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VII. CONCLUDING REMARK

In this article, an equation for the normalized density
matrix is set up. If one reduces the equation, one would
obtain a hierarchy of equations for the reduced density
matrices. The solution of the set of equations would

give us all the information we need. In this article, we
have adopted a more practical use of the equation;
that is, it is used to set up the hierarchy of equations
for the thermal average of quantities with which the
quantity of interest is expressed. The process has been
illustrated in the example of calculating the spontaneous
magnetization of the Heisenberg ferromagnet at low
temperatures and high external fields. The calculation

has been done by taking care not to neglect any term
which may contribute to the order we are considering.

It is hoped that the method will be extended to
higher temperatures and lower fields and become
applicable even to the discussions of the critical phenom-
ena, and also to other problems than ferromagnetism.

In the above analysis, we have treated nonlinear
differential equations. It was the case even when we
calculated the spontaneous magnetization in the ideal
spin wave approximation in Sec. IV. This nonlinearity
of the diGerential equations makes the solution difficult.
However this diS.culty may be said to be a technical
one but not an essential one like the divergence difficulty
in the method of the two-time Green's function.
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The surface impedance of the superconducting alloys in high magnetic 6elds is explicitly calculated by
restricting consideration to the critical region where the order parameter is small. It is shown that we have
an expression for the complex conductivity equivalent to that for superconductors containing paramagnetic
impurity, as long as we are concerned with gapless region. A brief discussion is given on the complex con-
ductivity in the weak-Geld region where the low-lying excitations associated with each Qux line play a
dominant role.

I. INTRODUCTION
' 'N a series of papers' (which we shall refer to herc-
' - after as I) we have investigated the equilibrium
properties of superconducting alloys in strong magnetic
fields. In the dirty limit where the electronic mean free
path is much shorter than the coherence length and in
a high magnetic field (H, s—Hp(&H, s, where Hp is the
external field and H, s is the upper critical 6eld.), we
were able to solve the general Gor'kov equations by
expanding them in powers of A(r), the position-
dependent order parameter.

The technique developed there is so general that one
can apply it to the calculation of the transport coeK-
cients which describe the nonequilibrium properties of
superconducting alloys in the critical regions. The
purpose of this paper is to present the calculation of the
electromagnetic conductivity of superconducting alloys
in strong magnetic Gelds as an illustration of the
method.

*This work is supported by the U. S. Atomic Energy
Commission.

t On leave of absence from Research Institute for Mathe-
matical Sciences, Kyoto University, Kyoto, Japan. Present ad-
dress: Department of Physics, University of California, San Diego,
La Jolla, California.' K. Maki, Physics 1, 21 (1964); 1, 127 (1964).

Using the formalism developed by Abrikosov and
Gor'kov' (AG) we can express the complex conductivity
in terms of two Green's functions. In the high-Geld
region where the ordering parameter is small, we can
expand these two Green's functions in powers of h(r)
and calculate the conductivity explicitly. It turns out
that the conductivity is essentially local and a function
of (A(r)('.

We shall consider some limiting cases of special
interest. We also discuss brieQy the conductivity in the
weak-GeM region where the low-lying excitations associ-
ated with each Aux line play the essential role in the
dissipation mechanism of the system. In the following
we adopt units such that Il,=k~ ——c= j..

2. EQUATION FOR CURRENT

In this section we shall calculate the current induced
by an oscillating electromagnetic field which is super-
posed on a static magnetic Geld B~. According to AG

~ A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
35, 1558 (1958); 36, 319 (1958) LEnglish transls. :Soviet Phys. —
JETP 8, 1090 (1959);9, 220 (1965)g. For a detailed exposition of
the methodfsee A. A. Abrikosov, L. P. Gor'kov, and I.E. Dzyalo-
shinski, in Methods of Qnantnrn Field Theory in Statistical Physics
(Prentice-Hall, Inc. , Englewood Cliifs, New Jersey, 1963).
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where Q,= ~~rc,v (V,/i+( —1)'2eA. (rc))' (fori =1, 2) and
we have made use of the relation

In the above treatment we discard the renormaliza-
tion at the vertex associated with the current operator
(p-wave vertex) for simplicity. This renormalization
amounts' to replacing v before the summation sign in
Eq. (14) by r&,.

The above summation is expressed in terms of the
poly-gamma function:

I(cop) = o'(I b (r) I /2zrT) j(P (i+or p//2zrT+n/2zrT)
-r(-(2zr T/or p+ 2' T/(or p+ 2n) )
X (P(-,'+cop/2rr T+n/2rr T)—rP (-', +n/2rrT) )},

(15)

d g
e'&'d, =A(r) (12)

(2zr)'

In the above derivation we neglect the terms of
higher order in

vugg.

In the present case we are interested
in the critical region where A(r) is small. In this region
h(r) satisfies with good approximation'

pre, z) (V/i —2eA)'A(r) =nA(r), (13)

where a=3',e eB0 and Bo is the external field. Thus
Eq. (11) reduces to

ale 1 GOM+
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2 l~ll~+I
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where )P'(e) and rP (z) =I"(s)/I'(s) are tri- and di-garruna
functions, respectively.

The quantity Q(r, co) is given as (after replacing cop

by ior)

Q(r ~)=~(z~+(I ~(r) I'/2~T)(4" (l+z~/2~T+u))
+$2zrT/ico+2zrT/(ico+2n) g

X (4 (-', +zo)/2rr T+p) —4'(-'+ p))}, (16)

where p =n/2zrT and o is the conductivity of the normal
metal.

Similarly we take account of the effect of the external field by replacing q by q&2eA, depending upon whether
it operates on 6 or b,+, where A is the vector potential. After these replacements we obtain
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the other hand, the space average of the real part of
Q is given by

«Q( -)&-=2-((I~()I'&.-/2 T)~'(l+p)
(21)

=4eM,
as it should be.

The asymptotic behavior of X(p) is given as

It is interesting to note that the equivalent expression
for Q(r, ~) is obtained for gapless superconductors con-
taining paramagnetic impurities. 4 It is easy to show

generally that the other transport coeKcients (more
precisely, current-current correlation functions) take
an equivalent form in the two cases, insofar as we are
concerned with the gapless region.

3. SURFACE IMPEDAHCE

In the following we shall consider some limiting
expressions of Eq. (16) which are of special interest

(a) Low-frequency limit (ot«s.T,s). Expanding Eq.
(16) in powers of &o, we obtain

Q(rgo) =oio
I 1+(IA(r) I

s/2s T)
X (-',0"(-',+p)+0'(s+ p)/2P)l

+(2 I ~(r) I'/2 T)4'(-'+p), (17)

whe«4 "(-'+p) = (d'/dp')0 (s+p) and 0'(s+ p) = (~/dp)
Xg'(-'+ p)

The space average of the imaginary part of Q is
given by

(ImQ&. =choo-(1+((Ih(r) I'&. /(2s T)')

X(-;&-(-;+p)+(1/2p)~ (-:+p)», (»)

where

=400 X(p)
7i (3) H"(T)

X(P)= 1+3P(~/rip) (ing(P) ), g(p) = 2 (~+l+p) '

and
3am tr2~m

, 7~(3)
2eer„I P,s

the Ginzburg-Landau parameter. ' The magnetization
3f is given as'

84 540
X()=1 i. (3)p+ t(4)-

7r2

2352 l
f'(3) Ip' for p«1

s.4

= —2+1/2p' —37/120p4, for p))1. (22)

where' Ics'(0)=17r4/168' (3)js'. In particular, in the
limit ~~~ we obtain

(ImQ&-= .(1-(6/~) (1-»./H. )).
The coefFicient of coo- may be interpreted as the den-

sity of states at zero frequency.
One sees from Fig. 2 that (ImQ&, increases as Hp

increases at lower temperature, while it decreases at
higher temperature.

It is possible that the above expansions break. down
at higher temperature since the singularity of Q(r, ru) in
the complex ~ plane approaches the origin along the
imaginary axis as the temperature increases, and the
radius of convergence of Q(r,~) at the origin becomes
smaller and smaller.

On the other hand, at lower temperature the above
expansion converges as long as co/7l T p(1, where T,s is
the transition temperature in the absence of magnetic
Geld.

(b) High-frequency region (+&+T,s).
In this frequency region we have

Q(r, or) =icoIr{1 (2I h(r) I'/~')
XLs'+ (ln(oo/2s. T)—1t (-,'+p) )+-s'xi/)

(25)
=ufo(1 —(2 I h(r) I'/(o')

X /In(2(t)/Ape)+ + s'$j)

where Boo is the ordering parameter at T=O'K in the
absence of the magnetic Geld and is given by 600
=~T,s/p. In the above we made use of the identity' '

The temperature dependence of X(p) is depicted in
Fig. 2. At T=O'K we have

(1—Hs/Hps)
(Imo(xm)), =a (I— (23)

14t (3) (2sss(0) —1)P

r(p)(l ~(r) I'&-=
+12 +0 »T/T. p+P(s+p) —P(s) =0. (26)

vrhere

P = 1.16 (20)

and z2 is the temperature-dependent parameter. ' On

4 S. Skalski, O. Betbeder-Matibet, and P. R. gneiss, Phys. Rev.
136, A1500 (1964).

It is interesting to note that Eq. (25) holdss even in the
case IIO ——0.

(c) At the absolute zero of temperature.
Putting T=0 K in Eq. (16) we have

(r ~)=zfi~+ (Ih(r) I /rr) j(ro/rr)), (27)
' P. G. de Gennes, Phys. Condensed Matter 3, 6 (1963).
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FIG. 3.The frequency
dependence of the real
and the imaginary part
«j(~l~).
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In the weak-Geld. region, on the other hand, the
situation is not so clear. It is well known' that the low-

lying excitations associated with each Qux line play the
dominant role in the dissipation mechanism. We shall
brieQy indicate how to formulate the problem in this
region. It is shown that the absorptive part of Q(r, co)

is expressed in terms of

I.O 2.0
X

4.0
the density of states. In particular, in the low-frequency
limit we have

ImQ(r ot) =o.co(1P(r,0)+O(T/Tep)')
for T«Ttp ' (30)

j(x)= 1/(ix+1)+(1/ix+f1/(ix+2) 1 in(1+ix)). (28)

Rj(x) as well as Im j(x) are plotted in Fig. 3.
The surface impedance of the bulk specimen is ob-

tained from Eq. (1) as"

where

Here we approximate Q(r, p&) by its space average for
simplicity. The error involved in such approximations
can be estimated by using a method similar to one due
to Fisher, r and we Gnd it is of the order of (p—1)—0.1.

Equation (27) together with Eq. (15) completely de-
termines the surface impedance of a bulk superconductor
of the second kind provided the external Geld is close
to Hgs (Hgg Hp(Hgs) ~

4. CONCLUDING REMARKS

In the above sections we have seen that the complex
conductivity of superconducting alloys in high magnetic
Gelds can be calculated explicitly if we restrict ourselves
to the critical (or gapless) region. The validity of the
above approach relies heavily upon the existence of a
gapless region where the analytical properties of the
quantity Q(r, ro) become simple (i.e., the singularities of

Q are poles on the imagin. ary axis, which is in contrast
to the branch point on the real axis corresponding to
the BCS state). The above method is easily extended
to the calculation of other transport coeKcients such
as the thermal conductivity, the attenuation coeKcient
of ultrasound, etc.

6 We correct here the wrong sign of Z in Ref. 2.' G. Fisher, J. Math. Phys. 1, 1158 (1964).

that is, we can express Img(r, pp) in terms of X(r,0) at
low temperatures.

We know that X(r,0)=1 at the center of a flux line
where A(r) vanishes, and X(r,0) d.ecreases as we go
away from the center of the Qux line. The space average
of Img(r, co) given by

(Img (r,pp)). =ore(N'(r, 0)).„
= o.ann((Xs(r, 0))),

(31)

where e is the density of flux lines and. ((Ã'(r, 0))) is
the average of 117'(r,0) on a single flux line. It is inter-
esting to note that the coefficient of the linear term in
temperature in the expression of the speciGc heat can
be written as

On the other hand we expect that (Reg(r, pp)). is
almost equal to 1 in a superconductor containing para-
magnetic impurities, ' and the only difference is that
the parameter 1/r, =F, is replaced by —sr„AB, where
8 is the magnetic induction. '

A detailed study of available experimental data'
seems to show that the reactive part of o (pp) changes
more slowly than that predicted by our theory. One
possible explanation of this discrepancy may be that
~A(r) ~' in the surface region where the main electro-
magnetic absorption takes place changes somewhat
more gradually than (~ h(r) ~'), . I would like to thank
Dr. P. C. Hohenberg for calling my attention to the
above discrepancy.

P C. Caroii, P. G. de Gennes, and J. Matricon, Phys. Letters
9, 307 (1964).

9 B. Rosenblum and M. Cardona, Phys. Rev. Letters 12, 65'I
(1964).


