system (s) with another (s'), i.e., terms of
the type

Tr(X&" (cv —L) 'p 'X')
which may not vanish. Their contribution, however, is
proportional to E,XS, and therefore constitutes a
part of a higher order approximation in which both (s)
and (s') form parts of a larger single system.

The sole condition for using (2), with a given system
size, is the unimportance of spatial correlations between
the system and the bath. Under this condition the
density matrix may be expressed as the product

p
—p(.)Xp(~)

where (s) and (b) denote system and bath subspaces,
respectively. p always appears in expressions in which
a summation over all bath variables is made. Therefore,
the error introduced by this assumption depends on an
average measure of the interaction, which may be small
even if in certain occasions the correlations are quite
strong.

In order to facilitate the summation over the bath
variables it is necessary to separate them from the
system variables by using the product representation

le,»= l~&x I». (4)

A diiTiculty may arise in the case of self broadeni-ng,
where the (anti-) symmetrized wave functions of the
identical gas molecules should be considered. This
difficulty may be removed by the introduction of
exchange forces. If, for example, we deal with the low-
pressure approximation, in which single "system" and
"bath" molecules interact at a time, then we may sub-
stitute V(1&F) for the binary interaction operator V.
F is the exchange operator

~la&lf)= lf &la)

in the two-molecule subspace, and the minus (plus) sign
is to be used with rnolecules obeying Fermi (Bose)
statistics. By doing so, the nonsymmetrized product
representation (4) may be used, and the distinction
between system and bath may be formally carried on."

By a formal extension of the definition of t(E) and
m(co) to system particles of any number of molecules,
we may generalize Fano's results to any approximation.
However, the results of the following sections hardly

"This idea underlies a recent article by A. di Giacomo, Nuovo
Cimento 34, 473 (1964).

depend on the specihcation of the approximation and
are generally applicable, unless otherwise stated.

3. IRREDUCIBLE REPRESENTATIONS
IN LIOUVILLE SPACE

The Liouville operator L of a stationary system with
a Hamiltonian H is defined as the "operator operating
on operators"

(5)

where V is any ordinary operator in the wave-vector
Hilbert space of the system. Thus, L defines a Hilbert
space whose basis vectors are operators in the ordinary
wave-vector space of quantum mechanics. s Let

I i), I f),
etc., be eigenvectors of H. Then the operators Ii)(f I

created from the column vectors Ii) and the row
vectors (fl will form eigenvectors of L since, by (5),

LI')Vl = (~;-~r) I')(fl,
with the resonance frequencies

Gogf =Eg Ef

as eigenvalues. The Hilbert space of operators Ii&(f I,
etc., is called the Liouville space.

Suppose, now, the vectors
I i), I f), etc., form a basis

for the irreducible representations of the symmetry
group of H. The vectors Ii)(fl in Liouville space are
products of invariant sets, and a unitary transformation
may be required to construct from them a basis for the
irreducible representations of the same symmetry group
in Liouville space.

More speci6cally, consider invariance under space
rotations, which applies to systems in an isotropic
environment. The basis vectors for the irreducible
representations in wave-vector space are lrr jm), where

j is the total angular momentum, m is its projection on
a space-fixed axis, and n is a shorthand for all other
quantum numbers. The set of (2j+1) bra vectors
(ujml (m= —j, —j+1, , j), is contragredient to
the set of ket vectors la jm)"; i.e., the latter set trans-
forms like the spherical harmonics I'; under rotations,
whereas the former transforms like Vr *=(—1)~Vr
The invariant subspaces of Liouville space are therefore
formed by vector coupling, with Inrjrmr) first trans-
formed to its contragredient set. The invariant sets of
order (2E'+1) are'4

fl~'j'&&~rjrl)o

= P ( 1)rr "rC(j jr'. m——m—rg)
msfSf

x l~'i.m')(~rf'rmr I
. (t)

Emay take any integral value 'from
I j;—jrl toj~+j r

"See U. Pano and G. Racah, Irredgcible TerIsoriul Sets (Aca-
demic Press Inc. , New York, 1959).

"See Ref. 13. The extra sign (—1)rr is introduced to conform
to standard phase conventions.
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One should distinguish, though, between this coupling
and ordinary coupling schemes involving angular
momenta of diGerent particles, or diGerent degrees of
freedom.

We shall 6nd it convenient to use a notation for
Louiville-space vectors suggested by Baranger, ' i.e.,

1.)&bl=
l

~+))

by which Eq. (7) can be written as

l~'i (~ri r)'; EQ))
= p ( 1)~r "r—C(j,j—,E; m; —m, Q)

X ~orj nz (ad fmr)+)) (7a)

Noting that the transformation coefficients are real, we
can write down the conjugate vectors

&(,j.( j.);EQI
= 2 ( 1)" "'~(i—'ifE ~ ~fQ)

mate f
X ((cej,~;(ce&j &m&)+

~

. ('7b)

It should be realized, however, that whereas in wave-
vector space we distinguish between vectors of different
spaces —column vectors

~
i) and row vectors (f i

—in
Liouville space the Hermitian conjugate

~ f)(i~ of
~i)(f ~

is just another vector of the same space (see
Sec. 5).

The Liouville operator of an isolated system is
(2j;+1)(2jr+1)-fold degenerate and diagonal in both
the reducible and irreducible representations, with the
eigenvalue co;f, for a given pair of energy levels. As will
be shown in the following section, however, perturba-
tions may be added which are invariant under rotations,
but are not diagonal in j; and jf. There the advantage
of the E, Q representation is o'bvious.

The preceding arguments may be extended to other
symmetries —e.g., parity. If the vectors ~i), ~ f) have
parities s.;, s f, respectively, (~1 =&1) under inversion
of the coordinates, then the Liouville-space vectors
will also be eigenvectors of the inversion operator, with
eigen values

II=x,)&xy. (10)

Equation (7) may be extended to include parity by just
adding the labels s;, s.r, II, with II obeying (10).

A photon state of frequency cv can be identified by the
quantum numbers II, E, Q, of the rotation-inversion
group. A photon in this state interacts with the molecu-
lar system through the corresponding multipole oper-
ator Xnxo, where E labels the 2~-pole, with II= (—1)x
for electric multipoles, and II= (—1) +' for magnetic
multipoles.

We formally symbolize this coupling scheme by the
vector equation

3'—3x=K

Since the Liouville-space vectors ( t'&(f
~

form a com-
plete basis in a Hilbert space of ordinary operators, any
such operator I' can be expanded in them,

I'=Z.sl~)(~II'lf)(f I =Z.sI'.sl~&+)&, (»)
by using the closure relation

Z. l~)(~l =1.
A multipole operator XD~@, in particular, may be
expanded in terms of the vectors ~nor; jm;(nfsf jrrrsf)+))
of the system. However, since it transforms like an
irreducible tensorial set of order (2E+1) with parity
II, it will be composed solely of vectors belonging to the
II,E invariant subspace (the Wigner-Eckart theorem),
l.e.)

I' o=E &~.~'j'I I& I l~f~~j~)(2E+1) '"

X Ice~ej'(&fs fl&)+; IIEQ)), (12)

with coeKcients independent of Q. The factor (2E+1) '"
was introduced to make the remaining factors identical
with the reduced matrix elements of X, as defined in
Ref. 13."

The formal structure presented above corresponds
closely to the classical theory where radiation is emitted
or absorbed by a set of harmonic oscillators. If we
associate the "displacement" of the oscillator with a
vector in Liouville space, then the dynamics of the
classical system resembles that of the quantum-
mechanical system, where the counterpart of the classi-
cal normal modes are the Liouville-space basis vectors,
the normal frequencies are the eigenvalues of the
Liouville operator, and the amplitudes correspond to
the (reduced) matrix elements of the multipole opera-
tors. Classical terms, like "resonance, " "damped
oscillations, " "harmonics, " etc., retain their literal
meaning.

4. REDUCTION OF THE RELAXATION
MATRIX

So far we have dealt with the invariance properties
of eigenvectors in the Liouville space of a stationary
system. We now shift our attention to interactions of
the system with a thermal bath represented, after
averaging over the bath variables, by the relaxation
matrix (M, ) which operates on the system variables.

Consider the total Hamiltonian for a pair of "system"
and "bath" particles

H= H, +Ils+ V, (13)

where the interaction V, like II, and II~, is invariant
under rotation of the coordinates. The transition matrix
t(E) for pair collisions is likewise invariant, i.e., it is

"See Eq. (14.17) of Ref. 13. This definition of the reduced
matrix elements di6ers from the one adopted by various other
authors by a factor (2J;+1)'~s Lcf. M. K. Rose, Elemeltary Theory
of Arlgelar 2Ilomeaeem (John Wiley 8t Sons, Inc. , New York,
1957)g.
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whose eigenvectors
K=J;—Jr (16)

I (j'I')J'L(jA)Jr]+ EQ)) (17)

are obtained from (15) by a transformation similar
to (7).

We can use now Racah recoupling methods to trans-
form to the coupling scheme

K,=j;—jr,' Kp=l; —If,' K=K,+Kr, (18)

where the irreducible Liouville representations of the
system and bath subspaces are first constructed
separately and then coupled to E. The transformation
of (17) is given by

I (j'j f+)E; (I'4')E~; EQ))
= g L(2J;+1)(2Jf+1)(2Eg+1)(2E$+1)$~~

JiJf

(js I' ~z )
~r II (i'«)~'LU~4)~f j+ EQ)), (19)

&E, E, Ei
using the Wigner 9-j symbols. '3

M (so), in general, is not diagonal in E, or Eq, and a
change in them signifies the transfer of a resonance
excitation (i.e., a photon) from the system to the bath,
or vice versa. In forming the average over bath vari-
ables &M), however, we consider only matrix elements
of M connecting the Liouville vectors lp~'&X&'&, p&'&)&

and «X'&, 1"&I (where by 1'~& we mean the unit
operator in the bath subspace). But, in an isotropic
emiroemeet, p(~~ is spherically symmetric, and therefore
both vectors belong to the invariant subspace IC~=0 of
the bath variables. Since M(co) is diagonal in E, '

&M (co) ) must therefore be diagonal in E', which can only
be equal to E.Equation (19) reduces th'en to the simpler
form

I (i'i f+)E,(«')o; EQ))

(—1)ji+Jf+l+x(2)+ 1)—1/2I (2J''.+1)(2J +1)jl/2

diagonal in the total angular momentum

J=j+I
of the pair (where I is the angular momentum of the
bath particle, including its motion relative to the
system), but not necessarily in jor /. A Liouville vector
for the pair

I UA)~'~'L(i fIf)~f~rh+)) (15)

is obtained by coupling j and / in both levels, using
ordinary vector coupling methods. Since M(co) is built
out of products of pairs of t matrices —one for each
level —it will be diagonal in J; and Jf, and therefore
also in

The above result is readily derived for the relaxation
matrix &M, ), since it can be expressed in power series of
&M) with only invariant quantities appearing in the
coeKcients. "We have failed so far to mention inversion
symmetry, but its inclusion is trivial. If the bath density
is invariant under inversion, then &M, ) will also be
diagonal in II. We may thus write down

« '' ''i''( 7 r'ir')' lI'E'Q'I

X &M, ) In~;j;(cepr

pj's)+;

IIEQ))
=«n;'- j; (uZ-x'jr')

I

X &M.&'nx' Inor'j'(o. far jr)+))bnu biz boy. . (21)

The matrix &M, ) is thus reduced to separate sub-
matrices for the various irreducible representations
II, E, each repeated (2E+1) times. The only restricting
condition is the requirement that all three terms of H
in (13) be invariant under rotations and inversion. This
condition is generally achieved in gases in an isotropic
environment (i.e., in the absence of external force Qelds
other than the applied radiation Geld).

It is appropriate to mention that the invariance of the
relaxation matrix has been conjectured before, though
not proved, and that its reduced form in case of electric
dipole radiation (II=—1, E=1) was explicitly given. '

The invariant subspace II,E in Liouville space is
associated with the interaction with a photon of the
multipole species II,E. We are therefore led to the
following conclusions concerning isotropic gases:

(a) Lines beLonging fo diferent multipole species never

interfere arith each other because of collisions If the s.ame
line is excited by several multipole selection rules, it can
be considered a superposition of distinct lines belonging
to a diGerent multipole each, with distinct pressure
broadening eGects. Thus, a line which arises from, say,
electric quadrupole and magnetic dipole transitions,
will behave as two distinct lines, with diferent shifts
and widths, though their unperturbed frequencies are
identical. This effect should be observable in principle
(provided, of course, the intensities of the two com-
ponents are not drastically different).

(b) The relaxation matrix is independent of Q. Hence
the shaPe of the sPecfrunzis nsdePendent of the Polarization
of the photon, specified by Q. We may completely avoid
the use of Q in the calculation of (2) by using (21).With
the reduced-matrix elements of Xnx, as de6ned in (12),
the trace in (2) can be written as

(2E+1)-' 2 &f'I
I

X"x
I
li')

x«' j"II -«&-&M.&t. 'j-
I f'))

&&('I Ix-I I j&p' (22)

&&I . . II U'7)~'LUri)jrj'; EQ)),

using the 6-j symbols.

(20)

with (M, ) in the reduced representation (21). Here i,
f are shorthand for all the system's quantum numbers,
nof including magnetic numbers; p;=Z ' exp( —PE;)

"See Eq. (20) of Ref. 4.
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in the energy representation (where P= h/kT, and Z is
the partition function).

Though we have dealt explicitly with emission or
absorption spectra, the above conclusions hold in any
problem which deals with linear effects of the inter-
action of photons with isotropic gases, where the relax-
ation matrix (M, ) is involved. These cases include
Raman (and Rayleigh) scattering of light, " and dis-
persion of light fwhich involves the real part of the
trace in (2)j.

The real and imaginary parts of a diagonal matrix
element of (M, ) describe the shift and the width of the
corresponding line, provided it is well separated from
other lines of the same multipole species. It is remark-
able that the damping of a line (i.e., its pressure
broadening) is given in terms of matrix elements of M
diagonal in E„whereas the relaxation process involves
the transfer of a photon from the system to the bath.
This implies that matrix elements of M(o&) are not
completely independent of each other and that matrix
elements diagonal in E, include information concerning
off-diagonal elements. This resembles the situation in
wave-vector space, where the forward scattering ampli-
tude is related to the total scattering cross section by
the optical theorem. The idea of an "optical theorem"
in Liouville space is imbedded in Eq. (37b) of Ref. 4.

S. LIOUVILLE-CONJUGATE PAIRS

Let
I i), I f), etc. , form a complete set of orthonormal

wave vectors. The set of operators li)(fl is not, in
general, Hermitian, and both

I i)(fl and its Hermitian
conjugate I f)(il form distinct eigenvectors in Liouville
space, with opposite eigenvalues cc;f= —o&t;. (The only
exceptions are the self-conjugate vectors i=f, with
eigenvalues o&;;=0.) We define an operation in Liouville
space "rejecting" ls&(fl into

I f)(sl and vice versa,

I f)(il =Cr, li)(fl, (Cl, ' ——Cr), (23)

and call it I.iouvi/le corn jl gati oe. The I.iouville-conjugate
operator to any operator A in Liouville space is defined

by
((ab+IC.AC.

I
"b'+))= ((ba+IAlb'"+)) (24)

and should be distinguished from Hermitic comjugatiox
in Liouville space, defined by

((ab+
I At I

tt'b'+)) = ((a'b'+
l
A

I
ttb+))*, (25)

where the asterisk denotes complex conjugation. The
existence of such two distinct operations should not
surprise us, remembering that 2 is a tetradic, and not
a dyadic, in wave function representation.

The Liouville vector
I i)(f I

is usually associated with
a physical process in which a transition occurs from
state i to state f, while

I f)(sl is associated with the
inverse transition f-+ i. Liouville conjugation is there-

"J.Fiutak and J. Van Kranendonk, Can. J. Phys. 40, 1085
(1962); I. Fiutak, Acta Phys. Polon. 26, 919 (1964).

fore closely related to lisle reversal. 8 In an elementary
physical process (i.e., a Feynman diagram) Liouville
conjugation describes the reversal in the temporal
sequence of states (lines) in the diagram, whereas the
ordinary time reversal operation of quantum mechanics
describes the changes in each state necessary to con-
struct the time-reversed solution of the Schrodinger
equation.

In this section we study the relation of the relaxation
matrix t,o its Liouville conjugate, and its further simpli-
fication which results from this relation.

Consider one of the definitions of the operator M (o&)

fEqs. (F14a)$, say, the series expansion

M(~)=Li+P Lil
ice —Ls ) (26)

or, in operator notation,

CI.LCI.———L* (27a)

(where the asterisk denotes complex conjugation of the
elements of a matrix). Notice also that

Cr, (cc—Lp)-'Cr, ———f (—o&*—Ls)—'j*. (28)

Each term in the series (26) is a product of an odd
number of operators each obeying either (27) or (28).
Therefore,

CrM (o&)Cr, ———M*(—c0*) . (29)

In the process ( ) of averaging over bath variables
fEq. (F17)j we pick up only the set of self-conjugate
vectors lbb+)) in the bath subspace, in which Cr, is
diagonal. Therefore the Liouville conjugation commutes
with ( ). Furthermore, only its part CI.t'& in the
system subspace should be considered after the averag-
ing. The averagingTprocess is a real operation, and
therefore

Cr, t'&(M (o&) )Cr, t'& =—(M (—ca*))*. (30)

Finally, since (M, ) can be expressed as a power series
of (M) fEq. (F20)7, with the coeKcients (o&—Lt'&)—'
obeying Eq. (28) in the system subspace, we get

C, & &(M, (~))C,t &= —(M.(—~*))* (31)

for the relaxation matrix.
(M, (o&)) may be written as a sum of two matrices,

one an even and one an odd function of the real part of

I8 The equivalent relation to time reversal in classical mechanics
has been pointed out by I.Prigogine, in his book Roe-Eqlilibrslm
$tatt'stt'ca/ Mechattt'cs (Interscience Publishers, New York, 1962),
p. 20.

Both Ls and Li are defined by an equation of the type
(5), with H Hermitian. Therefore, both obey

«P-+ILlba+)&=-((-~ ILlab+)&*, (27)
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where the real parameters 8;y and p;p are, respectively,
the shift and the widhh of the line i —+ f (in the absence
of other neighboring lines). The broadening of the line,
expressed by p, contributes to the line shape at fre-
quencies ro off the resonance ~;y and (neglecting for a
moment all the off-diagonal elements of A) results in the
Lorentzian term yI y'+(~ —~;y—8;y)'j ' in n(&u). But
the transition f +i, with r—esonance frequency —cu;~,

will also contribute to the line shape if y is not small
compared to co;y, the resulting term

vb'+ (~+~'a+os)' j '

is the familiar "negative resonance" term in the shape
of low-frequency (radio and microwave) spectra ss

Equation (33) tells us that the "positive resonance"
and "negative resonance" terms have equal widths and
opposite shifts.

Consider now the off-diagonal elements of A com-
bining the two conjugate modes. From (31a) we find
that

«if+I ~
I fi+))= &&f~'IAIDO'+&&=o, (34)

i.e., in the impact approximation, the part of &M,)
combining the two conjugate modes is anti-Hermitian.
These matrix elements are composed of sums of the

~ See Refs. 2 and 4. This is a further simpli6cation of the low-
pressure approximation in which both system and bath particles
consist of one molecule each. The relaxation matrix is practically
independent of m in a range of frequencies b,co comparable to the
inverse average duration of a collision (which is several wave
numbers wide in typical cases, involving light molecules at room
temperatures). Therefore the impact approximation is valid in a
range of frequencies larger than 2';y in many microwave spectra.

ml See, e.g., R. de L. Kronig, Physica 5, 65 (1938); J. H. Van
Vleck and V. F. Weisskopf, Rev. Mod. Phys. 17, 227 (1945);
H. Frohlich, Nature 157, 478 (1946).

co, to be denoted as &M,+(or)) and &M, (~)), respec-
tively. Then

Czi'l &M,+(co) )Cz~'l = W&M, +((v) )*. (31a)

Equation (31) may be helpful in further simplifying
the relaxation matrix, particularly in the impact
approximation (or approximation of MarkoKan col-
lisions), in which the dependence of &M, (&o)) on the
frequency is negligible in the 6nite range of frequencies
under consideration. '

If the range of frequencies in which the impact
approximation is valid is larger than 2';y, we may write

&M, (~) )= (M,+(o) )=A= ~—ir, (32)

where both A and 1' are Hermitian. From (31a) we have

Then

e =—$+ 2+
v2

Z

Z+ Z+ (36)

« I~I &)= &&PI~IP)&=O. (35a)

Since Liouville conjugation of a vector in Liouville
space is equivalent, by definition, to Hermitian con-
jugation of an operator in wave-vector space, (36) is the
familiar rule for constructing two Hermitian operators
out of a non-Hermitian operator and its Hermitian
conjugate. The imaginary unit i in the second Eq. (36)
reflects the antilinear character of Cz, .

Equations (33) through (35) examplify the applica-
tion of Eq. (31).Further applications will be illustrated
in Ref. 9.
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product of transition amplitudes 1;~tg;* and become
important in low-frequency spectra where the two
levels i, f are close enough to make transitions from the
one to the other by inelastic collisions quite probable.
These off-diagonal elements have, therefore, a consider-
able effect on the shape of lines in these spectral
regions. '

We shall 6nally mention the particular case of the
self-conjugate vectors Iii+)). These will also give rise
to absorption spectra when broadened, though their
resonance frequency is zero; such spectra are familiar
by the name of notsresonwct (or Debye) spectra s'

By (31a)
«ii+I AIii+))=0, (35)

i.e., in this case the spectrum will be only broadened
without altering its zero resonance frequency.

Nonresonant spectra may also arise from transitionsi~ f where i and f are degenerate though distinct
states. The two Liouville vectors Iif+)) and

I fi+» are
conjugate to one another rather than self-conjugate.
However, since they are degenerate eigenvectors of
L'&, they may be transformed to a pair of self-conjugate
eigenvectors,


