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A variational principle is developed for calculating the properties of nonhomogeneous superconducting
systems at finite temperatures. The quantity varied is the energy-gap function as it occurs in the Gor’kov
equations, and the correct Green’s function is obtained by minimization of the thermodynamic potential.
The calculation may be simplified by expanding the potential in powers of the energy-gap function or by a
technique of analytic continuation. The former is easier but can be used only near the transition temperature,
while the latter is valid at all temperatures. The variational procedure is used to calculate the transition tem-
peratures of superposed-film systems, using a one-parameter model to describe the intermetallic potential
barrier. The results agree well with the experimental data and indicate that barrier effects are important.
The theory is valid for all mean free paths and is in accord with the phenomenological analysis of Hilsch

and Hilsch.

INTRODUCTION

NUMBER of experiments have revealed various

effects due to the proximity of one superconductor
to another or to a normal material. These can be at-
tributed to the fact that the electron-electron inter-
action is not homogeneous over such specimens but
varies from one material to the other. The usual theory!
is not directly applicable to such situations, and in this
paper we develop a variational form of the Gor’kov
theory? which is applicable to nonhomogeneous systems.
This variational procedure is then used to calculate the
transition temperatures of superposed films, and the
theory is found to agree well both with available experi-
mental data and with previous theoretical work.

The Hamiltonian for a superconductor can be written
in the form H=H+H,, where H, and H, are respec-
tively the one- and two-body components. The usual
Hartree and Hartree-Fock contributions to the inter-
action can be incorporated in H; as self-consistent fields
characteristic of the normal state, and Hs then contains
only the residual interaction terms necessary to give
superconductivity (e.g., the BCS reduced interaction).
The superconducting state can then be expressed in
terms of the eigenstates of H; alone.

In the BCS type of calculation, the representation of
the superconducting state is in terms of explicit product
wave functions of the electron pairs. With each eigen-
state of H,, |#), a unique conjugate state |71) is pre-
scribed, and the ground state is obtained by minimiza-
tion of the free energy of a trial state formed from
two-particle wave functions |»,A), with amplitudes
given by a pairing probability %,. The pairing pre-
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scription can often be obtained from simple physical
arguments, e.g., time-reversal invariance.

In nonhomogeneous systems, difficulties can arise if
the symmetry properties of H; and H are different. For
dirty bulk superconductors this is not a problem, for
reasons which were pointed out by Anderson.? But when
macroscopic nonhomogeneities occur, it is frequently
impossible to find an explicit pairing which adequately
describes the physical state of the system. Consider, for
example, an idealized model of semi-infinite slabs of
superconducting and normal metals in perfect contact.
We take H; to be the free-electron Hamiltonian, so the
single-particle eigenstates are plane waves. There is no
way to pair these plane-wave states so that they give a
higher pairing density in the superconductor than in the
normal metal. We must instead choose a single-particle
representation which anticipates the localized nature of
the superconducting correlations.

The use of Green’s functions avoids this problem,
since the pair wave functions need not be written down
explicitly in terms of a predetermined choice of
single-particle functions. The correlation properties are
characterized by an ‘“anomalous Green’s function,”
@1 (x)ys (2)), which gives a unique singlet-state pairing
without requiring that it have the same spatial variation
as Hj. The quantity varied in the minimization of the
thermodynamic potential is in fact the “energy-gap
function” A(r) which represents the degree of pairing
present at each point in the system. It is, furthermore,
generally more convenient to work with the ‘“normal”
Green’s function than it is to determine the explicit
eigenstates of Hj.

VARIATIONAL FORMULATION OF
THE GOR’KOV THEORY

The Gor’kov Equations

Two types of Green’s function are important in the
Gor’kov formulation of the theory of superconductivity.
One of these, G(r,t; v, 1) =—{(T¢1 (r,)Y+T(t',t')), is the

3P, W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
336



141

usual single-particle Green’s function (7" is the time-
ordering operator and the angular brackets denote a
thermal average over states). The “anomalous Green’s
function,” F(rt; ', i) =+ ()¢ ('), is a unique
feature of the superconducting state which represents
the “condensation” of bound pair states.

At finite temperatures it is easiest to evaluate the
Green’s functions by the Matsubara technique of im-
aginary-time Fourier transforms which for fermion
operators take the form

1 »
G)=- X e*'Ga,

B n=

where w= (2n+1)r/8 and the Fourier coefficients are
given by
1 i
Go=—

G ()dL.
21 —ig

The superconducting Green’s functions can be ex-
pressed in terms of the normal Green’s function G and
an “energy-gap function” A(r) which will be defined
later®;

Go(r,) =G, (1,r')
- / dr; / drsG, O (r,r)A(X1)G_o @ (rs,r1)

X A*(r2)Gou(ra,t") (1)
and

F,(r,x)= / dr,G (1, 1) A (1) G_, @ (¢ ,11). )

It is useful to have a formal expansion of the Green’s
function in powers of A(r), which may be obtained by
iterating Eq. (1), giving

Go(r,r) =3 G (r,r'),
m=0
©)
Fu(r)=3 F, (1),

m=1

where

Go,™ (r,x)=— / dr, [ drsG, @ (£,r1)A(r1)G_, @ (x2,r1)

X A* (IZ)Gw(m_l) (r2)rl) (4)
and

F,™ (r,Y)= / G D (r,r)A(r) G-, @ (,)11). (5)
It is also convenient to define the pair correlation

4T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).

5L. P. Rapoport and A. G. Krylovetskii, Dokl. Akad. Nauk
SSSR 145, 771 (1962) [English transl.: Soviet Phys.—Doklady 7,
703 (1963)].

THEORY OF NONHOMOGENEOUS SUPERCONDUCTORS

337

amplitude x(r)=F(r,; 1) with the corresponding
components X, (r)=F, (r,r). It can be shown that
these expansions are convergent as long as |A(r) | <w/8
=7kT, which relation holds for a bulk superconductor
when 77>0.537T,.5

The energy-gap function A(r) introduced above is a
phonon-mediated self-energy term of the form

AM=V@F (x5 =V@)x(), (6)

where V (r) is the effective electron-electron interaction ;
we use the convention that a positive sign of ¥ corre-
sponds to an attractive interaction. The function A(r)
represents the energy associated with each pair con-
densation process, and Eq. (6) can be derived by stand-
ard field-theoretic arguments. It can also be obtained
from a variational principle by expressing the thermo-
dynamic potential in terms of the Green’s function,
which is the procedure which we shall follow.

The Thermodynamic Potential

We consider the difference Q(7,0,u) between the
thermodynamic potentials of the superconducting and
normal states.” (I'=temperature ; U= volume ; u=chem-
ical potential.) This quantity can be expressed in terms
of the single-particle Green’s function, and, in order to
render explicit the dependence of 2 on A(r), we follow
this procedure; for an arbitrary trial energy-gap func-
tion we calculate the Green’s functions G and F from
the Gor’kov equations (1) and (2) of the preceding
section. Since in this calculation we do not need to
introduce explicitly the interaction, we can use Eq. (6)
to define a fictitious interaction, V[ A]= A/x[A], which
obeys the equation A(r)=V,(x)F (r,t; r,t). By doing so
we can calculate the thermodynamic potential of a
system which has this fictitious interaction, and then we
simply correct the potential-energy term to obtain the
correct thermodynamic potential. For the system char-
acterized by the energy-gap function A(r) and the
interaction V;(r), the @ function will be given by the
relation

5, 1
V() == A*()Fu(r,1)
8Vs(r) B o

=A%(n)x (1), @

where the symbol Q; indicates that we are using the
fictitious interaction V,(r), and not the correct inter-
action V(r).® Using the expansion x=>_ x‘™, where

6 W. Silvert, doctoral dissertation, Brown University, 1964
(unpublished).

7'This is related to the free energy by Q=U—TS—uN=F—uN
=—kT InZ, where p is the chemical potential, N the particle
number, and Z the grand partition function. See for example T. L.
Hill, Statistical Mechanics (McGraw-Hill Book Company, Inc.,
New York, 1956), pp. 66, 72.

8 A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963), p. 70. See also
Egs. (1) and (2).
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x™ (@)=F™(rt;r4) is a homogeneous functional of
A(r) of order 2m—1, we obtain by replacing A(r)
by M (x),

6Qf / 02y d V/(I')d
r
N Vi(r) oA

—— [ st (r){%]

1«
=-3 (2m—2) / drA*(r)x™ (x).

m=1

Integrating this gives

o= [ ° z (2m—2) / G (2)x™ (1)

0 m=1

_ g(l_.;) / drA* (1)x™ (x)..

The next step is to obtain Q for the real interaction
V (r). Since the potential energy is the only term in Q
which depends directly on the interaction, we obtain

Q=0+ / [V 1(6)— V()] 1x(0) |2

_ / dr[ i(2—1)A*<r>x<m><r>—V(r)|x<r>12 . ®

m=1 m.

In writing down Eq. (8) for the thermodynamic po-
tential we have neglected the BCS cutoff in the inter-
action, which must be included if the theory is not to
contain divergences.! Following the argument of Morel
and Anderson® that the excitation of localized phonon
modes leads to a short-range retarded electron-electron
interaction, we see that by writing down the instan-
taneous point interaction V(r) we have neglected the
energy dependence of the energy-gap function. This
effectively means that the phonon Green’s func-
tion is approximated by the expression D(r,t;r't')
=C8(r—1')6(¢—1¢'). A more realistic interaction is ob-
tained by writing D(r,; v',t") =Co(x—r')D(t—¢"), where
D(?) has the imaginary-time Fourier transform

w? phonon
D,= . )
2+w phonon’/ phonons

In the weak-coupling case this may be approximated by
the step-function retardation factor D,=6(wp— |w|),
where wp is the cutoff frequency and is related to the
Debye temperature by #Zwp=£%k@. This introduces a
cutoff into the w summations at the point |n|=

9 P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
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=wp/2w(n=0)=@/2rT. This cutoff will be used in
further calculations, where, unless otherwise indicated,
all summations over w run from n=—9 to 49T,

We should now like to verify that the variational
procedure leads to the same result as the usual calcula-
tion of the self-energy, Eq. (6). It can be shown for the
field-free case that in minimizing Q the phase of A(r)
may be set equal to zero.® Because S drA*(r)x(r) is a
symmetric homogeneous functional of A(r), Euler’s
theorem may be applied to Eq. (8), and we obtain

0Q r
= f [AG)— V()] ())r'. (10)

8A(r)

The “stationarity” requirement 82/8A=0 is therefore
equivalent to the expression given previously for the
self-energy, A(r)=V (1) (x).

The functional derivative I'(r,t’)=2dx(r')/6A(r) oc-
curring in the above expression plays an important role
in superconductivity calculations. It is the time-
averaged scalar response function of the system, as may
be seen from the Fourier components

To (l‘,l") =0X, (rl)/aA (l‘) = le (l‘,l") IZ— IFw (l‘,l") |2' (1 1)

Of particular importance is the normal response function
occurring in the expansion of T' in powers of A(r),

Ly@ (r,r) = |G (5,r) [*. (12)

The functional equation A= Vx[A]is of fundamental
importance in the theory of superconductivity and is
equivalent to the BCS integral equation for the energy
gap. In systems for which this equation, which is
customarily referred to as the “consistency condition,”
can be solved exactly, the superconducting properties
can be obtained by direct calculation ; but this is usually
possible only for the simplest systems, and in most
cases it is necessary to use approximation techniques
such as the variational method developed here.

The Variational Method

From the preceding calculation we have seen how to
define a functional Q[A(r)] such that Q[A]> o, where
Qo is the thermodynamic potential of the superconduct-
ing system measured relative to the normal state and
corresponds to an energy-gap function which obeys the
consistency condition A= Vx[A]. The method outlined
above can be used to calculate Q at any finite tempera-
ture,!® and, as we shall see in the next section, it can be
extrapolated to absolute zero. However, the convenience
of the series expansion in powers of A(r) makes it
particularly useful to apply the variational method to
the study of second-order phase transitions, where A(r)

10 Using the convergence property alluded to previously, Q[AA]
is an analytic function of A in the finite region |\| <#kT/ IAmax s
and it can be shown that there are no singularities on the real axis
(Ref. 6). Therefore the integration over A from 0 to 1 can be
performed by analytic continuation.
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vanishes continuously. In such cases it is necessary only
to consider the quadratic functional

Q(l)[A]=/dr{A(r)x“) @)—V@)|x® @)%}

- / KO OAD— VOO @Wr.  (13)

For example, since QW[A]<0 implies ©2,<0 and is
therefore a sufficient condition for the stability of the
superconducting state, a lower bound to the critical
temperature is the temperature 7[A7] at which QW[A]
vanishes.!!

Example : Bulk Superconductor

The preceding calculations are greatly simplified in
the case of a pure bulk superconductor, which can be
treated by Fourier transform techniques.? The normal
Green’s function is G, (k) = (iw— €)™, and if we define
the quantity

Vo (B)=AG_o (k) AG® (k) = 4%/ (*+ &)
we see from either Eq. (1) or Egs. (3) and (4) that

o G,© (k)
G.(k)=G, (k)2 [_ Yo (k)]m:: PN
m=0 1+'Yw (k)
—iw— €x
- W+ 2+ A2 ’

As noted previously, G, (k) is a well-defined function of
A, even though the series expansion has the finite radius
of convergence given by A< (w?+€2)!/2. The expansion
of G(r,t;1',t') therefore has the radius of convergence
A<w(n=0)=mnkT but can still be determined for all
values of A.

The pair correlation function is

x=2m)~ [ dk 7 3 Fu(k)

0 N 1
= de —
N/ — -, =Z—m (Bwy+ (BE)*

® de 2 E
=NA / —[tanh(%BE)—— tan‘l(—>:]
o E T wp

“D de
~NA / —tanh(38E),
o E
where NV is the density of states at the Fermi level

1t More precisely, T[A] is the least upper bound of the set of
temperatures at which Q®W[A]<0. The equation QW =0 also has
the extraneous solution x® =0, which corresponds to an infinite
temperature.
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and E?=¢€-}A2 At absolute zero this reduces to
x=NA sinh(wp/A), and € can be obtained directly
from Egs. (7) and (8). Minimization of Q with respect
to A gives the equation for the 7’=0 energy-gap,

A—Vx=A[1—NV sinh~(wp/A)]=0.
This then gives the correct ground-state energy,

Qo= —2Nwp?/ (V7 —1).

Finally, the bulk transition temperature is given by the
vanishing of the quadratic functional

QO =5 D[A— Vx®]

“D de
=x(1)A|:1—NV / - tanh(%ﬁe)] ;
0

€

giving T,=1.140¢ ¥V, These are, of course, all results
obtained originally by BCS.t

TRANSITION TEMPERATURES OF
SUPERPOSED FILMS

Idealized Model

We consider first a superposed film system for which
the single-particle Hamiltonian H; is translationally
invariant and contains no scattering. While this idealized
model has no direct physical applicability, it reveals a
number of interesting features which tend to be ob-
scured in a more comprehensive analysis.

The Green’s function for a pure metal in the absence
of interactions is'?

2m
G,O(R)=—

.

tkR —lw| R
gikE sgnwp—|w| Iv,

(14)

where R=|r—r'|, m is the effective mass, and % and
p are the Fermi momentum and velocity (we set =1
except where otherwise dictated by convention). From
(12) we get the normal response function

2m \?
T,O(R)= (-——-—) g 2lelBlv, (15)

47R

The linear term in the correlation amplitude is given by

X(l) (r) =X(l) (Z) = /drlr(o) (r._ rl)A(rl)

=/dzlﬂ(z—zl)A(zl), (16)
where the Fourier coefficients of the one-dimensional

27T, P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
[English transl.: Soviet Phys.—JETP 9, 1364 (1959)].
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normal response function are

Hw(z)=/dx/dy]‘w(‘”([x2+y?+z2:|‘/2)
20

TN Z
= E1< ) @an
? v

and the Z function occurring in the above expression is
one of the generalized exponential integrals'®

Enlu)= / i euidy/m, (18)

From the consistency condition we see that the
energy-gap function can be discontinuous at a bound-
ary,'* and with this in mind we consider a trial function
which takes a constant value A in the superconducting
region (denoted by .S) and is zero in the normal region
(). For an NS boundary represented by the trial
function A(z)=A6(z) this gives

x© (z) = ( )dz’
32, 2<0,
=NA{
f(O)—%f(z) H Z>07
where
T 2wz
7= z =)
@ lwl 2
1
-5 | —]Ea1/m,
@ 2%"’1
and E,=v/2|w| plays the role of an energy-dependent

coherence length. The correlation and energy-gap func-
tions are sketched in Fig. 1 for both this trial function
and for a rough solution of the consistency condition
with Vy=0. We note that the slope of the correlation
amplitude becomes infinite at the boundary. This is a
consequence of the degree of singularity of the response
function and is a general feature of systems in which the
interaction is discontinuous, asis shown in the Appendix.

The penetration of superconducting coherence into
the normal metal is characterized by the falloff distance

_ / F()dz/ 1(0) ~1.22/1n (Bwn),

where E=E,m-0=%v/2rkT is the bulk coherence
length as usually defined. At the bulk critical tempera-
ture the ratio of A to  is roughly equal to p =NV, which

1BH. C. van de Hulst, Astrophys. J. 107, 220 (1948).
¥ P_G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).
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x (D (2)

A(z)

(la)

x 1 (z)

A(2)

(Ib)

Fi16. 1. Behavior of the correlation amplitude and energy-gap
function at an intermetallic boundary. (a) Approximate trial
function. (b) Rough solution of consistency condition, Vaormat=0.

is typically 0.3. For values of z greater than &, the falloff
function has the asymptotic form

f@)/f0)~2p(E/z)e 12,

as has previously been shown by Falk.!s

A similar method can be used to obtain the falloff at
temperatures below the transition point. Independent
calculations by Falk!® and one of the authors'® have
shown that at absolute zero x(z) falls off as 1/z in the
asymptotic region. This is faster than the falloff ob-
tained by Parmenter,'” who uses a different theoretical
approach. His method is to let the BCS pairing proba-
bility %x be a function of position, so that the pair wave
functions are of the form

o, Y)=hy(r+r )ik =12,

but this procedure permits violation of the exclusion
principle, a problem similar to that which arises in the
boson model of superconductivity. In the Green’s-func-
tion formalism the commutation properties of the opera-
tors ¥ (x) and ' (x) guarantee that the exclusion prin-
ciple is not violated.

A superconducting film of thickness D on a semi-
infinite normal substrate can be represented by the
interaction

V)=V,
=0,

|z <D
[z|>D,
15 D, S. Falk, Phys. Rev. 132, 1576 (1963).

16 W. Silvert, Rev. Mod. Phys 36, 251 (1964).
7 R. H. Parmenter, Phys. Rev. 118 1173 (1960).
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where the boundary condition dx®/dz|.—0=0 for the
free surface is satisfied by use of the image method. The
transition temperature of this system is determined by
the consistency condition

D
xPE)=V | H(z—2)xP()dz .

-D

Without attempting to solve this integral equation ex-
actly, we obtain a lower bound to 7', by using a trial
function which is constant in .S and zero in &, This gives

xP(z)= A/ H(z—3")d?

-D
=AN[f(0)—3f(D+2)—3f(D—2)]1, |2 <D.
By using the approximation f(D+2)+ f(D—2)=2f(D)
and setting QM =0, we obtain an equation for T[A],
VLf0)—f(D)]=1. (19)

In the limit D — o the bulk transition temperature
is given by V f(0)=1, where f(0)=y¢(N+3)—y¢ (%) and
¢ is the digamma function. For finite values of D,
substitution of this expression for f(0) in (19) gives

FD)=In(To/T[A]).
If D2 #v/wp, f(D) is independent of cutoff and we get

TO %o/ DET[A]
In: = / In tanhx dx.
T[A] Jo

Model of a Real Film

A realistic model of a superposed film system must
include effects arising from finite mean free path and the
presence of an insulating boundary layer between the
metals. Considering first the effects of scattering, we
begin with the Abrikosov-Gor’kov normal response
function as derived by Werthamer for isotropic
scattering!8:19

2eN 171
rw<°>(q>=Hw(q>=~[—q———] .0

v Ltan7{,q !
where
1 2w 1 1 1
I
_(w ? J/ Ew l

and s the electronic mean free path. In the limit 7 — o
this agrees with the result previously obtained for a pure
metal, Egs. (15) and (17). By expanding the quantity
g/tan™¢,q and Fourier transforming to coordinate space
we obtain a kerne] of the diffusion type,

1,80 (5.) =

N P
el 1k |

21
2olt @1

18 A. A. Abrikosov and L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz.
35, 1558 (1958) and 36, 319 (1959) [English transls.: Soviet Phys.
—JETP 8, 1090 (1959) and 9, 220 (1959)7.

1 N. R. Werthamer, Phys. Rev. 132, 2440 (1963).
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where £,= (3{.E,)2 is the thermal- and impurity-
scattering-limited coherence length. In dirty films, where
impurity scattering is dominant, this reduces to the de
Gennes-Guyon result.2

If we write the exact kernel in the form H,=H 31
+H ", where H,°™ contains the correction to the
diffusion approximation, we see that this correction
term consists primarily of a logarithmic singularity of
range roughly equal to ¢, such as Eq. (17) exhibits. The
main effect of this term is that the slope of the correla-
tion amplitude becomes infinite at an intermetallic
boundary, which means that X, can change rapidly
within a distance ~¢{.. This shows up as an apparent
discontinuity across the boundary. The relative magni-
tude of this change is on the order of {,/E,, so the effect
is small for very dirty systems.

A distinction must be made between this procedure
and the diffusion approximation introduced by de
Gennes and Guyon? and subsequently developed by
de Gennes and by Werthamer.!® These authors have
made two assumptions which restrict the validity of
their results: (i) that the mean free path is so short
(IE,,) that the ¢, can all be set equal to /, and (ii) that
H can be set equal to H3' for all values of |3—3'| of
interest. The first assumption is not a necessary one, and
it is clearly not valid for any but very dirty films; by
retaining the exact form of ¢, in calculating the coher-
ence length, the formal separation of the kernel into
diffusion and correction terms can be carried out for all
ranges of mean free path. The dependence of the
coherence length on mean free path will of course be
weaker than the /'/2 behavior characteristic of a true
diffusion process. Assumption (ii) is valid only when the
energy-gap function is slowly changing over distances on
the order of the mean free path; this condition clearly
does not hold when the effect of boundaries is being
studied. By the formal procedure of writing H = Hdiff
+ (H—H%f) we can use the diffusion kernel as a
starting point in calculating the properties of any
system; but it must be remembered that £, equals the
diffusion length only in the limit of short mean free
paths, and that the short-range properties of Heo™
=H— H4 Jead to boundary conditions different from
those associated with diffusion processes.

In most systems of physical interest, the boundary
behavior of x® described above tends to be over-
shadowed by effects associated with the creation of an
intermetallic barrier, such as oxidation, chemisorption,
and various diffusion effects. Consequently, it becomes
quite difficult to arrive at meaningful continuity con-
ditions, and we shall treat the question of behavior at
the boundary in a semiempirical fashion. Elsewhere in
the system H®™ may be neglected, and we therefore
obtain a quite generally applicable form of the diffusion
approximation, valid even for clean films.

Two useful sum rules may be obtained from Eq. (20),

2 P. G. de Gennes and E. Guyon, Phys. Letters 3, 168 (1963).
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both of which are independent of the foregoing ap-
proximations. The first, which de Gennes!* has derived
from quite general arguments, is

® wN (r)
/ T,O@,r)dr'= / H,(2,)ds = o] ,

w

(22)

where N (r) is the local density of states. Since Hdiff(z,z")
also obeys this sum rule, it follows that /% H % (3,2")ds’
=0, which is a more formal justification for neglecting
Heorr in regions where A(z) is not rapidly changing. The
second sum rule is a direct corollary of the first; from
Eq. (16) for the correlation amplitude we get

"= [ A@s,
— lo] J

where ¢,=X,V/N is the Fourier component of the
correlation amplitude per electron at the Fermi surface.
In the region of validity of the diffusion approxima-
tion we can use the procedure suggested by Werthamer?!?
and de Gennes' of converting the integral expression

(23)

X, (z) = / H,3 (2,2)A()de’

into the differential equation

(1—£,20%/929) XD () =7NA(2)/ |w] . (24)
The z dependence of N(z) and £.(z) is suppressed to
indicate that these quantities change only at the
boundaries, where the diffusion equation does not apply.

A simple and general lower bound to the transi-
tion temperature of any system may be obtained
by choosing for a trial function A(r)=const. The
sum rule (22) immediately gives ¢p,=7/|w|, or x®(r)
=AN(r)2_n|2n-+1|~ Since the Debye cutoff frequency
varies from metal to metal, we get a position dependence
of the form x® (r)=AN (r) In[1.14Bwp (r)]. If a constant
wp is assumed, we obtain the result

T[A]=1.14@¢/pav,

Pav= / N2(r)V (r)dr / / N (r)dr.

Such a trial function is of limited applicability, but for
very thin films it provides a useful approximation.!4
More accurate approximations may be obtained with
the trial function introduced previously. We shall
characterize the superconducting region (S) by a con-
stant energy-gap A and unprimed quantities (e.g.,
N, %4, 1, V, p=NV), and the normal region (N) by a
zero energy-gap and primed symbols. The boundary
condition 9X,®/dz=0 is used at free surfaces, For a
superposed film system the coordinate system is defined
so that the superconducting region is the slab 0<z<D,

where
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and the normal region D<z<D-D’. The general solu-
tion of the diffusion equation obeying the free surface
boundary condition is

TNA 2
X,® (2)= ( 1—-C, cosh—) inS$
2] &,
xaN'A D+D'—z
= C,’' cosh in N.
o &

The constants C,, and C,, are related by the sum rule
and can be expressed symmetrically in the form

ngw sinh (D/Sm) = Cwlgwl sinh (D//Ewl) =y,

where the a, are characteristic lengths which depend
both on the properties of the two metals and on the
localized behavior of the correlation amplitude in the
interface region.

If we assume that the short-range component of the
response function A can be neglected, and that there
is no barrier present between the two metals, then ¢(2)
is continuous. From this additional condition we obtain
the value

1 1 [ 1
@ g, tanh(D/£,) £ tanh(D'/8)

Both the presence of a barrier and the short-range cor-
rection to the diffusion approximation have the effect of
reducing «, below the above maximum, and for an
infinite barrier we obtain the limiting value o, ®®=0,

The transition temperature is given by the vanishing
of the quadratic term in the energy functional,

D D
QO = A/ xW (2)dz— V/ [x® (z) Jdz
0 0

D+D’

-V x® (2) Pdz.

D

Substitution of the preceding expression for x(z) into
Q=0 gives

pK2—[1+4 (4pJ /D) K+ (2J1+To+T2)=0, (25)
where
a1 N a,
K=3 , Ji=
montt’ T oot
;z: g 2, 20 [P 32 p
Je=p / cosh— cosh—dz
S e i m 1 o ko
(26)

N & o 2C, 2C.'

Ji=
N =0 »'=0 2n4+1 21/41

D’ z P
X / cosh—-,- cosh——’dz .
0

@ w’
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The temperature dependence is implicit, occurring
through the cutoff 9t= ®/2#T and through the lengths
£, and a.

Thin-Film Limit

When the film thicknesses are much less than the
coherence lengths, the &, may be replaced by a constant,

a,=a<a™*=DD'/(D+D").
The J sums are expressible in terms of K,
Ji=aK/2, Js=pa?K*/D, J/=N'p'a®K*/ND’, (27)
and substituting in Eq. (25) we obtain the solution?!

1 1—a/D

1
=, (28
p 1—20/D+(a?/D)(1+eD/D') pest

where e=N’p’/Np. The lower bound to the transition
temperature found with this trial function is therefore??
T[A]=1.14@¢ Vrett, For V'=0 this reduces to the result
obtained previously by one of the authors,® and pest
= peit®=p[1— (a/D)] obeys the inequality

D 0
p——<petf’<p.
D+D’

The general result (28) can be written

To 1— € D
<= /(—+e), (29)
T, P

where equality corresponds to the limit a=qa™2*. If the
normal film is sufficiently thin, i.e., N2V’ D'KN?VD,
we obtain the approximate expression used by Simmons
and Douglass®

T.=To1—8(D'/D)]. (30)
The quantity & depends on the nature of interface and
obeys the inequality pb<1—e.

For systems consisting of a very thin superconducting
film on a thick normal substrate, the behavior of the
correlation amplitude in the interface region is the
essential factor determining the superconducting prop-
erties. The transition temperature is given by Eq. (28),
and if a=am2*=D, we get T,=0 for the case V’'=0.25

2 There is also the extraneous root K =0, which corresponds to
the T'= « solution mentioned in footnote 11.

2 The appropriate Debye frequency for this trial function is
that of the superconducting metal, since the pairing self-energy is
set equal to zero in the normal region.

21, N. Cooper, Phys. Rev. Letters 6, 689 (1961).

2 W. A. Simmons and D. H. Douglass, Jr., Phys. Rev. Letters 9,
153 (1962).

% By expanding «,™** in powers of D/¢/, de Gennes (Ref. 14)
has established that T[A7] vanishes in this limit for D <1.9¢'(T).
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Thick and Intermediate Films

If D> ¢un=m, which is typically on the order of
#w/wp~100 A, then the J sums are independent of
cutoff and depend on temperature only through the
coherence length. It is convenient to separate these
terms from the cutoff-dependent K sum by formally
solving Eq. (25) for K, getting

1 4pJ 1
K=~[1+ +le2} , (1)
2p D
where
4pJ1\? 4p
R=1+(—) P arad). (32)
D D

(The positive root is taken, since the negative root gives
the extraneous solution 7= . This can easily be seen
by letting D go to infinity, where the roots are K=1/p
and K=0, respectively.) An approximate expression for
R can be obtained by using the inequalities

coshx coshy>% cosh(x+7y), sinhx sinhy<3 sinh(x+7v)

to obtain
N AN Ay Qo' 1
Jo>4p Z Z

n=0 n’=0 2n+1 2’}’L,+1 £w+ Ew’

4p U N g,

~—

E n=0 n’=0 21’L+1 21’&""“1
@n+1)12X (204172 2p

>
@uA-1)24 /412 g

where £=£,n=0. The above inequality actually pro-
vides a fair approximation to J.; consider for example
the thick-film limit, where (@, ™)'= §,~'-+&,~*. This
dependence suggests that «, can be written in the form
a,=a(2n+1)""2, and we obtain J;=1.7a and J,
=7.2002/£=1.2(2pJ%/£). Similarly, the remaining sum
may be approximated by the expression J2'~ (2ep/£')J 1%
For fairly thick films we can therefore express K entirely
in terms of J; by using

827272 1 e
R~1— (————-—) :
D \D ¢t ¢

For sufficiently thick films this can be further simplified
by noting that the second term is quite small, and con-
sequently R~1. Furthermore, by substituting the
limiting expressions (27) into Eq. (32), we find that for
small values of V’, the value of R for thin films is also
unity. This suggests that we set R=1 over the entire
range of thicknesses and determine the critical tempera-
ture from the equation K= (1/p)+ (2J1/D), or In(To/T ;)
=2J1/D.

For thick films the a, depend mainly on the coherence
lengths, and these in turn are proportional to 72 in

Q!

1,
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Fi16. 2. Plot of reduced critical temperature, ¢=T,/T,, versus
thickness of superconducting film. Solid line: theoretical curve,
Eq. (33). Broken line: semiempirical curve of Hilsch and Hilsch,
Eq. (34), Do/Dso=0.75.

dirty films. We can therefore write the sum J; as the
product of a temperature-independent length Do/2 and
742, where t=T,/T, is the reduced temperature. The
resulting equation for the critical temperature is

t21n(1/8)=Dy/D; (33)

this is plotted in Fig. 2. The unphysical behavior of the
curve for values of ¢ less than ~0.15 reflects the break-
down of the thick-film approximation, as may be seen in
the following way: setting a,=a,™>* we obtain D,
~3E(To)~3112(T), so that in the low-temperature
range the temperature-dependent coherence length be-
comes larger than the film thickness. The sum J; there-
fore ceases to vary as £~%/2 and goes over to the logarith-
mic temperature dependence characteristic of the
thin-film limit, Eq. (27). Since the lowest value of ¢
reported to date is 0.16, we expect Eq. (33) to provide a
good description of the available data.26

COMPARISON WITH EXPERIMENT

Hilsch and Hilsch have recently published a phenome-
nological theory of superposed thin films in which the
reduced transition temperature ¢ is expressed as a
function of the thickness of the superconducting film D
and two parameters; a characteristic length Dy and a
universal constant B.26 The relationship is of the form

1-#=[B+(1-B)(D/D:)], (34)

where B and Dy, are obtained by fitting this expression
to the data. Using the Hilsch value of B=0.2 and setting
Dy=0.75Dy, Egs. (33) and (34) are plotted together in
Fig. 2. The two curves agree well within the experi-
mental scatter, and both provide an excellent fit to the
data over the entire experimental range.

2 P. Hilsch and R. Hilsch, Z. Physik 180, 10 (1964).
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Although it is in principle necessary to know the a,, in
order to calculate Dy, an indication of the importance of
the barrier effects can be obtained by assuming
a,=00,™*, where ¢ is an empirical parameter. In the
limit D'= o we obtain

Diﬁ=0j3[s<;o>+s'<;o>] '

This is quite different from the result derived by Hilsch
and Hilsch from their phenomenological theory.

The Hilsch data gives remarkably consistent o values;
for the Sn-Cu and Pb-Cu systems they lie between 0.4
and 0.5, while the corresponding values of Do* range
from 100 to 3000 A. The fact that ¢ is virtually inde-
pendent of mean free path suggests that these low values
are due mostly to the formation of a boundary layer
between the metals. This is in part substantiated by the
dependence of Do* on order of deposition for dirty
Pb-Cu and Pb-Pt systems,?” where the relative oxi-
dizabilities of the two metals is probably the dominant
factor.

The dependence of Dy on normal film thickness is
roughly given by

1 03[ 1 1 1
D, £(To) S(To) tanhD'/¢ (T o)jl o

031
O'DI.

Using ¢=1% we obtain good agreement with the Hilsch
results for Sn-Cu and Sn-Ag, but for Pb-Cu and Pb-Ag
they obtain a somewhat larger coefficient multiplying
1/D’. Since this coefficient appears to depend on the
choice of metals but not on their mean free paths,
changes in R involving the sums Jp and J,y' may be
responsible.

Because the thick-film approximation breaks down at
low temperatures, it is not likely that the Hilsch formula
can be extrapolated to this region. For systems with
transition temperatures near absolute zero there should
be little of the mean free path dependence seen above,
while such parameters as the strength of the interaction
in the normal metal should have much greater impor-
tance. In particular, if the “normal” metal is actually a
superconductor with a low transition temperature, the
¢-versus-D curve must level off and intersect the ¢ axis.
This effect has been seen by Hauser and Theuerer in
Pb-Al systems, which follow the Hilsch curve very
closely down to within one degree of the transition
temperature of bulk Al2® Consequently, for systems
with low-transition temperatures (¢<0.1) as well as for
those formed from very thin films, Eq. (29) is applicable.

Because mean free path data is missing from many of
the early papers on proximity effects, it is useful to
analyze these experiments from a thin-film standpoint.

%7 P, Hilsch, Z. Physik 167, 511 (1962). J. I] Hauser, H.
Theuerer, and N. R. Werthamer Phys. Rev. 136, A637 (1964)
2877, Hauser and H. C. Theuerer Phys. Letters 14 270 (1965).
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Simmons and Douglass® have studied the effect of thin
silver films on the transition temperature of tin, and
they obtain a curve of the type described by Eq. (30)
with 5=0.5 for the Sn-Ag system. If we assumed that
o=1, this would give a value of NV in silver roughly the
same as that of tin. The inference that a barrier is
present is confirmed by the observation that an oxide
layer is formed during evaporation. The very low value
of 5=0.06 found for the Pb-Ag systems of Smith et al.®
gives further evidence of barrier formation. On the other
hand, Sn-Co is reported by Simmons and Douglass to
have 5~25. This reflects a strong effective repulsion
between electrons of opposite spin in a ferromagnet due
to the energy gained in the breaking of a singlet pair
state.

CONCLUSION

The variational form of the Gor’kov theory developed
above makes possible the study of systems in which the
electron-electron interaction varies over the dimensions
of the system. This procedure can be used when the
interaction changes discontinuously, as has been seen by
studying superposed films. With the simplest trial
functions we have calculated transition temperatures
which agree with the experimental data in both the
thick and thin film limits and over a wide range of mean
free paths.
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APPENDIX: EFFECT OF A DISCONTINUOUS
INTERACTION

The superconducting Green’s functions possess the
following properties of a many-body wave function®:
single-valuedness, analyticity at all points at which the
Hamiltonian is analytic, and absolute and quadratic
integrability of the function and of its first derivative.
For example, consider the behavior of the pair correla-
tion amplitude X,(r) in the vicinity of a point ro at
which ¥V (r) is discontinuous. Using the expansion (3-5)
for X, (r)=F,(r,r), we obtain

X, (r)= /I‘O,(U) ()AL ()dr'+- - -, (A1)

29 P, H. Smith, S. Shapiro, J. L. Miles, and J. Nicol, Phys. Rev.
Letters 6, 686 (1961)

wE. C. Kemble, The Fundamental Principles of Quantum Me-
chanics (Dover Publications, Inc., New York, 1958), p. 198.
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where the remaining terms are well behaved. Since the
correct energy-gap for the system is given by the
consistency condition A=V, and x(r) is a continuous
function, the problem is one of specifying the properties
of (A1) when A, (r) is discontinuous at r=r,. These are
in turn determined by the 1/R? singularity of I, (r,r’)
for small values of R=|r—r/|, which comes from the
1/R singularity in the Green’s function; cf. Egs. (12),
(14), and (15).

We need consider only the one-dimensional case,
for which the kernel has a logarithmic singularity such
as is exhibited by Eq. (17). The behavior of the corre-
lation amplitude is characterized by the function
¢(z)=JS% In|z—2'|6(z)dz’. This obeys the continuity
condition

5

+e
—|dz= 2e(1+1n—) —0,

Z—e€ €

lo@=o(=al= [

0

which is a necessary property of the wave function. If,
however, we calculate the derivative

de(2) =Hm[<p(e)~¢(~e)],
e 2e

dz
we find that it is infinite. In this fashion we can also
establish that the divergence is logarithmic, so that
de/dz is both absolutely and quadratically integrable.
We can also obtain this result directly from the
Gor’kov equation for F, which in the free-electron
approximation is

(Cw0+V2/2m~+u)F ,(r,1)= A, (1)G_,(¢',1).

Neglecting terms which are bounded and integrable, we
obtain for the derivative

F,(r,Y))
o[ (r.+r1.")/2]

2=0

~ / A, (0)G_.(r',0)do.

+ ] Aule)Gu(r,0)des.

If r and r’ are the points (0, 0, Z4¢), this gives
oF,, (r r ) ZH A, (z)dz 2= A, (2)dz
~[Aw(Z+§)—Aw(Z—§‘)] Ing.

When V, and hence A, is discontinuous across the =0
plane, the derivative dF (r,r")/dZ diverges logarithmi-
cally as { — 0, and 9x/9z is infinite.




