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Using linearized rate equations, we have calculated the intensity Quctuations expected in the output of
four-level cw laser oscillators. Intrinsic quantum eGects have been included by restricting the eigenvalues
of photon and atomic population operators to discrete integral values and by using equivalent noise sources.
The total output Quctuations increase monotonically with output power; the relative Quctuations decrease
monotonically, and at high output levels inversely as the output power squared. The low-frequency Quctua-
tions differ in that the relative fluctuations increase with output below threshold (noise amplifier region)
but decrease sharply above threshold (dynamic saturation region). Curves typical of gas, solid, and diode
lasers are illustrated. The theory agrees well with preliminary experimental results.

l. INTRODUCTION
' 'N single-mode operation continuous-wave (cw) laser
~ - oscillators are characterized by an output spectrum
having a narrow but Gnite width. It has been recog-
nized' that, as in more conventional oscillators, ' this
residual width results primarily from frequency (or
phase) modulation by noise and that at high power
levels amplitude (or intensity) modulation by noise
contributes insignificantly. The suppression of ampli-
tude or intensity fluctuations in the high-power oscilla-
tor is intimately connected with the nonlinear satura-
tion mechanism which determines the operating power
level of the laser. ' Below the oscillation threshold or in
the extreme wings of the spectral line this saturation
mechanism is inoperative (in the latter case because of
time constants in the saturation process), and noise
phase modulation and noise amplitude modulation are
comparable. In this paper we indicate correlation ex-
periments which can be used to verify the amplitude
stability of cw lasers and compute the amplitude ft.uctua-
tions expected in four-level lasers having negligible
population in the lower laser level. In a subsequent
paper (II) we shall discuss the amplitude stability of
systems which have significant lower-level populations,
and in a later paper (III) we shall indicate jointly with
M. Lax how the rate-equation results of the 6rst two
papers follow as limiting cases from a more general
analysis of laser noise. Although the rate-equation
method does fail for fluctuation frequencies exceeding
the homogeneous atomic or cavity linewidths, ' it ob-
tains over the frequency range for which intensity
Quctuations are most important. Moreover, it has an
inherent physical simplicity which it is useful to ex-
ploit. High-frequency corrections will be computed in
Paper III.

Our present results differ from those of the Van der

J. P. Gordon, H. J. Zeiger, and C. H. Townes, Phys. Rev. 99,
1264 (1955); J. P. Gordon, J. Res. Natl. Bur. Std. (U. S.) 689,
1031 (1964).' A. Blaquiere, Ann. Radioelec. 8, 36 (1953);8, 153 (1953);W. A.
Edson, Proc. IEEE 48, 1544 (1960);J. A. Mullen, ibid. 48, 1467;
M. J.E. Golay, ibid. 48, 1473.

e W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1965).
4 D. E. McCumber, Phys. Rev. 130, 675 (1963).

Pol model used by Haus' ' and others primarily through
our inclusion of the dynamic (rather than instantaneous)
response of the atomic populations to changes in laser
intensity. This difference, which is less important in gas
lasers than in solid or diode lasers, is responsible for
"spiking" resonances which have been observed experi-
mentally" ' and which are discussed in Sec. 6 below. A
detailed examination of the Van der Pol model will be
postponed to Paper III.

For mathematical simplicity we assume in this paper
that on the time scale of interest, the atomic spectral
line is homogeneously broadened and that in multi-
mode lasers the population rate-equations can be linear-
ized about spatially uniform atomic populations. Al-

though these assumptions encompass a large class of
lasers, especially if coupling parameters are adjusted to
compensate known inhomogeneities, phenomena which

depend explicitly upon the existence of such inhomo-

geneities will not be adequately represented. Examples
are the Lamb dip in gas lasers' and mode locking in

lasers having three or more excited modes spaced uni-

formly in frequency. To include such phenomena accu-
rately, a more detailed treatment along lines previously
charted by Lamb' will be required.

A complete statistical description of the output of a
laser oscillator requires the specification of an infinite

sequence of field correlation functions"

lg
Gn(xl, ',xn j l,x, nx)

= (Ef—&(xt) E&—&(x„)E&+&(x„') . E'+&(x,')), (1.1)

where E'+&(x) and E& &(x) are, respectively, the
positive-frequency and negative-frequency electric-field
operators at the space-time point x= (r, t). In a second-
quantization formalism E&+&(x), when acting on states

' H. A. Haus, J. Quantum Electronics 1, 179 (1965).
' C. Freed and H. A. Haus, Appl. Phys. Letters 6, 85 (1965).' J. E. Geusic, in Proceedilgs of the Physics of Qttamtgm Elec

trolics Colference, Sal JNart, Ptterto Rico, 1965, edited by P. L.
Kelley, B.Lax, and P. E. Tannenwald (McGraw-Hill Book Com-
pany, Inc., New York, 1965).

s N. Bloembergen and S.Dimitrewsky (private communication).
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Letters 2, 189 (1963);A. Szoke and A. Javan, Phys. Rev. Letters
10, 521 (1963)."R.J. Glauber, Phys. Rev. 130, 2529 (1963).
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to its right, is a photon annihilation operator, and
E& &(x)=E&+&(x)+ is the corresponding creation opera-
tor. 'e The simplest correlation function Gt(xr, xr') re-
lates to the spectrum measured by familiar dispersion
or diffraction spectrometers. 4""As we have noted,
the Gnite width of this spectrum for laser oscillators
results primarily from frequency or phase modulation
induced by noise. The theory of measurement of more
general functions (1.1) has been discussed in detail by
many authors. ""

An important subclass of the correlation functions
(1.1) is the set of intensity correlation functions

F„(xt, ,x„)=G„(xt, ,x„;xt, ,x„), (1.2)

which relate field intensities I(x) Et &(x)E'+&(x) at
different points. Such correlation functions can be meas-
ured by correlating (with appropriate time delays) the
output of n photomultipliers or similar intensity-
measuring devices. """They also relate to the mo-
ments (N ) of the number N of photons measured in
some 6xed interval T at any one detector. ""In what
follows we shall be concerned with the simplest intensity
correlation function Fs(xr, xs).

Apparatus useful for the measurement of this function
have been described by Hanbury Brown and Twiss, "
by Rebka and Pound" and by other authors. ' '~"
Hanbury Brown and Twiss (HBRT) correlate the
intensities measured by two separate photomultipliers
in an extremely stable linear multiplier. To within the
frequency-response limitations of the components, its
output gives Fs(xt, xs) directly. The power spectrum or
Fourier transform of Fs(x»xs) can alternatively be ob-
tained by frequency analyzing the output from a single

u M. Born and E. Wolf, Prigoeples of Optks (Pergamon Press,
Inc. , New York, 1959), Chap. X.

n L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965)."R.J. Glauber, in Quanta Optics and Electronics, edited by
C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and
Breach Science Publishers, Inc. , New York, 1965), p. 63.

'4 M. L. Goldberger, H. W. Lewis, and I,. M. Watson, Phys.
Rev. 132, 2764 (1963)."P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316
(1964).

'6 For simplicity we use "photomultiplier" as the generic term
for all such detectors."L.Mandel, Phys. Rev. 136, B1221 (1964).

's R.Hanbury Brown and R. Q. Twiss, Proc. Roy. Soc. (London)
242A, 300 (1957); 243A, 291 (1958).The first article contains an
interesting discussion of the role of quantum uncertainties in cor-
relation measurements.

re G. A. Rebka and R. V. Pound, Nature 180, 1035 (1957).
~ R. Q. Twiss and A. G. Little, Australian J. Phys. 12, 77
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'A. Add. m, L. J6,nossy, and P. Varga, Acta Phys. Hungarica

4, 301 (1955);E. Brannen and H. I.S. Ferguson, Nature 1?8, 481
(1956).

~ J. A. Armstrong and A. W. Smith, Phys. Rev. Letters 14,
68, 208 (1965).

~A. W. Smith and J. A. Armstrong, Phys. Letters 16, 38
(1965);J. A. Armstrong and A. W. Smith, Phys. Rev. 140, A155
(1965).

~L. J. Prescott and A. Van der Ziel, Phys. Letters 12, 317
(1964). This letter contains a basic error in interpretation;
properly used LG((R&R&) '~'1, Eq. (1) does not describe the de-
pendence of the results upon pumping strength even qualitatively.

(1.3)

The different apparatus described above all measure
various properties of the output correlation function

Co(r) =Pt(t+r)~s(t))t (1 4)

where ( )» denotes a time average. In the single-
detector system J&(t)=Js(t).

In order to express Cs(r) in terms of the intensity
correlation function

a special case of the function Fs(xr,xs), it is convenient
to introduce the power spectra or Fourier transforms of
the correlation functions (1.4) and (1.5). Typically,

dr e'"' (Cr),r (1.6a)

(1.6b)

detector' '";however, in this case the desired informa-
tion is superimposed upon shot noise and internal de-
tector noise. " In the two-detector HB&T system the
uncorrelated detector and shot noises of the separate
detectors average to zero in the final output. Rebka and
Pound" and others'~" measure the function Fs(xt,xs)
indirectly by counting coincidences in the production of
photoelectrons by a pair of photomultipliers. The useful
information is here superimposed upon the average nurn. -

ber of chance coincidences which would occur if the
emission of photoelectrons in the two photomultipliers
was completely random.

Although shot and detector noises average to zero in
the HBKT method, there are instantaneous noise
fluctuations in the output from the linear multiplier.
The intrinsic signal-to-noise ratios of the HB8cT and
coincidence methods are comparable; however, an

upper bound on the counting rate imposed by the re-
quirements of multiple-coincidence resolution limits the
coincid, ence method in practice to systems in which the
correlation effects are relatively strong. "HBKT have
used their apparatus with considerable success to meas-

ure the very weak correlations in radiation from broad-
band stellar sources. For strong sources for which shot
noise is less of a problem, it is often practicable to use

the simpler single-detector system. ""
If I,(t) is the field intensity at the jth photomultiplier

(j=1or 2) and if the real function B,(t) is the intensity-
impulse response function for that detector and its
subsequent electronics, then the output signal from de-

tector channel j is
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If we also introduce the frequency response function dined by the equation" "
bz(~)= d$ e'"'B.(i)=b (—co)* (1.7) d 'Cz()ICz( )=~Pz(0)ICz( ) (1 14)

which is the Fourier-Laplace transform of the impulse
response function 8;(1) of Eq. (1.3), then it is easy to
demonstrate" that

If the coincidence resolving time T~ is long compared
with rz (poor resolution), "we see from Eqs. (1.13) and
(1.14) that the ratio

Ps(~) =br(~)bs(~)*Pz(~). (1.8) Ce(0,r~)/Cc(~, rg) =1+rz/2r~ (1.15a)

Subtracting this constant from Cz(r), we obtain a
function

(1.10)'C.()=C ()—C ("),
which describes the nontrivial intensity correlations and
whose power spectrum

For notational brevity we assume that the two detector
channels are identical: bt(~)bs(co)*= Ib(co) I'.

In the limit Ir I
-+~ the Geld intensities on the right-

hand side of Eq. (1.5) are uncorrelated:

C.() =-C.( )=(I(i)) (1(i))

gives a direct measure of Tz. In the opposite limit of
high resolution (r'«rz) this ratio is

Ce(0, r~)/C (@~re)= 1+~Cz(0)/Cz(~), (1.15b)

independent of both rg and Tz.
To interpret the single-detector measurements, it is

useful to assume that the impulse response function
8;(1) of Eq. (1.3) describes the "shot" response to a
single detected quantum (photon) of the radiation Geld.
If DPz(~) represents the power spectrum of the intrinsic
intensity correlations, as it does in the preceding two-
detector systems, the single-detector method measures
the power spectrum""

APz(sr)= dr e'"'ACz(r) (1.11a) 'P () „„„=Ib()I'Ln(1(i))+~'~P()7, (1 16a)
detector

=Pz(e) 2~Cz(~—)b(~) (1.11b)

If b(0)=0, as is easily arranged, the Grst term on the
right-hand side of (1.12) will vanish and Ce(r) =~Co(r).

If in the HB&T apparatus the signal from channel 2

is delayed a time T relative to that from channel 1, the
average output from the linear multiplier and its subse-

quent integrating circuit is precisely the correlation
function (1.4) or (1.12).

If in the coincidence method T~ is the coincidence re-
solving time and T is the relative delay time of the two
input channels, " "the counting rate is proportional to

Co(r, rg) = [dr'Cz(r+r')
—&8

=2rsCz(~)

(1.13a)

d'M Sinai Tg

'Pz(~). (1.13b)
~ 2Ã 0)Tgg

It is sometimes useful to interpret the coincidence ex-
periments in terms of an intensity correlation time Tz

is a smooth function of co. Using this spectrum in (1.8),
we see that the output correlation function (1.4) is

Cs(r) = Ib(0) I'Cz(~)

d'40—e-'"'Ib(co) I''Pz(co). (1.12)
2'

rms(fs)=
dhl 1/2—'P, (co)

lfl. (fo+k~f) 2~ detector
(1.17a)

=(2'f)'"Ib(2~fs)
I {n(I(z))

+g''Pz(2n f)}'I' (1.17b)

if DPz(~) and b(su) do not vary signiGcantly over the
interval 6f.

Just as itis convenient to avoid calibration difhculties
in the coincidence method by measuring the dimension-
less ratio (1.15), it is also convenient in the single-
detector method to measure ~Pz(co) relative to shot
noise. ' " For this purpose it is useful to know that, if
the radiation from a black-body thermal source tra-

"E.M. Purcell, Nature 178, 1449 (1956).
M More precisely, Eq. (1.15a) obtains when BPz(co) =EPz(o)

for all [co[&re '.
s'S. O. Rice, Bell System Tech. j.25, 282(1944);24, 46(1945).

where q is the detector quantum eKciency and (I(i)&&
is the average incident intensity in photons per second.
The latter rate can be determined from the average dc
output from the detector, which is

(J(1))g——Ib(0) Ig(I(~)&q. (1.16b)

If in the single-detector method the frequency analyzer
passes signal components whose frequencies lie in
the narrow~frequency bands fs——,''f(I fI(f +,'e~f-
6f«fs, theroot-mean-squareoutputfrom the frequency
analyzer is (co=2m f)
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verses an ideal passive 6lter which transmits only in
Lorentz-shaped lines centered about the optical fre-
quencies ~so and having full width hv(&pp then the
intensity-fluctuation power spectrum APz(co) is"

».( ) „.„„.„.= V(t)) ' . (1»)
z orentziari Co +(2srdv)

In the broad-band limit hv)) f, and. in the limit of weak
intensity (I(t))t —+ 0 or low quantum eKciency rt -+ 0,
shot noise will dominate the single-detector measure-
ment (1.17). This fact suggests" that in single-detector
measurements on an unknown source one measures for
each frequency fs both the frequency-analyzer output
rms(fs) and the average detector output (J(t))t. If one
then adjusts the intensity of a broad-band black-body
source so as to reproduce the output rms(fe) and meas-
ures the corresponding average detector output, it
follows immediately from the preceding expressions that

(J(t))t ~ ~ ~ d
——(J(t))tyrt'~ b(0)

~
APz(2sr fo) „(1.19a)

source

where the quantities on the right-hand side refer to the
unknown. Equivalently,

/t Pz(2~fo) ( &(o)
~

Cz(~) (J(t))t'

y (J(t)), „„,„,—(S(t)), . (1.19b)
source

In the following sections we compute the intensity
correlation function ACz(r) or, equivalently, its power
spectruzn /t. Pz(oo) for simple models of a four-level
steady-state laser oscillator perturbed by noise. The
noise sources most relevant to amplitude or intensity
fluctuations (in contradistinction to frequency or phase
fluctuations, which we do not consider here) are
(i) quantum noise and (ii) pump fluctuations. Because
hv))k2 in lasers, thermal noise is not important.
Population pulsations, driven by beating optical Gelds,
can also modulate the intensity spectra of multimode
lasers, and this effect is discussed further in Sec. 4.

'8 A rej&resentative derivation is contained in Refs. 18. In the
range ~ra ~&&2s.av the magnitude oi the spectrum (1.18) varies in-
versely as Dv. %e wish to emphasize that this is a special property
of the black-body thermal source whose features enter the HB8zT
analysis in the assumption of random phases for the diGerent fre-
quency components of the Fourier decomposition of the electro-
magnetic Geld. That the random-phase assumption is equivalent
to the assumption of a normal or Gaussian distribution for the
electromagnetic 6eld (appropriate to a thermal-equilibrium dis-
tribution of the 6eld in a hohlragsa) follows from the central limit
theorem of statistics DI. Crammer, Mathematsca/ Methods of
Statistscs (Princeton University Press, Princeton, New Jersey,
1946)g. The random-phase assumption does not apply, for ex-
ample, to spectra which derive their width from frequency modula-
tion. Laser sources display the 1/Av dependence below threshold;
above threshold saturation stabilizes the intensity and modiGes
the simple 1/av dependence.

In lasers having a single photon mode X, the intensity
power spectra (1.6) and (1.11) reflect the time develop-
ment of the photon number operator b),~b~, where bq
and b~t are the usual annihilation and creation opera-
tors describing the electromagnetic field: Lbi„bqj=0,
Lb&, bi,tj=1. If the width of the intensity-modulation
spectrum APz(to) is less than the homogeneous atomic
and cavity linewidths and if nonresonant components
are neglected, " the time development of bi, tbi, (t) can
be described by rate equations which only involve
electromagnetic Geld operators in the combination
bi, the, (t)—that is, which only involve diagonal elements
of the photon density matrix. In Sec. 2 we base our
analysis of single-mode lasers upon such rate equations
quantized in the manner of Shimoda, Takahasi, and
Townes by restricting the eigenvalues of photon and
atomic population operators to discrete integral values. "
Unquantized rate equations were developed for lasers
by Statz and DeMars" and have been used for the
analysis of laser transients by several authors. A review
is given by Kleinman. 32

Using the results of Sec. 2 as a guide, we develop in
Sec. 3 a convenient Langevin model with white-noise
sources which, when used with the unquantized rate
equations, reproduce the Shimoda, Takahasi, and
Townes quantum sects. The mathematical simpli6ca-
tions of this model permit us to extend the single-mode
results of Sec. 2 to multimode cavities in Sec. 4 and to
general pumping schemes in Sec. 5. In treating multi-
mode lasers, we use modihed rate equations which in-
volve electromagnetic Geld operators in the bilinear
combinations bi, tb„(t)—that is, which involve off-
diagonal as well as diagonal elements of the photon
density matrix. Our treatment correctly predicts popu-
lation pulsations, but it does not lead to mode locking. '

In the Gnal section, Sec. 6, we summarize our princi-
pal results and discuss numerical examples for typical
lasers. Readers not interested in the details of special
cases or in derivations may turn directly to this last
section after reading the Grst few paragraphs of Sec. 2,
especially Eqs. (2.1)—(2.3) and (2.12), where the impor-
tant laser parameters are deined.

» Similar assumptions have been used by Lamb, Ref. 3, Eqs.
(38) and (70).

30K. Shimoda, H. Takahasi, and C. H. Townes, Proc. Phys.
Soc. Japan 12, 686 (1957).

N H. Statz and G. DeMars, in QttasttttmZ4ctvostscs, edited by.
C. H. Townes (Columbia University Press, New York, 1960),
p. 530."D.A. Kleinman, Bell System Tech. J. 43, 1505 (1964). The
parameters of Sec. 2 become in Kleinman's notation sr', = 1/t,
yi, = 1/t„, and Ps= 1/t, . In typical systems s.i,«7i„ I's., this fact is
used in our analysis. If the relaxation from level 2 to level 1 in the
system of Fig. 1 is primarily by spontaneous emission, then
PKleinman, Eq. (7)g

7rg ' ——(8srv'N, .ts/cs) Vt,Zsv,

where t„ is the spontaneous-emission lifetime, n f is the index of
refraction, V is the cavity volume, and hv is the width of the
frequency-v atomic line. Formulas of this type are generally valid
only if mzt, (&1.
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PUMP
LASER

TRANSITION

I' IG. 1. Atomic energy levels of prototype four-level laser.
Pump excites ground-state atoms to level 3 from which they
quickly decay incoherently to upper-laser-level 2. Atoms in this
level decay by emitting laser photons (solid line) or by other in-
coherent processes (wavy lines). The lower-laser-level 1 depopu-
lates rapidly to the ground state.

2. FOUR-LEVEL LASER, SINGLE
PHOTON MODE

Consider initially the prototype four-level laser of Fig.
j.. For simplicity, assume that the average level popu-
lations 1Vt(t)=1Vq(t)=0 and that 1Vs(t)=/Vr, the total
number of active atoms in the laser cavity. Also assume
that the cavity is resonant at only a single photon mode
X and that the average number of photons in that mode
is Pi(t). If E(t) is the rate at which ground-state atoms
are excited to the upper laser level by the pump and if
1Vs(t) —1Vt(t) =¹(t) is the atomic inversion, rate-
equations describing population changes with increasing
time are" "
(&/&t)&s(t) =&(t)—I'21V2(t) —~pL1+Pi(t)/Ns(t), (2.1a)

(8/r)t)Pg(t) =s(t)+rriL1+P), (t))Ãs(t) —yiPi(t). (2.1b)

Here xq, the mode rate, "is the average rate for spon-
taneous emission into the laser mode, I'2 is the average
rate of decay from the upper laser level by other than
laser-photon emission, and y~ is the average rate of
decay of photon number in the undriven laser cavity.
The term s(t) is a small noise signal to be described
further below and in Sec. 3.

If Pi„Ns, and 8 are the time-averaged values of
Pz(t), ¹(t),and E(t) in steady-state operation, then
Eqs. (2.1) imply t average value of s(t) vanishes)

8= I'sNs+s. i,(1+P),)¹, (2.2a)

YAP' sr'(1+Pi)N2 ~ (2.2b)

If pq(t), ns(t), and r(t) are small fluctuations of
P~(t) =Pi+pal(t), etc. , about these average values, then
to first order in the small fluctuations Eqs. (2.1) give

(8/Bt)ns(t) =r(t) —Pl's+7ri(1+Pi, )gns(t)—s.),Ns ),(t), (2.3a)
(8/cit) pi(t) =s(t)+s-g(1+Pi, )ns(t)—(yg —w iNs) p),(t). (2.3b)

Above threshold where nonlinear saturation effects are

¹(t)=P.,nP(n, p; t),

Pi.(t)=P.„pP(n,p; t).

(2.6a)

(2.6b)

Multiplying (2.4) by p, one can similarly reproduce Zq.

"M. Lax and R. D. Hempstead (private communication).

important, the Quctuations are known experimentally to
constitute only a small modulation of the steady-state
output, and Eqs. (2.3) adequately approximate Eqs.
(2.1). (Systems having intense "spiking" in their
outputs" are, of course, exceptions and are excluded
from our analysis. ) Below threshold the relative Quctua-
tions may be large; however, the nonlinear terms in
Eqs. (2.1) are then small, so that the linear approxima-
tion does not generate significant errors. In the im-
mediate vicinity of threshold the errors may be more
significant, ss but we shall use the linear Eqs. (2.3) for
want of a better tractable approximation.

Shimoda, Takahasi, and Townes (STT)" have em-
phasized that the eigenvalues of the photon number
operator b), tb~ and of corresponding atomic population
operators a ~a are not continuous variables but are
constrained by quantum mechanics to integral values.
This constraint is important to our analysis because it
is the source of quantum shot noise. Following STT, we
introduce the probability P(n, p; t) that at time t the
level-2 atomic population and the mode-A. photon
population, respectively, have the integral values (n,p)
in an ensemble of identically prepared systems. Under
the conditions for which Eqs. (2.1) were derived, this
probability is governed for increasing time t by the
differential equation

(8/clt)P(n, p; t) =R(t)P(n —1, p; t)
+I's(n+1) P(n+ i,p; t)+s(t)P(n, p—1; t)
+y),(p+1)P(n, p+1; t)+s-i(n+1)pP(n+1, , p—1; t)
—LR(t)+I"sn+s(t)+yip+s. in(p+1)$P(n, p; t),

(2.4)

plus initial conditions. Summing Eq. (2.4) over admissi-
ble values of (n,p), we correctly find that the total
probability is a constant of the motion.

The probabilities P(n, p; t) can be viewed as diagonal
elements of the ensemble density matrix. It is not
necessary to introduce supplemental oG-diagonal ele-
ments, because such elements play no role in Eqs.
(2.1)—(2.4). However, off-diagonal elements are rele-
vant to multimode systems, and they will be mentioned
again in Sec. 4.

Multiplying Zq. (2.4) by n and summing over (n,p),
we obtain Eq. (2.1a):

(8/clt) Ns(t)
=R(t)—rs¹(t)—~& g„„n(p+1)P(n,p; t) (2.5a)

=Z(t) —I"slVu(t) —s.i/1+Pi, (t)11Vg(t), (2.5b)

where
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and the function ECr(r) of Eq. (1.10) to

~C.(.)=C-( )-«b.tb.)), (2.7b)

where bq, bqt are the photon annihilation and creation
operators introduced in Sec. 1 and the expectation value
refers to a stationary ensemble of laser systems whose
populations are described by the steady-state proba-
bility P(m, p).

Given a r&0, let P(tt, p; t+r)i, & be the probability
that the operator (bqtbi)(t+r) in Eq. (2.'/) will measure
the eigenvalue p and that an atomic level-2 population
operator would correspondingly measure the eigenvalue
e. This probability is governed in its 7 dependence by
Eq. (2.4) and has the properties previously ascribed to
P(rt, p; t). If C ~ is the projection operator for states
with eigenvalues (tt,p), then

P(n, p; t+ r) g t = (b,t(t) C'„,(t+ r)b~(t))/

Z-.(b.t(t)C-.(t+ )b (t))
=(b~'(t)C' (t+r)b~(t))/Pi (2 8)

where we have used the completeness property
Q„„C ~=1 and have replaced (birbi) by Pi,. Taking
averages as in Eqs. (2.6), we obtain the functions

C2),(r) =Pi, g„„rtP(rt, p; t+r))„,
=PiNr(t+r)i, i, (2.9a)

Cii(r) =Pi, g„„pP(rt, p; t+r)i,t,
=P~P) (t+r)x, i (2 9b)

That the function (2.9b) is identical to the function
(2.7a) follows from Eq. (2.8). As before, we remove
large-r limiting values to obtain

ACg, (r) = Cmi(r) —Pg¹, (2.10)

"Constants of proportiona1ity connecting Cl(r) and C),), (v)
cancel from ratios of the type (1.15) and (1.19b): Cr(r)/Cr(~)=Cia, (r)/Cii(~), nPr(&a)/Cr(~) =nPqi(co)/Cz„(oo), etc.

(2.1b). The approximation (2.5b) is justified in these
cases because ~y((l 2.

In the steady-state limit t -+~ the function P(e,p; t)
approaches a fixed limiting form P(rt, p) independent of
initial conditions. Using that limiting form in Eqs.
(2.6) to define N2 and Pi, and making an approxima-
tion similar to that of Eq. (2.5b), we can easily verify
the steady-state relations (2.2).

The importance of Eq. (2.4) is not that it is equivalent
in the manner we have indicated to Eqs. (2.1)—(2.3) but
rather that it can be used to specify the ieitiat conditions
to be utilized with those equations. If in Eq. (1.5) the
intensity I,(t) incident on the photomultiplier j, j=1
or 2, is proportional to the radiation intensity in the
laser mode X, it follows from the general theory of optical
measurement" " that the intensity correlation func-
tion Cr(r) is proportional to"

Cii(r) = (bit(t)bd(t+ I
r l)b&(t+ I r()b (it)) (2.7a)

I',=r,+~,(1+8,),
pi= pi —~i¹=yi/(1+Pi) .

(2.12)

Assuming that the noise sources r(t), s(t) on the right-
hand side of Eqs. (2.11) represent only bona-fide ex-
ternal noise signals, we must supplement Eqs. (2.11)by
the quaetem initial conditions

EC2i(0)o =Q2i ~ ECii(0) g =Qii,

where from the definitions (2.8) and (2.9)

Q-= Z-. p(p —1)P(~,p) —P",
Qmi= g.„rtpP(n, p) N2P), , . —

(2.13)

(2.14a)

(2.14b)

The subscript Q in Eqs. (2.13) indicates that the given
initial values relate only to intrinsic quantum 6uctua-
tions and that additional contributions to ACii(0),
etc. , can result from the noise sources r(t), s(t).

Because Eqs. (2.11) are linear, we can write their
solution as the sum of that solution of the homogeneous

Lr(t), s(t)=07 equations which satisfies the quantum
boundary conditions (2.13) and that particular solution
of the inhomogeneous Lr(t), s(t)W07 equations which
vanishes when r(t) = s(t) =0. Consider the inhomo-
geneous equations first. Assume that r(t) and s(t) are
real stationary classical variables with power spectra
Mss(&), ~Pss(&)=&Pss( —or), and APss(oi), where

typically

aPss(oi) = dr s'"'(r(t+r)s(t))i. (2.15)

In much the same way that Eq. (1.8) follows from Eqs.
(1.3) and (1.7), it follows from Eqs. (2.11) that the corn-
ponent DPii(o~)ss of the power spectrum dPii, (o&) of
ACiq(r) which derives from the pump fiuctuations r(t)
and the noise signals s(t) is

~P) i(~)ss= {~),'(1+P))'&Pss(oi)+~),(1+Pi)
X $(io~+ I'2)aPss(ce)+ (—i~+ rm)aPss(to)7
+(~'+ I'2')&Pss(~))/{(vZ'2+~iv)P), —~')'

+oi'(I'2+pe)') . (2.16)

etc. Power spectra follow as in Eqs. (1.6) and. (1.11)
if, consistent with (2./a), we define AC2i( —

~

r
~ )

=AC2), (~ r ~), etc.
Because the functions C2i(r) and Cii(r) have been

identified in Eqs. (2.9) with populations described
by Eqs. (2.1)—(2.3), the functions (2.10) will satisfy
in the linear approximation (2.3) the differential
equations (r) 0)

((r)/itr) +I2)AC2i (r) +Pl &N26Cii(r)
= (bit(t)r(t+r)bq(t)), (2.11a)

—.,(1yP,)~C„(,)y((a/a, )ye, )~C.,(,)
= (»'(t)s(t+r)bi(t)), (2 1»)

in which for notational conciseness we have introduced
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It remains to compute that component »»(t0) o of the
power spectrum which describes the intrinsic quantum
noise. Solving the homogeneous Lr(f), s(f)=0j equa-
tions (2.11) subject to the initial conditions (2.13), we
find

~P»(~) o =2{lw~(1+P~)Q»+I'sQ~~j
X (vZs+rr) v)P).—te')+ter(l's+v~)Q»}/

{(vZ + ~v)p~ —')'+ '(I' +v~)') (2.17)

Summing the components (2.16) and (2.17), we
obtain the total power spectrum of the function (2.7b)

»»(~) = {~~'(I+P~)'E~P»(~)+&»3+w~(1+»)
XK +I".)L»-( )+~-]+(- +r.)
Xf~prrs(&)+~ss7]+(& +I"s )P~pss(&)+~ss j)/

{(v.l.+ v.P —')'+ '(1.+v.)') (2 18)

In this equation we have eliminated the initial values
(2.4) in favor of new real parameters

Ass =2LI"sQss+VP~Q»3,

~ss=&ss=v)P) Q))+(I's+v~)Qu
—~(1+&)Q, (2.»)

&ss= 2Ev~Q» —wx(1+P~)Qs&j,

which are undetermined to within an unspecified. con-
stant Qss It will prove useful below and in Sec. 3 to
arbitrarily fix Qss by the moment relation

For weak pumping, well below threshold, xqyyI'y
((v&1's=w&vz+vql's/(1+By). U the noise signals r(f)
and s(f) are statistically independent fhpss(~) =Oj,"
then

-"(1+P.)'»-( )
»»(te)

weak (cos+V~s)(tes+ I'ss)
pump

gpss(~)+2v P~'
(2.25a)

The total integrated intensity (2.24) of the quantum
fluctuations is

~c»(0)o
weak

(2.25b)

quantum-fluctuation component (2.17) of the power
spectrum

»»(es)o= 2VF~ s( te'+I'sI's)/

{(v I'+s. v P —oP)'+(u'(I'+v )'). (2.23)

Actually solving Eqs. (2.21) for Q», which is feasible for
this simple example, we obtain the total integrated
quantum-fluctuation power spectrum

v~P), '(I'si's+v~l's+w~Vd'~)
f) C»(0)o= (2 24)

(I9+vx)(vxI 2+s xvhpx)

Qss —Q y e(e—1)P(e,p) —Ns' (2.20)
pump

analogous to the definitions (2.14).
To evaluate the parameters (2.19), we use the STT

method. Setting E(f)=B in Eq (2.4),. passing to the
steady-state limit pt —&ao, P(rr, p; f) -+ P(rz, p)$, and
successively computing the second-order moments of
Eqs. (2.14) and (2.20), we obtain the three equations

vox = &A(I+PA)Qsx+vxQ» p

vgPgs ——s g(1+P),)Qss —(I's+vg) Qsg —vgpxQ», (2.21)

I2Q22+vXPXQD ~

Comparing Eqs. (2.19) and (2.21), we see immediately
that

weak
pump

= beep/k InL(1+Py)/Pg]: Aa)sPy/k . (2.26)
P)i» 1

There is no amplitude stabilization. Noise amplitude
modulation and noise phase modulation contribute com-
parably to the observed spectral linewidth of the laser
output. The intrinsic intensity Quctuations are those ex-
pected from a thermal-equilibrium photon field having
an exponential distribution (Bose-Einstein-Planck dis-
tribution) with an average number Pq of photons. "If
up=(ds/2s is the photon frequency, the noise tempera-
ture is

0 p g —p s ~ 2 p s (2 22)
For strong pumping, well above threshold, Pq&&1 andRB=

p BS= SB= PA, X ) SS=
vrqvqP&&vol's. In this case, if r(t) and s(t) are statis-

Substituting these results into (2.18), we obtain for the tically independent, "

and.

~P»(te)
strong
pump

(7rPK)»RB(~)+(re +I s )»ss(~)+ 2(~ +I si s)VPx

(~~vs~ —~')'+~'(r's+v~) ' (2.27a)

I'sl's+s n) P) I's+v~
~(:»(0)q

wx(1 2+vx) pa~copump

(2.27b)

36 Generalizations appropriate to dPas(ra) &0, etc. , can easily be derived from dP»(~)ss equations like (2.16)."R. J. Glauber, Phys. Rev. Letters 10, 84 (1963), and Phys. Rev. 131, 2766 (1963); E. Wolf and C. L. Mehta, Phys. Rev.
Letters 13, 705 (1964). fL. Mandel and E Wolf, Phys. .Rev. 124, 1696 (1961), assume a Gaussian electromagnetic held distribu-
tion to describe the output from lasers. This is consistent with our weak-pump results (2.25) and (2.26) but not with our strong-pump
results. (Compare Ref. 28.)g
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Here there is appreciable amplitude stabilization.
Quantum-noise amplitude modulation contributes in-
significantly to the spectral linewidth of the out-
put. The intrinsic intensity fluctuations (2.27b) are,
to within the Pi-independent constant (r2+yi)/2ri,
those which would be expected from a classical field
having a Poisson distribution (Maxwell-Boltzmann
distribution). "

At low frequencies the stabilized spectral function
(2.23) is less than the unstabilized function (2.25a)
evaluated for the same value of P&. At very high fre-
quencies both functions approximate

APii(&)
I hi2h &~a.= {2ry (1+Pi) APiii2(cv)

+~2PAPss(s))+2y. Pi 2/)/a)4. (2.28)

In this high-frequency limit amplitude stabilization is
ineffective because the population inversion with its own
finite response time is unable to follow and (thereby
stabilize) the fluctuations of the photon field. At in-
termediate frequencies the function (2.23) does in some
cases exceed the unstabilized function (2.25a). This is a
resonance phenomenon and will be considered in more
detail in Sec. 6.

3. LANGEVIN TREATMENT OF QUANTUM
FLUCTUATIONS

In the preceding section we used the STT method'
to compute the intrinsic quantum population Quctua-
tions of a simple four-level laser. While the STT method
clearly demonstrates the physical origin of the quantum
noise, it is cumbersome and not, well suited to the analy-
sis of more complicated laser systems. For the prototype
system of Sec. 2 it is feasible to actually solve Eqs.
(2.21) for the initial-condition paraineters Qii, etc., and
to use the results to complete Eq. (2.17); however, the
algebraic complications in this approach are so severe
in more general systems that it is important to develop
a simpler but physically equivalent alternative to the
STT method. Because the differential equations (2.11)
can be directly inferred from the linearized rate-
equations (2.3) without using Eq. (2.4), the essential
problem is to incorporate the STT boundary conditions.

By introducing constants (2.19) which add to the
noise spectra (2.15), we can always incorporate the
quantum-fluctuation power spectrum (2.17) into the
noise-signal spectrum (2.16). This suggests that we in-

terpret the intrinsic quantum fluctuations of systems
described by rate-equations in terms of fictitious
Langevin noise sources r(t), s(t) whose spectra (2.14)
are the frequency-independent constants (2.19).

Shot noise associated with 8-function impulses arriv-
ing (or departing) at a prescribed average rate has a
frequency-independent or m'hite-boise power spectrum.
If the impulses in a signal r(t) have constant integrated
intensity n and if their average rates of arrival (+n)
and departure (—n) are respectively R+ and R, then

the average value of r(t) is'"

and the power spectrum of the autocorrelation func-
tion (2.15) is"

ZIPS g(Q7) = dr e'"'(fr(t+r) —r][r(t)—r])&

=(+n)'R++( n)'R—=n'(R++R ). (3.1b)

C) i'(r) = ((bgtbg) (t+ r) (b gobi) (t) ) (3.3a)

„pp'P(rt, p; I', p'; t+r, t) . (3.3b)

Because Eq. (2.4) also applies here, the function (3.3)
satisfies differential equations analogous to Eqs. (2.11).
However, the initial conditions

Q.~'= Z..p'P(N, p) —P~'= Q~i+P)„

Q ~'2=+, 22pP(22p) &2'~=—Qn„

Q22 =Qey 22'P(22pp) —¹'=Q22+¹,

(3.4a)

(3.4b)

(3.4c)

differ from those of Eqs. (2.14) and (2.20). Using these
new initial conditions in Eqs. (2.19), we would find the
new noise sources

A g p' Agii+2r2V2 R—+—r jU2+7ii,(1+——Pi)Ã2, '(3.5a)

ARs =AsB ABs VLPi = 2rx(1+P))¹)
&s.s'= &se+2V~P=2r) (1+Pi)&2+72') ~

(3.5b)

(3.5c)

These are precisely the noise sources which would
be predicted from Eqs. (2.1), (3.1), and (3.2) in a
I.angevin model which associates a noise impulse of
unit-integrated intensity with each change in atomic or
photon population.

The cross-correlation function of two diferent signals
has a similar form,

AP~, ii,(a)) =n2$(R„+R )+—(R++R ) j, (3.2)

except that the rates describe impulses which occur
simultaneously in both signals, (Ri.+R )~ being the
rate of impulses which have the same sign in both sig-
nals and (R++R ) being that of impulses with differ-
ent signs.

In Eq. (2.4) both the photon quantum number p and
the level-2 population quantum number n change by
unit increments. This suggests that a shot-noise
Langevin model in which the quantum-noise com-
ponents of r(t) and s(t) are b-function impulses of unit-
integrated intensity might reproduce the STT results.
This would indeed be the case if the correlation func-
tions (2.9) had been based upon the joint probability
P(m, p; e', p'; t+ r, t) that the quantum numbers (22,p)
obtain at time t+7 if (22',p') obtain at time t. The
correlation function analogous to that of (2.7a) would
then have been



314 D. E. Mc CUMBER

One might object to "noise" in the above model being
associated with the transfer of excitation between the
atoms and the photon Geld, since that transfer is pre-
sumably described by an atom-photon interaction
Hamiltonian which does not directly involve dissipa-
tion or external reservoirs. In Paper III it will be shown
that this transfer noise is an indirect consequence of the
reservoir interaction responsible for the 6nite linewidth
of the atomic transition and that the noise has a band-
width comparable to that linewidth. A white-noise
spectrum results from the rate equations because in
deriving those equations one must assume that the
atomic linewidth is large compared with Quctuation
frequencies.

The two principal advantages of the shot-noise model
are that it provides a simple physical explanation of the
origin of the intrinsic quantum Quctuations and that it
permits one to infer the magnitude of the quantum-
noise sources from an inspection of the form of the dy-
namic equations (3.1), without directly using Eq.
(2.4). This simple classical model is applicable to the
function (3.3) principally because only commuting
population operators enter its rate-equation analysis. '~

Because the parameters (2.22) violate the Schwarz
inequality applicable to classical noise sources,

I ~P„( ) I
&L~P„(0)t).P„(0))I, (3.6)

it is clear that a Langevin model with classical noise
sources is not always applicable —in particular, it is not
directly applicable to the rate-equation analysis of the
functions (2.'7). Lax has shown' that the Langevin
noise sources appropriate to quantum systems are
operators whose commutation properties cannot be
neglected. These conUnutation properties are responsi-
ble for the differences noted in Eqs. (3.5) between the
spectral parameters (2.19) and those predicted by the
shot-noise model applicable to the function (3.3).

Although the shot-noise model is not immediately
applicable to the experimental functions (2.7) because
of their special operator ordering, it nevertheless does
provide some insight into the origin of the quantum
Quctuations, and it can be used to compute the rele-
vant noise parameters if one independently computes
the commutator-induced differences Shag =A~g —Agg',
etc. The following general remarks are relevant to the
latter calculation. Let Z„(t) be a set of atomic and pho-
ton populations described by rate-equations of the type
(2.1), let s (t)=Z (t)—Z represent a small fluctua-
tion of Z (t) about its mean Z, and let the s (t)

» For a more general discussion of noise in classical systems cf.
M. Lax, Rev. Mod. Phys. 32, 25 (1960), especially Sec. 5, where
the connection between Marko8 and Langevin methods is
considered.

'e M. Lax (to be published). These results will play a central role
in Paper DI of the present series. Cf. also M. Lax, in Eroceed&zgs
of the Physics of Qnantnm Electronics Conference, Sun Jnon, Psserto
Rico, 1NS, edited by P. L. K,elley, 3.Lax, and P. E. Tannenwald
(McGraw-Hill Book Company, Inc., New York, 1965).

satisfy a set of linear equations like (2.3)

(rl/cit)s„(t) =Q„A„„s„(t), (3.7)

where A. is a coeKcient matrix. In this notation the
Einstein relations (2.19) take the former "

6„„=—Qt(A„tQt„+Q„t(cU)g„) . (3.8)

If Q„„is defined as in Eqs. (2.14) and (2.20) and Q„„'
as in Eqs. (3.4), then

&Qmn= Qmn Qmn = bmtSn (3.9)

and

8A „=6 „—6 „'=—Qg(A gbQt„+8Q g(At)(„)
=A ~ +Z (h.t) „=86„„*. (3.10a)

If A. is real

Std =A„g„+A„~ =bh„ (3.10b)

This result, when combined with the shot-noise pre-
scription for the calculation of the parameters 6 „', per-
mits us to infer the magnitude of the noise parameters
(2.19) from an inspection of the form of the dynamic
equations without the intermediate use of the proba-
bility equation (2.4).

It is important to realize that the noise parameters
computed by the above prescription are not simply
reasonable approximations to noise sources present in
lasers but are the noise sources prescribed by the initial
conditions intrinsic to the dynamic model. The funda-
mental and intimate general connection between the
operator Langevin noise sources of a quantum mechani-
cal system and the operator equations of motion in that
system has been strongly emphasized by Lax."

A shot-noise model of laser quantum noise similar to
that outlined in Eqs. (3.3)—(3.5) has been used by
Haken. "

D3f(t) P (ee~M)eD„(t)N sr

s9 H. Haken, Z. Physik 181, 96 (1964); 182, 346 (1965).

(4.1)

4. FOUR-LEVEL LASER) SEVE&a
PHOTON MODES

Using the Langevin model of quantum Quctuations
outlined in Sec. 3, we can readily generalize the results
of Sec. 2 to determine the intensity Quctuations of
several modes excited by the same atomic transition.
In the same sense that E;(t) and Pz(t) in Eqs. (2.1) are
the average values of atomic and photon population
operators with respect to some initial-value ensemble,
we define Dq„(t) to be the average value of the photon
operator (b„tbsp)(t) and Es~(t) to be the average value
of the level- j population operator of atom M, 3E= 1 to
IVY. The photon population Pq(t)=Dq~(t), and the
atomic population E,(t) =+sr cV;~(t). For each photon
mode X we introduce coeScients N~~ such that the
average photon intensity at atom 3f is
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1V, i„(t)=+sr(u, ~)*1V;M(t)u),~. (4 2)

where the sum is over the several photon modes rele-

vant to the calculation. We also dehne
where [compare Eqs. (2.12)]

I 2 I2+Ex 'trx(1+PL)
1

7x=vx rriN2 = 'yx/(1+PA)

(4.8a)

(4.8b)

where [compare Eqs. (2.2))
8= I's¹+Pi,~g(1+Pi)¹,

vP»= x x(1+Pi)Ns.

(4.6a)

(4.6b)

If di„(t) =Di,(t)—Dq„, etc. , are small fluctuations of the
variables in Eqs. (4.3) about their time-averaged values,
then to first order in these fluctuations [compare
Eqs. (2.3)]

(a/at)n, , &„(t)= r&.(t)—I',rt, ,„(t)
—s-pNs Q,.CP o; vp) d,.(t)

= r&„(t)—I'pcs, g (t) (7rg7r /s p)Nsdi, „(t)

—6)„s.) ¹

Q' m, d„(t)/m p, (4.7a)

di„(t)= sg„(t)—[-', (y),+y, )+ippi, ]di„(t)

+-',~p[(1+Pa)+(1+P„)]tts,x.(t), (4.7b)

If we assume that the lower laser-level population is
negligible [Ni(t) =0, as before), that there is no mode
locking, and that the atomic linewidth is large com-

pared with both the Quctuation frequencies and the mode
difference frequencies co&„——~&—co„ the rate-equations
(2.1) can be generalized as follows":

(c)/ct t)1Vs~(t) =R~(t)—I'slVs~(t)
—xplVs (t)Qv. (uv )*

X[3,.+D,.(t)]u.~, (4.3a)

(~/~t)D (t)= (t)—[-'( + )+ .]D (t)
+-,'x p Q,{¹i,(t)[3„+D„(t)]

+[3 .+D .(t)]N, "(t)}, (4 3b)

where xo is a non-negative coupling constant. If the
atoms fill the laser cavity uniformly, as we assume,
then, because the different photon modes are orthogonal,

m-p +sr(u), ~)*u,~=vrglVrbi. , (4.4)

where mz is a non-negative constant. In the steady state
we assume that the time-averaged Gelds seen by each
atom are identical. This implies with Eqs. (4.3) and
(4.4) tha, t

N2 N2/NT 1 Ns, xy (s iN2/'trp) 4u p (4 5a)

D),„Pg3g„, ——D = Q), x-g(1+Pg)/prp, (4.5b)

and
C(Xo.

& vp)=(i/1Vz)+sr u, u (u u ) (49)

The approximation to this last function which we have
used in (4.7a) is reasonable when Eqs. (4.4) and (4.5)
obtain.

The first-order equations (4.7) effect a separation be-
tween diagonal (X=v) and off-diagonal (XNv) elements
of the averages Dq„(t) and Ns, i,(t). This separation has
the physical implication that population pulsations
driven by the beating fields from diBerent modes will

not be observable in the photon intensities Pq(t) =Diq(t).
Beats will be seen by detectors which measure the off-
diagonal elements Di„(t), XAv, and population pulsa-
tions will be seen by those which detect the emission
from separate atoms or small groups of atoms —that is,
by detectors which measure the atomic population
1Vs~(t).4i An experimental measure of the accuracy of
the first-order theory of this section is the extent to
which the diagonal elements Dig(t) are free from beat-
frequency pulsations.

In multimode lasers the intensity correlation experi-
ments described in the introduction measure the cor-
relation functions"- "
C(gy )(„„.)(r) = (j{b„.t(t)bg t(t+r)bg(t+r)b„(t)}) (4.10a)

AC(AX')(vv'1(r) C(xx')(pp')(r)
—((f '& )(t+ ))((f. '&)(t)), (410b)

where I' indicates time ordering such that the opera-
tor ordering in (4.10a) remains as indicated for r) 0 and
such that the b~ operators are interchanged and the b

operators are interchanged if ~&0. Because the en-
semble implicit in the expectation value is assumed
stationary, it follows that

Co it "1(—IrI)=Ct- &&&~ &(IrI) (411)

The functions (4.10) reduce to the functions (2.7) for
single-mode systems. When Eqs. (4.7) obtain, the func-
tions (4.10) are different from zero only when (X=),',
v=v') or (X=v', v=V). Corresponding to these two
cases, we introduce new functions

Ci„(r)=(T{b,i(t)b) t(t+r)bg(t+r)b„(t)}), (4.12a)

AC)„(r)= Cg„(r) PiP. ,
— (4.12b)

"Cf. Paper III; also, M. Lax (to be published). The assumption
of no mode locking enters when we use a product of averages —for
example, 1Vp (t)D„(t) in Eq. (4.3a)—in place of a single average
of operator products. Although a similar approximation was justi-
fied in the single-mode Eqs. (2.5) simply because s.

&,«I'p, the
multimode case is complicated by beat-frequency resonances
which enhance the importance of photon-atom correlations.
(Cf. Ref. 3.)

4'The photon modes X enumerated in the equations of Sec. 4
are not a complete set of modes for the radiation Geld but are only
the low-loss modes relevant to laser oscillation. $Cf. A. G. Fox and
T. Li, Bell System Tech. J.40, 61 (1961)g. It is to the latter modes
that Eq. (4.4) and the concomitant separation of Eqs. (4.7) into
diagonal and oG-diagonal components pertain. Equation (4.4)
does not pertain, for example, to spontaneous emission perpendicu-
lar to the axis of a gas laser.
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and
C),.'(r) = (T(bit(t) b„t(t+r)b)(t+ r)b, (t) ) ) (4.13a)

=DC),„'(r) . (4.13b)

The functions (2.7) are the functions (4.12) with X=v.

/The functions (4.13) are not to be confused with the
functions (3.3) used in Sec. 3.j

The functions (4.12) and their linearized equations
of motion (4.7) involve only diagonal elements of the
photon density matrix; the functions (4.13) involve
off-diagonal elements. Because it is not our intention
to discuss phase Quctuations in this series of papers and
because the functions (4.13) are not relevant to the
calculation of the functions (4.12) with Eqs. (4.7), we
shall be content with the following approximation to
the functions (4.13):

C~ '(r) = (b"(t)b~(t+ r))(&'(t+ r)b.(t)).

This approximation is exact in the two extreme cases
that the photon fields have second-order coherence'
or that they have the coherence properties of black-
body radiation. In this approximation the power
spectrum

The spectrum (4.16) is that which would be measured by
familiar dispersion or diGraction spectrometers. The
power spectrum DP,„'(cv) is peaked near the di6'erence

frequency ~~„.
In what follows we concentrate exclusively upon the

functions (4.12) whose analysis parallels that of the
functions (2.7) in Sec. 2. Making the ansatz r),),(t)
=(7r),/mo)r(t), defining s),(t)=s),),(t), and introducing a
function C2),(r) similar to that in Eq. (2.9a), we ob-
tain from Eqs. (4.7) Lcompare Eqs. (2.11)j

((8(8r)+ I'g) ACp. (r)+Q), 7r) Ã26C) „(r)
=(&'(t) (t+ )& (t)), (417 )

(1+P )~C..( )+((e'~ )+~ )~C.( )
= (b„t(t)s),(t+ r)b„(t)). (4.17b)

The noise sources r(t) and s),(t) include fictitious
quantum-Quctuation noise sources as well as bona-fide
external signals or Quctuations. Using the method of
Sec. 3 to compute the quantum-noise spectral param-
eters, we find (compare Eqs. (2.22)j
~i~a=o, ~z),=~),e,= —v)P)', ~),.=2v)P), '&). , (418)

where

AP), „'(~)=

g~(&) =

dr e' '2Cgy'(r)

8Q)—g~(~-+ ~)g.(~),
2~

(4.15)

dr e'"'(b ) (tt)bg(t +r)). (4.16)

where in the subscripts we have written X in place
of Sy.

If DPi„((e) is the power spectrum of AC),„(r), let us
separate AP),„((e)as in Sec. 2 into a component AP)„(co)ge
describing bona-fide pump Quctuations and external
signals and a component AP),„(&e)o describing intrinsic
quantum noise. Solving Eqs. (4.17), we write the com-
ponent DP)„(co)its in the form Lcompare Eq. (2.16)$

&p~.( ) s=(—~' +v~) '() +y„)—' (r,+x — + ' )—2
~2+~ 2 (e2+~ 2

x„y„I'„ 7l p
dr e' ' rr),(1+P))r(t+r)+ —icu+r, +.P' sx(t+r) —r)P)( g' s„(t+r)

p&& 'Lct)+'r p
—zM+'rp

t-averaged

~,y,P,X,(1+P,)r(t)+~ i +I',+g' s—,(t) q,P, P' s,(t)—
l p+& z(e+'r p p+" z'+'r p

(4 19)

where we identify the power spectra d,PIi p(cv), etc. , as in Eq. (2.15). To obtain the power spectrum of the intrinsic
quantum noise, we replace the power spectra ZPzz(cv), etc. , in (4.19) by the quantum-noise spectral parameters
(4.18). Doing that, we obtain the diagonal elements Lcompare Eq. (2.23)j

~.v.I'.~. '
P~P Ijt — P P P P

,~p.,(.),=(.+;, )- (r.+x- +.: ) x — 2;„p, r,+r.
cv +"rp ~2+~ 2 PXX M2+$

tj+P IJt+ IJ

X I2—Jig 1 I y
— M 1— — 2py Py 4,20R
~2+p 2 Par ~'-+y„' pp-'~ (e +'rp
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and the o8-diagonal elements (XW»)

x'u'y»P»'Yu&(', I 7ruv»P» '
»' (~) =(—( +v ) '(( +v.) ' (r +2 -

l
+~'~l (—r,

(p'+y„' 2 k» (p'+y„'

2&»P» t' nuy»P. » ( 2ygPi,
&&

—v»' i((+pi)~l +(
l
i +r +Z' —y~p»' .((+»)~l +()i—~+p„ » i~+v» &i~+v~

( pr» y»P» 7I i, Px 7l„P„ m„'y„P„
&&I

—s~+rp+ Z' +ed'iVP, + +2 p" . (4.20b)
u&& happ+'yu 2(p+yg —z(p+y„»AX, v (p +$»

(4.21)

If in this case there are m lasing modes, Eqs. (4.20) become

2yPP {[I"sy+ (m —1)s pyP —(p'j'+(p'(y+ rs) '+ (m.—1)prp'y'P' —prp(1+8) rs((p'+y') )
~Pm(~)q= (4.22a)

(~'+v') {[rsv+m~pvP —~'3'+~'(v+ rp)')

and for XA v

These functions have the property tI(P&„(—pp)=AP„&((p) required by the time symmetry (4.11). The expression
(4.20a) reduces to (2.23) when only one photon mode is significant.

Only photon modes for which there is signiQ. cant stimulated emission need be explicitly included in the preceding
calculatioa. The effect of all other modes can be absorbed in the relaxation rate F2."

An important special case is that for which all lasing modes have identical parameters

~op

~P~.(~)o =
—2''{2s-pyP(mrs —(p')+m(srpyP)'+ prp(1+8) rs(pp'+y') )

(~'+v') {[r6+m~pvP —pp']'+~'(v+ rs)')
(4.22b)

For m&2 these expressions diGer significantly from the single-mode expression (2.23) and from the power spec-
trum describing fluctuations in the total photon output Pro ——Q& piPi„especially in their low-frequency behavior
when y ~ 0 (P —+ po). For the case (4.21) the power spectrum describing the fluctuations in the photon output of
e&yn modes is4'

t) P(m) 9 =Z~. v~v.~&x.(~)o
mofm )t(4 sum over

(4.23a.)
modes n of m modes

2eyP {((o'+rp[rp—crisp(1+P)3)+(m —ti)[2s.,yP(r, q —(p')+m( nP)')l( '+q'))
(4.23b)

[rsy+ms. pyP —pp'j'+(p'(y+ rs)'

When rt=m, this has the form (2.23) of the single-
mode power spectrum. Note that when the output from
all modes is detected (e=m), the power spectrum (4.23)
does not have the "weak pump" ((p'+y') ' behavior
[compare Eqs. (2.25)$ present in (4.22).

These expressions illustrate an important general

e Because I'& appears in the f(nal spectra (4.19) and (4.20) only
through I'p and because 1"p in Zqs. (2.12) and (4.8a) includes
radiative relaxation, it is clear that F2 should include all upper-
laser-level relaxation rocesses not explicitly included elsewhere
in the rate-equations. The I'p in the numerator of (2.23) is more

appropriately written I'p —s(, (1+Pi), the expression ppearing in
the numerator of (4.20a).g

4'The intensity spectrum measured by allowing the output
from several modes to fall on the same photomultiplier will con-
tain contributions from the beat spectra (4.13) as well as the spec-
tra (4.22). However, if, as is often the case, the optical beat fre-
quencies are much larger than the Quctuation frequencies of inter-
est, the beat spectra (4.13) can be neglected.

result. When one or more modes are strongly pumped,
the nonlinearity inherent in the rate-equations (4.3)
stabilizes the quantum Quctuations in the total rate of
photon output but does rot stabilize the output of
individual modes. For example, the low-frequency
divergence in Eqs. (4.22) and (4.23) when p ~ 0
(P -+~ ) results from fluctuations in the partition of the
total output between diBerent strongly pumped modes.

A more detailed discussion of fluctuations in multi-
mode lasers will be given elsewhere.

S. INTERMEDIATE ATOMIC PUMPING
LEVELS

A careful inspection of Eqs. (2.1) and (4.3) and of
Fig. 1 will reveal that the pumping rate R(t) used in
those equations represents the rate at which atoms are
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(5.1a)(a/at)Ns(t) =rs(t)+R, (t)—(wps+wss)Ns(t),

(8/8$)1V2(f) f2(/)+wssNs(/) F2N2(/)
—~gL1+Pg(t)7Ns(t), (5.1b)

(8/Bt)Pg(t) =s(t)+vrgL+Pg(t)7Ns(t) —gag(t). (5.1c)

Here s(t), rs(t), and rs(t) are fictitious noise signals which

excited to the upper-laser level 2 and that R(t) is only
indirectly related to the strength E,(t) of the actual
external pumping field which excites ground-state atoms
to the intermediate pumping level 3. In this section we
consider how E(/) relates to R,(t) and show that addi-
tional shot noise does not result from level-3 to level-2
transitions. It is sufficient for these purposes to consider
the single-mode system of Sec. 2, extending Eqs. (2.1)
to include the level-3 population Ns(t).

Assuming that transitions from level 3 to lower levels
j=0 and 2 are described by relaxation rates m;3 and
assuming as before that Ni(t) =0, we take in place of
Eqs. (2.1)

reproduce the intrinsic quantum fluctuations (Sec. 3)
and R,(t) is the rate at which atoms are excited by the
external pump to level 3. In steady state the average
populations satisfy Lcompare Eqs. (2.2)7

~.= (wps+wss)Ns,

wssNs ——FsNs+n. i(1+Pg)¹, (5.2)

vZ ~ =~~(1+P~)Ns

The linear equations describing small Quctuations about
these average values are )compare Eqs. (2.3) and (2.12)7

(8/Bt)es(t) = rs(t)+r, (t)—(wps+wss)es(t), (5.3a)

(pt/Bt)ms(t) =rs(t)+w. sos(t)
I'g—s s(t) 7ri—Nspi(t), (5.3b)

(8/Bt)pi(t) =s(t)+s.) (1+Pi)es(t)—yipg(t). (5.3c)

Using these equations to compute the photon power
spectrum by the method outlined in the preceding sec-
tions, we find

&x'(1+Pi)'jwss'~PUB(&). /happ'+ (wps+wps)'7}+2$O'x'(pp'+ &pl's)
~Pm(~) =-

(v~1's+~~V P~—~')'+~'(1's+vi)'
(5 4)

where

~Pisis(&) 8= dr e'"'(r ((+r)r.(t))( (5.5)

ass(M) =wss/(wps+w:s —ZM) . (5 &)

Because this is precisely the transfer function pre-
dicted from Eq. (5.3a) if r(t)=w»ns(/), a choice con-
sistent with Eqs. (2.3a) and (5.3b), we conclude that
for any given external pumping signal the results of the
preceding sections correctly represent all intrinsic
quantum Quctuations and all bona-fide pump Quctua-
tions provided only that in Eqs. (2.16) and (4.19)

DPisrs(pp) =
~
F(cu) ) shPisis(pp) „ (5.8)

where F(pp) is the transfer function describing how bona-
fide pump fluctuations r, (/), exclusive of quantum
noise, are reQected in the rate at which atoms are ex-
cited to the upper laser level.

is the power spectrum of the external pumping signal.
Comparing Eq. (5.4) with Eqs. (2.16) and (2.23), we
see that the result (5.4) is identical to that obtained
before if we set

APisa(cu) = (wss'/L(u'+ (wps+wss) '7)APiia((u), . (5.6)

This same power spectrum would obtain if the signal

r(/) was obtained by passing r, (/) through a filter with
transfer function

TAsx,z I. Typical laser parameters.

Gas laser
Solid-state

Solid laser diode laser

F2(sec ')
s.q(sec 'l
p), (sec ')

103
10 6

109

10'
105
10'1

~ L. J. Prescott and A. Van der Ziel, Appl. Phys. Letters 5, 48
(1964);J. A. Collinson (to be published).

6. CONCLUDDTG REMARKS AND
EXAMPLES

In the preceding sections we used rate-equations to
compute population power spectra of four-level lasers in
which the lower-level population Ni(/) =0. These spec-
tra pertain to the intensity Quctuations in the output of
cw laser oscillators as measured by apparatus described
in the Introduction. Such Quctuations stem from two
distinct sources: (i) quantum shot noise intrinsic to the
laser and (ii) random external fields perturbing the laser.
The physical origin of the quantum noise is discussed
in detail in Secs. 2 and 3; brieQy, it arises because atomic
and photon populations are characterized by integral
quantum numbers, not by continuous variables. The
importance of external perturbing fields depends to a
large extent upon the environment of the laser and
upon the method used for atomic pumping. 44

In Table I we have listed parameters typical of some
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gas (volume ~100 cc), solid (volume 1 cc), and solid. -
state diode (volume 10 ' cc) lasers. We have taken
I'& equal to a typical rate of spontaneous radiative re-
laxation of the upper laser levels' and have used
Kleinman s Eq. (7) with this rate and typical inhomo-
geneous linewidths to compute m),.32 Using these param-
eters in the expressions of Sec. 2, we have computed the
intensity-Quctuation properties of these typical lasers
in single-mode operation. As we showed in Sec. 4,
qualitatively similar results pertain to the total output
of multimode devices.

Considering first the intrinsic quantum Quctuations,
we have plotted in Fig. 2 the dimensionless ratio'4
/compare Eqs. (2.7) and (2.24); notation defined in
Eqs. (2.1)-(2.3) and (2.12)]
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A(-.(0)Q/C. ( )= (6 1)

(I's+Vx) (VZs+~xyxPx)

as a function of the average photon population Pq.
This ratio is a measure of the relative mean-squared
intensity fluctuations (summed over all frequencies)
and is pertinent, for example, to the ~=0 HBRT meas-
urement (1.12) and to the high-resolution coincidence
measurement (1.15b).4' Of particular importance is the
fact that these fluctuations are always less than (or
equal to) those predicted by the approximate expression
(2.25b) for weak pumping

&Cr(0)9/Cr(~) ~weak =1.
pump

(6.2)

The latter large Quctuations would obtain if the laser

2'.
0
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AVERAGE PHOTON POPULATION P

FIG. 2. Relative intensity fiuctuations ACr(0)o/Cr(~) versus
average photon population P), for the lasers of Table I. The solid
curves represent the function (6.1), the dashed curve the ap-
proximation (6.2) appropriate to weak pumping.

"While the relative fiuctuations (6.1) decrease monotonically
with Pq (Fig. 2), the absolute fiuctuations AC&,q(0)o shcrease
monotonically with Pz.

10-11 I I I I I

10 2 10 102 104 108 108 1010 1012

AVERAGE PHOTON POPULATION P

FIG. 3. Normalized power spectrum at zero frequency of in-
tensity fiuctuations -',yqAPr(cq)o/Cl(~) versus average photon
population P), for lasers of Table I.The solid curves represent the
function (6.3), the dashed curve the approximation (6.4) appro-
priate to weak pumping. These curves equivalently give Lcom-
pare Eq. (6.3)g the correlation time rr defined in Eq. (1.14).

operated as a noise amplifier with fixed gain. "In fact,
the gain is not constant but depends dynamically upon
the photon population Pz(t); the dynamic feedback
(saturation) stabilizes the intensity fluctuations. "

This stabilization is most effective at low frequencies
where the atomic population inversion can respond to
the photon Quctuations. In Fig. 3 we have plotted the
zero-frequency spectral density" Lcompare Eqs. (1.10),
(1.14), and (2.23)j
-'v ~P (o) /(: (")= lv

=Typal'sl's/(q xr's+sxyxPx)' (6.3)

as a function of I'~. The correlation time 7.~ is relevant
to the low-resolution coincidence measurements of Eq.
(1.15a). Because $x=yx/(I+Pq), the ratio (6.3) is in-
dependent of y~. Here, as before, the weak-pump
approximation

—,'~,AP, (O),/C, ( )l,.~ =(1+P,), (6.4)
pump

based upon Eq. (2.25a), overestimates the low-frequency
Quctuations.

In Fig. 3 the relative low-frequency intensity Quctua-
tions increase with photon population Px) 1 until they
reach a maximum near the threshold value4~

Pth= (I's/s-g)'t'))1 (6.5)
4' E. I. Gordon, Bell System Tech. J. 43, 507 (1964).
47 The corresponding threshold pumping rate is Res=1'syqP&, /

s.q(1+Pq) =I'spy/s. z if I' s/s. q&)1, as it generally is in practice.
The approximate form is equivalent to the familiar Schawlow-
Townes criterion LA. L. Schawlow and C. H. Townes, Phys. Rev.
112, 1940 (1959)g; however, it is less useful to us than the criterion
(6.5) because P), is extremely sensitive to very small fractional
changes in g for I't' =It'th.



320 D. E. McCUM HER

1012

106
D
lZ

104

A
1

0 10-4

10-8
Z
LtJI-
Z 10 12

LLJ

—10-I~I-

~ 10-20

-P -1O'

10

1P 10

1011

1012

1013

lo'4

(8) GAS

IKl ik

p
W h.

(b) SOLID

P ~104
10~

106

10~

106

IO'
Ip10

1011

1p12

P

(c) DIOD E

10-24 I I l l l I l

10 10 10 10 10 1011 10 10 10 10 10 10 10 10 10 10 ]0 10 10 10 10

ANGULAR FREQUENCY, 0) (BAD/SEC)

Fro. 4. Power spectrum of relative intensity iiuctuations ,y&DPr(co)o/Cr—(ao) versus angular frequency ca for different average popu-
lations PqIfor the lasers of Table I: (a) gas laser, (b) solid laser, and (c) solid-state diode laser. Low-frequency values agree with Fig. 3.
The curves for very small and for very large Pz are qualitatively similar for all lasers. For intermediate P7, values, the solid-state lasers
dier from the gas laser in that they exhibit sharp increases in noise at resonance frequencies lying just below the high-frequency cutouts.

of the photon population for which I'sy&, =s.qq qPq, the
boundary of the weak-pump and strong-pump regions of
Sec. 2. Above this threshold, stabilization is effective,
and the relative Quctuations decrease rapidly with in-
creasing P~. Below threshold the Ructuations follow the
weak-pump expressions. The threshold (6.5) is also the
population level at which a finite fraction (s) of any
incremental increase DB in pumping rate 8 is reQected
in the laser-mode output. Well below threshold
yqMq/AR~O; well above threshold y&,APq/DR=1.

Spectral distributions of the intrinsic quantum in-
tensity Quctuations are indicated in detail in Fig. 4.
There we have plotted the relative power spectrum'4
Lcompare Eq. (2.23)j

as a function of angular frequency co for different values
Pq. This expression is relevant to the single-detector
measurements of Eqs. (1.17) and (1.19). The low-

frequency values in Fig. 4 are consistent with Fig. 3.
The parameters for the gas laser of Table I are such

(I'&)qz) that the function (6.6) remains nearly con-
stant at its co=0 value for all co'& co,', where
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1p12

to within the factor (res+I'sl's)/(ros+I'ss) which is dif-
ferent from unity only for Pz&P&h."For very small
and for very large populations Pz the solid-state-laser
spectra are similar in their general features to the gas-
laser spectra of Fig. 4(a). However, for a broad range of
important intermediate P), values the solid-state spectra
are qualitatively different. Superimposed upon the ex-
pected smooth background are strong anomalous noise

(6.7a)&c = (q'x+&xvxPA/I 2) Fro. 5. Frequencies ~, (solid lines) and ~„(dashed lines) versus
phonon population pl, for the lasers of Table I. Values of or are
only indicated for those P7, such that or )0; this condition never
obtains in the gas laser. At the ends of the indicated or curves,
or falls abruptly to zero.

v '/(I+P~)'
Pg(Ptg

(6.7b)

(6.7c)- yg'Pg'/(Pu, '+Pg) '
Ph. +~gh ' Recall that at extremely high frequencies our results are in-

valid because the rate-equations upon which they are based no
Fora&') cg,' the function (6.6) decreases as yp/oP(1+Py), longer obtain.
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- y~'/(~'+y) ')P~.
Px»Pnp

(6.9b)

peaks near the high-frequency "spiking" resonances of
the laser. 4'

The function (6.6) has an extremum at s&=0 and, if

~„s—= —r,r,+([r,(r,+&,)+~,~,P,js
—r,r,(r,y~, ) } I &0, (as)

it has maxima at~=~co . (If co s(0, co=0 is the only
maximum; if ce )0, ra=0 is a minimum. ) The condi-
tion co '&0 never obtains in any laser when P&=0 or
when P&)P„v—=max(I' s/n. ~,~~/~~), facts which account
for the qualitative similarity of all spectra (6.6) at the
extremes of small and large Pq values

'v~~P. (~)q/~-r(~)
.-yg'/((u'+(o. ')(1+Pg) (6.9a)

Pg&Pth

respond to bona-6de pump fluctuations. " We have
plotted )compare Eq. (2.16)j

VX ~Pr( )RB

~Pea(~) Ci(~)

&~~et(1+P),)/P j'
(6.10)

(exes+~) v) P~—~')'+~'(~s+v~)'

as a function of angular frequency ~ for diGerent values
of P&,. Here ~P~~(o&) is the pump-noise power spectrum
of Eq. (5.8). As in Fig. 4, the diBerent lasers are quali-
tatively similar at the extremes of very weak and very
strong pumping; however, the solid-state lasers differ
in the intermediate pumping region through the ap-
pearance of spiking resonances near the frequencies
~co . These resonances appear at frequencies co= ~co„
when

(6.11)
The requirement co '&0 is not met for any population
Pq in the gas laser; however, it is met for some Pq in the
solid-state lasers.

In the pumping range for which the anomalous peaks
are strong and sharp, the amplitude fluctuation noise

(6.1) is predominantly concentrated in those peaks.
However, notice that the anomalous or peaks do not
inRuence the correlation time rz defined in Eq. (6.3)
and that their noise contributions are not relevant to the
low-resolution coincidence measurements of Eq. (1.15a).

In Fig. 5 we have plotted the cutoff frequency ~, of

Eq. (6.7) as a function of P~. Note the dip in ca, at
Py=Pth. For the solid-state lasers we have included in
Fig. 5 plots of co for those Pq values for which co '&0.

In Fi . 6 we have indicated how the lasers of Table I

is positive. The conditions for which co„&0 are similar
to those for which co '&0.

In testing the high-frequency predictions of the theory
of this paper, " it may prove useful to modulate the
laser output intensity by modulating the cavity loss
parameter yz. This is equivalent in Eqs. (2.1) to intro-
ducing an external signal

s(t) =—
Pygmy), (t). (a12)

If the modulation has the time dependence

By~(t) = $y~ cosset, (6.13)

where the relative modulation $ is sufficiently small that

"Cf. Ref. 32, especially Eq. (56) g, an/ the references citeQ a linear analysis applies, it follows from the equations of
therein. Sec. 2 that the relative modulation of the photon in-
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FIG. 7. Magnitude Mq(~) of the relative response of photon intensity in the lasers of Table I to modulation of the cavity loss param-
eter yz versus the angular frequency co of that modulation: (a) gas laser, (b) solid laser, and (c) solid-state diode laser. The different
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V 2(~2+r' ') I/2

Mg(ce) =
(vE 2+2rxvÃI, r0')'+~'(r'—2+v~)'

(6.15a)

and

&g 2 2rxVxPK+o2 )
8q(co) =Arctan

1 2 'y+ l 22rA'APE+& 'yx
(6.15b)

The modulation function 3IIq(ce) has been plotted in
Fig. 7 for the three lasers of Table I. The curves show
many similarities to those of Figs. 4 and 6. Note in par-
ticular the resonance peaks at ~=+co~ for the solid-
state systems when

&sr = l 2 +{Ll2(l 2+Vx)+rrxVAPxg
—r'22(f'2+yI, )2) 'I' (6.16)

is positive.
We shaH not endeavor to compare our results in de-

tail with measurements of intensity fluctuation noise
in lasers near threshold until after we report in Paper II
the generalizations appropriate to 6nite occupation of
the lower laser level (1VtWO). ss However, we should re-
mark that the intensity-fluctuation measurements re-
ported to date are in excellent agreement with the theory

5 It can be shown that, as the rate of decay from the lower-
laser level increases toward infinity and N1 ~0, the 6nite-N&
four-level-laser expressions reduce to those derived above.

tensity is

bP), (f)/PI, = —&Mg((es) cosLropf —bg(~os) j, (6.14)

where

described above. Prescott and Van der Ziel'4 measured
the output spectrum of a photon counter in that fre-
quency range where the intrinsic laser noise exceeds
the counter shot noise; their results for the He-Ne gas
laser are qualitatively consistent with the spectra of
Fig. 4(a). More recent gas-laser measurements by Freed
and Haus' are in quantitative agreement with our
theory, as are the measurements of Geusic~ for the solid
VAlG:Nd laser. Geusic's measurements show the spiking
resonance peak expected in the solid system and shown
in Fig. 4(b). A similar resonance peak has been seen in
the ruby microwave maser by Bloembergen and
Dimitrewsky. ' Armstrong and Smith' ~ ' used low-
resolution" coincidence techniques to study the GaAs
diode laser; their measurements of rr of Eq. (1.16a) are
quantitatively consistent with Eq. (6.3) and Fig. 3,
to within the accuracy of the parameters of Table I.
Multimode effects consistent with the predictions of
Sec. 4 have also been observed in the solid' and diode"
lasers.
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~~ If wg is the coincidence resolving time, measurements have
"low resolution" if ~geo ))1 for the appropriate Pq values. In the
diode laser above threshold (compare Fig. 5) u co, & 10'
sec '»Tg =2X108 sec ' for the Armstrong and Smith resolving
time rg=SY, 10 sec.


