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treated as delta functions of varying area qA,

s(t—t&) =qA 5(t—t&), (I18)

where g is the charge content of the pulse referred to the
6rst dynode of the photomultiplier, so that g= e, and 2
is the gain, one obtains for (117)

C (oo) =p esAsey(oo)+r(ppe As/2sr).

where I'=(qs). /g'. Noting that the anode current is
given by

fo=~ePp, (I20)

one can rewrite Eq. (I19) as

C (to) =Is(de/2sr) LI'+2+PC o(co)/p j. (I21)
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Second-harmonic generation and stimulated Raman effects for a plasma are calculated by the same
methods that have been used for bound electrons. The nonlinear susceptibility describing the stimulated
Raman eGect in a gaseous or metallic plasma is 6 to 10 orders of magnitude smaller than the corresponding
eGect in liquids. This process in a plasma can also be described as the parametric interaction between a
damped plasma wave and two light, .waves. The second-harmonic generation, from a plasma boundary is
dominated by a surface term which. originates from the discontinuity in the normal component of the
electric field. It is shown that the observed second-harmonic generation from metaHic silver probably stems
from bound ion cores in the surface layer rather than from a plasma surface term.

I. INTRODUCTIOÃ

HE basic nonlinearity in the interaction between
a free electron and an electromagnetic wave is

caused by the Lorentz force. Additional nonlinearities

may result from convective density fiuctuations in the
plasma. The nonlinearities in gaseous plasmas have been
studied extensively in the microwave region of the
electromagnetic spectrum. ' ' Recently much attention
has been given to optical nonlinearities of a plasma,
although they are by their very nature rather small. '—"
In this paper hydrodynamic terms and convection will

be ignored.
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The same basic formalism can be used to describe the
nonlinearities for bound and free electrons. This is par-
ticularly evident in the formulation of Cheng and Miller'
and of Pine, "who emphasized the self-consistent-field
description of the nonlinear susceptibilities. In Sec. II
of this paper, the second-harmonic volume polarization
for a plasma is rederived. The self-consistent-6eld cor-
rection on this longitudinal polarization is explicitly
exhibited in the same manner as has been done by
Ehrenreich and Cohen" for the longitudinal linear
dielectric constant. In Sec. III, it is shown that surface
terms are actually more important than the volume
effect for the second-harmonic generation (SHG) from
a metallic surface. Jha" has erst called attention to
these plasma surface terms. Our results are somewhat
different from Jha's and in better agreement with
recent experimental observations. We show furthermore
that the dominant contribution to the SHG may come
from bound electrons in the ion cores at the surface
rather than from the conduction electrons.

The next higher order nonlinearity describes the
Raman-type effects in a plasma. If, for example, a
laser beam at frequency cop, is incident on a plasma, the
plasma will present exponential gain for a light beam

~ A. Pine, Phys. Rev. D9, A901 (1965).The authors are indebted
to Dr. Pine for making his manuscript available before publication.

& H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
'4 S. S. Jha, Phys. Rev. 140, A2020 (1965). The authors are

indebted to Dr. Jha for receiving a copy of this paper prior to
publication.
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ates, =~L My, q& q wheley, q& q is the frequency of a
plasma wave with wave vector qL—g,. If both beams
at coL and co, are incident, generation of the antistokes
frequency at 2~L—co, is possible, etc. All these effects
are derived in a straightforward manner in Sec. IV by
a simple extension of the SHG calculation of Sec. II.
The same numerical results are obtained as from more
complex calculations. "The stimulated Raman effect
is so small that it will be of little use as a probe for
gaseous plasmas, although the Raman-type nonlinearity
may be important in semiconductor plasmas in the far
infrared. In Sec. V the same Raman effect is described
as the parametric interaction between two light waves
and a plasma wave. This illustrates again the parallel
treatment for free and bound electrons. The Raman
effect in a plasma is quite analogous to the Raman
effect in liquids and solids, "if the optical phonons are
replaced by plasmons.

II. SELF-CONSISTENT-FIELD CALCULATION OF
THE LONGITUDINAL SECOND-HARMONIC

POLARIZATION IN A PLASMA

General expressions for the lowest order nonlinear
susceptibility have been given by Cheng and Miller

[Eq. (13) of Ref. 5] and by Pine [Eq. (18) of Ref. 12].
Their results are valid for Bloch one-electron wave
functions in a periodic lattice potential and can be
specialized for the case of free electrons. Because of the
complexity of the expressions, it seems worthwhile to
rederive the result for free electrons in a special gauge,
which will clearly and explicitly exhibit the self-
consistent-6. eld corrections. Ehrenreich and Cohen first
utilized this method to get physical insight in the linear
self-consistent dielectric constant. They also pointed
out that the one-electron Hamiltonian approach is
equivalent to the random-phase approximation in the
exact many-body problem.

The zero-order or equilibrium density matrix for an
ensemble of free electrons with eigenstates,

l
k)=f1-»'exp(ik r),

where 0 is a volume of normalization, is given by

p&o&
l k) =

f &r (et,) l k) .
Here fo is the Fermi-Dirac distribution function and

er, ——ttt'k'/2srt is the unperturbed (kinetic) energy in the
state l k). The equation of motion for the density matrix
must now be solved in successive approximation, when

the perturbation by the transverse electromagnetic
wave and the self-consistent Coulomb screening poten-
tial is admitted. Since general expressions have already
appeared elsewhere, "here only the physically dominant

"Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
"See, for example, Refs. 5 and 12, or N. Bloembergen, Non-

tertear Optics (W. A. Benjamin, Inc. , New York, 1965).

terms will be retained. The perturbation may be
written as

Xn„,——(e'/2rrtc') A'+e&p, .
It can be shown by explicit calculation that for free
electrons the contributions from the linear term,
—(e/2')(y A+A y), aresmallerbyafactor (M/sic'),
where ~ is the light frequency. The transverse vector
potential A describes the light wave imside the plasma.
It is not the incident field, but the transmitted wave
into the plasma,

A=Ao exp(iq r—iort)+Ao~ exp( —iq. r+iort). (2)

The complex amplitude Ao has twice the value of the
more conventional deinition.

With the perturbation given by Eqs. (1) and (2), the
lowest order nonvanishing density-matrix elements at
the harmonic frequency 2' are given by
—(2j'tor)(kl p&'"&

l
k—2q)= (er, or, oo)(k) p&'"&

l
k—2q)

+(k l
(e'/2rmc') A'+eor,

l
k—2q)( fo(er )—fo(et —oo) }

+ir(kl p& "&
l
k—2q). (3)

The last term is a phenomenological damping term to
represent the effect of collisions and Landau damping.
The screening potential is related to the induced charge
density by Poisson's equation. Using the I ourier series
expansion for the screening potential,

o.(r)=g, q, ,, e+"',
and for the charge density,

e&'"re= e P, e+to" gr, (k'lp&'"r lk' —q'),

one Ands

(k l eoo &'"r
l
k—2q)

= (4rM /4g ) p r, (to'
l

p& "r
l

j'e' —2q) . (4)

When Eq. (4) is substituted back into Eq. (3), the solu-
tion can, after some manipulation, be written", in the
form

(kl. & -r lk-2q)

, (3)
er, oo

—er, +2tttor+oI' 2mc escF(2or, 2q)
pj g

where esca(2or, 2q) is the longitudinal, frequency- and
wave-vector-dependent, self-consistent linear dielectric
constant calculated by Ehrenreich and Cohen,

fo("- )-fo(")
escr. (~,q) = 1—

&t
~ ek—o eg+ttor+tF

The I'ourier transforms of the current density opera-
tor are given by

j&o& (q,O) = (Ite/2isrt) -'
e( oiq+2q), —

j &r& (q,or) =—(e'/mc) Ao.
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Eii, .i(2cd)
4w p"Lse—"ts(ce) sing;

. (9)
eit'(2ce)(1 —e '(2ce) sins& }"'+e(2c0)costi;

Here 8; is the angle of incidence of the fundamental

'r See Ref. 3, or N. Bloembergen, Eonttaear OPttcs (W. A. Ben-
jamin and Company, New York, 1965).

'SN. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606
(1962). There is a misprint in Eq. (4.12) of this paper. The de-
nominator of the last term should read "gq'/~qg'& cos&p+qz cosgg"
instead of "gp / tg /' cosH p+6p cosOg.

The expectation value of the nonlinear second-harmonic
current density is

(j(2',2q))= P&(k—2q~ j&')
( k)(k( pc'"&

~

k—2q)
(7)—(Ae/m) QQ(k —q) (k~p""'

~

k—2q) .

The nonlinear current density given by Eqs. (5) and

(7) creates the second-harmonic field. At optical fre-
quencies the change in electron energy and Ithe damping
rate are small compared to the photon energy. If the
denominator in Eq. (5) is thus approximated by 2hcs,

one finds immediately from the relations Pkf(eq) =0,
Pqf(el, ) =Eq, where X is the number of electrons per
unit volume, that the current density is given by

j (r t) = LEe'qAss/2m'coc'escF(2', 2q)$
&(exp(2iq r—2icst) .

The corresponding nonlinear susceptibility is obtained

by replacing j(2ce) by —2icsP(2co) and the vector po-
tential A by (ic/cs) E. One finds

P = g (2M):E'= L
—ilVe'Ep'q/4m'co escp(2'/2q) j

)&exp(2iq r 2net). —(8)

This result for the longitudinal second-harmonic po-
larization could also have been obtained more directly
from the relation that the divergence of this polariza-
tion equals the second-harmonic charge density:

divP(2') =e Qi, (k~ p&'"&
i
k—2q)

P"»=
t 2ieq/(2il)sj g,(kipc "~

~
k—2q).

Substitution of Eq. (5) and expansion of its denomina-
tor in the approximation, tts/2m(2k (2q)+ (2q)'}((2ltcs,
again yields Eq. (8). In the limit of low electron density,
2cs))cd„and esca 1, and substituting q/ce=c ', one
fines the same nonlinear susceptibility ( ilVe /—4smsc)cps

as was first found by very elementary considerations. "
The occurrence of ~aqua in the denominator was not
explicitly noted before, but its physical origin is evident
from the present calculation. Since the polarization is
longitudinal there is no second-harmonic power radiated
in the plasma. There is, however, a reflected harmonic
wave with the electric vector in the plane of reflection.
The reflected-harmonic amplitude has been expressed
in terms of the nonlinear volume polarization by Bloem-
bergen and Pershan. " Equation (4.12) or (4.13) of
their paper with +=0 gives,

wave on the plane plasma boundary, e(c0) is the trans-
verse linear dielectric constant of the plasma. P~~s is
given by Eq. (8) and it should be remembered that Es
in that expression is the electric Geld after refraction
just inside the plasma. This Eo should be computed
from the incident amplitude with the appropriate linear
Fresnel equation. For a metallic reflector this implies
a considerable reduction in its numerical value. A
quantitative discussion will be postponed until the
next section. There it will be shown that there are
surface terms which may contribute more than the
volume polarization. This is perhaps not too surprising,
since the volume term is essentially a magnetic dipole
term which vanishes, for constant co, in the limit q

—& 0.
When the incident electric vector is normal to the

plane of incidence, there is, however, no surface con-
tribution. In this case the reflected amplitude En(2')
from Eqs. (8) and (9) and Fresnel's equation may be
expressed in terms of the incident amplitude E&'& as
follows:

—kriSe'
En(2c0) =

4m'ccos (1—-',xs)

sin8;
X

t'(cos'8 —-'xs)'~'+ (1—-'x') cos8;j

4 cos'0.
X (E "' )'. (1o)

LcosH;+ (cos'8;—x')'t'j'

Here x=cs„/cs, and ce„'=4slVes/m is the plasma fre-
quency. The dielectric constants have been taken in
the limit q~ 0,

e (cs) = 1—cs„'/cs',

e(2') = esor(2cs, 0)= 1—co„'/4cds.

Except for the factor cg|:p ', noted above, this result
agrees with a calculation by Jha" on the basis of the
Boltzmann transport equation for a free-electron gas.

III. THE SECOND-HARMONIC SURFACE
POLARIZATION

Jha called attention to the importance of surface
terms which are connected with the discontinuity of
the normal component of the electric Geld at the bound-
ary. For these terms it is essential that the incident
Geld has a component in the plane of incidence. Choose
a coordinate system where this plane is the xz plane
and let 9 be the direction normal to the boundary.
According to the macroscopic equations the discon-
tinuity in the normal component is described by

BE,/Bz=$1 —c '(o~)jE +e5(z),

"See Ref. 4. The authors are indebted to Dr. Jha for a helpful
dIscussIon.
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where E~o is the normal component of the transmitted
wave just outside the plasma. It consists of the sum
of the normal components of the incident and rejected
waves and is e(~) times larger than the normal compo-
nent just inside the plasma.

In a microscopic picture there is of course no strict
discontinuity. The normal component E, varies rapidly
over about one Thomas-I ermi screening length in the
case of a metal. In the case of semiconductors, insulators
or any other medium one can still expect that the field
component changes rapidly over about one interatomic
distance. For a detailed calculation a precise knowledge
of the surface potential and the surface-state wave
function would be required.

Fortunately, the radiation field of a thin slab of
polarization, 0:s&(X, does not depend sensitively on
the distribution of the polarization as a function of s,
but only on the integral J'Pds. The second-harmonic
surface polarization may therefore be calculated in the
following manner: The discontinuity in the normal com-
ponent of the fundamental frequency induces a free
charge density at the surface

p(r, (o) = (1/4a e)$1—e
—'(a))$E~og(s) e'"~~'"'. (11)

For a free-electron gas the current density induced by
a 6eld A (r,co) for an electron density p&'& (r) =N is

(j(~))=1o'(r,~)P"'
= (Ne'/mc) A (r,&u) = (Ne'/imar) K (r,&o) .

In the same manner the second-harmonic current den-
sity corresponding to the oscillating free charge density
(11) at the surface is

(j '"~ (2co))= (e/4s-t'ma&)$1 —e '(~)]
XK((q)E~p(o)) exp(2sk, x) . (12)

For the normal component of this surface current
density there is some ambiguity in Eq. (12) whether
one should take the normal component of K(o&) just
outside or inside the plasma. If one takes half the sum
of these values, the normal surface current density
becomes

j,&'""&(r,2ar) = (e/47rimu))L1 —e '((o)]
XL:', +-', e-'(a))]LE,~o((o)]' exp(2ik. x). (13)

It should be noted that this normal component will
make the dominant contribution to the reflected har-
monic intensity from highly reflecting materials. It
follows from the Fresnel equations that the tangential
components of the incident and reflected waves at co

nearly cancel each other, while the normal component
just outside the surface is almost twice the normal
component of the incident field. The normal component
E~o is expressed in terms of the incident electric field
amplitude E('& which makes an angle y with the plane
of incidence and the direction of the incident beam

makes an angle of incidence 0, with the normal,

2 cose; sing;
-E('& cosy.

cosg;+e rls(~)(] —e r(&g) sinsg. )&/s

Prom Eqs. (13) and (14) it follows that the second-
harmonic intensity generated by this surface term is
proportional to cos4y. This dependence has recently
been observed by Brown and co-workerss' for second-
harmonic generation from metallic silver. It is therefore
of interest to compare the intensity produced by the
surface term with the volume terms of the preceding
section. The radiation from a thin slab-source distribu-
tion has been given by Bloembergen and Pershan. "
Their Eq. (6.22) may be used with the following sub-
stitutions, 2icoPN—Lsd= j,'"+, n= a.—8,, er = e(2o&),
esr '" sing~= sin8;, esr = e(~) The .result is

surf (2~)
2s.e '(cs) sing;c —'

cosg~+e '"(2co) (1—c '(2co) sing; )"'

Xj.""(2-). (»)

~ F. Brown, R. E. Parks, and A. M' Sleeper, Phys. Rev. Letters
14, 1029 (1965).

~'S. S. Jha, Phys. Rev. Letters 15, 412 {1965).This paper
appeared after our manuscript had been submitted. The experi-
mental points should be compared with a theoretical calculation
for a&„/co =2.2 rather than S.f =~

~ H. Ehrenreich and H. R. Phillip, Phys. Rev. 12S, 1622 (1962).

When 0; approaches zero, this field rapidly becomes
very small, because j,(2') itself approaches zero, as
well as the factor sine;. In that case the tangential corn-
ponents of the surface source in Eq. (12) should be
taken into account. The radiation fieM can quite
generally be calculated with Eqs. (6.12) and (6.22) of
Ref. 18. The resulting harmonic amplitudes should be
added to those obtained from the volume polarization
and subsequently squared to obtain the second-harmonic
intensity. The resulting equations for arbitrary polariza-
tion direction y and arbitrary angle of incidence 8; of
the fundamental 6eld are cumbersome and will not be
reproduced here. The detailed results are essentially
the same as those of Jha"

It is, however, of interest to compare the order of
magnitude of the volume term given by Eqs. (8) and
(9) with the surface term given by Eqs. (12), (14), and
(15) near angles 8;= &p=7r/4, where the angular factors
do not have zero's. Leaving out all angular factors, the
ratio of the second-harmonic amplitudes resulting from
the surface contribution given by Eq. (15) and the
volume contribution given by Eq. (10) has the order of
magnitude (~'/a„')e(~), or about unity for co(o&„. On
the basis of these calculations, it is doubtful that the
observed SHG from metallic silver by Brown et a/. has
its origin in a plasma e6'ect. When the experimental
value" or„/&v=2. 2, instead of 5, is used in Jha's equa-
tions, an observable volume eGect should remain, when
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n n'

9 («) Ij"'(r) IN(«))(NI3'"& ll')(~'l~"'l0 )

(W, —W +h(u)(W. —W +2ha))

+other terms which differ in the order of the
operators and in the frequency denominators. (16)

The number of atoms per unit volume is go. The cur-

rent density operator is defined by

j &'& (r) =8(r—rq) (he/2im)V+ (he/2im) Vb(r —rq) . (17)

For media with inversion symmetry, the second har-
monic source density given by Eq. (16) is appreciable

only in a surface layer of thickness d, where d is about
one interatomic distance, or the Thomas-Fermi screen-

ing distance in a metal.
A rough estimate of the bound surface states can be

obtained as follows. It is known that the core po].ariza-

bility of silver ions contributes appreciably to the
dielectric constant of the metal in the near ultraviolet. '4

It is therefore not unreasonable to assume the same
nonlinear polarizability for a silver ion at the surface
as for a GaSb or InAs molecule in the bulk of those

~ See paper by N. Bloembergen and R. K. Chang in Ref. 11.
~ See Ref. 22.

the incident field is polarized normal to the plane of
incidence.

It has been suggested that the silver ion cores" of
the surface layer play a dominant role in the SHQ.
Further support that one does not deal with a plasma
effect comes from the observation by Bloembergen and
Chang" that silicon, germanium and other insulating
material with bulk inversion symmetry also show a
rejected second-harmonic intensity with a cos q de-

pendence on the angle between the incident electric
field and the plane of incidence. The atoms in the sur-
face layer are not at positions of inversion symmetry,
and if the incident electric field has a component
normal to the surface, large harmonic dipole moments
can be induced in these atoms.

The dominant term for these bound electrons in the
interaction Hamiltonian is the term

K&'& =—(e/2mc) (p A+ y A)
=—(eh/2imc) (BA./c&s+2A V) .

It should be kept in mind that A, varies rapidly in the
first atomic layer and. that BA,/Bs there is so large
that the "quadrupole-like" contribution from this term
has the same order of magnitude as an electric dipole
contribution. The detailed matrix elements of X&'&,

which is very inhomogeneous over the surface orbital
function f„are dificult to evaluate. Because both
K&'& and f, have even and odd terms in s, the following

nonlinear current density is induced in the surface
atoms,

jb q d(2&v, r)

piezoelectric crystals. The current density integrated
over a layer of thickness d gives therefore a surface
source 2nox dE~02, where x ~ 10—' esu as for
GaSb, and d 2X10 ' cm. This should be compared
with the plasma-surface source of magnitude (e/4qrm~)
XE~q' according to Eq. (13). One finds for the ratio
of bound-surface to plasma-surface contribution S~mco'
XxNLde '=8 in our numerical example. For the second-
harmonic intensity this ratio must be squared, and the
bound electron in the surface layer could easily con-
tribute one or two orders of magnitude more than the
total plasma contribution. For the bound-surface elec-
trons the same symmetry considerations hold as for the
plasma effect. The surface layer is amorphous and
essentially isotropic for directions in the plane of the
boundary. The current density has tengential com-
ponent j, proportional to E,E, and j„proportional to
E„E,. The normal component j, proportional to E,'
will be dominant for good reQectors since the normal
component E, is much larger than the tangential com-
ponents in that case. The second-harmonic intensity is
consequently proportional to j,2 or cos4p, and. the elec-
tric field Eg(2') should lie in the plane of reflection.
The e6ect should occur quite generally at the surface
of dense polarizable media, including liquids. The SHG
should not depend strongly on the plasma density. The
available observations on silver, silicon, and germanium
are in agreement with this picture.

IV. THE RAMAN SUSCEPTIBILITY
OF A PLASMA

The next higher order nonlinearities may be calcu-
lated in a similar manner. In principle, again volume
and surface terms should be considered. The most
important case is the volume effect, which occurs when
two electromagnetic waves traverse the plasma, with a
difference in frequency close to the plasma frequency.
The vector potential in Eq. (2) now consists of four
terms with amplitudes Al, , Al,*, A„and A,* and fre-
quencies col, , —or&, co„and —~„respectively. The
dominant term in the density-matrix quadratic in the
field amplitudes results from the resonance which occurs
when col,—co, is near the plasma frequency. In analogy
with Eq. (5) one finds immediately,

(klp&" "»lk+q, —
iver, )

f~(e~+qs —qL)
—fq(e.)

e&+q —qi, eg+h(G0~+Mr)+iF 2mc

X &scF(&L &, QI Q ) ~

For co~—~, ~„,Rees~p=0, a resonance occurs. Large
density fluctuations are induced at the difference fre-
quency, which beat again with the incident laser 6eld
at col,. In this manner a current density at the Stokes
frequency co, is induced, which is cubic in the field
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amplitudes,

3a--(M. ,q.) =Z.(k I
z+'" -""

I k+ q.—q~)(k+q. —q~ I

—(e2/zzzc)A r, l k+ q, )

m2C'esop*(M& —M„qi,—q,)

When the plasmon energy is considered to be the lead-

ing term in the denominator, h(Mr, —M, ))&(Izz2/2zzz)

X(qi,—q,) kp and o»—M, )r, an expansion of the
denominator yields for Eq. (18) the simple expression,

3aaman (M 4)q4)

—Xe4lw, l2A, (qi—q.)'
(19)

zzz c esop (Mr, —M4, qr, —q4) (Mr, —M4)

—ice'
l ~~ I'E' (2o)

co coymc

Off resonance, where esop 1, one should replace iMpz.

by unity in Eq. (20). In that case the same formula
could have been obtained from a very elementary inde-

pendent electron model.
The Raman polarization given by Eq. (20) is 90'

out of phase with the Stokes Geld. E,.The susceptibility
is negative imaginary and produces an exponential
gain at the frequency I,. If one takes a plasma char-
acterized by the same parameters as the case con-
sidered by Kroll, Ron, and Rostoker, "mo

——10"cm—',
M„z = 10', and Mr, =M,+M~= 2zr(4X10'4) —', one finds

XR pm'~ 10 esu This ls about ten ol del s of mag
nitude smaller than the Raman susceptibility of liquids
ordinarily used in Raman lasers. Since the plasma

For forward Raman scattering the last factor may be
replaced by c '. It should be noted that the picture of
resonance with a plasma wave only has validity for

l ql, —q, l«Lii ' where Lo is the Debye length of the
plasma. For larger values the real part of esop(M, qr, —q,)
cannot be made equal to zero. For gaseous plasmas,
the resonance occurs only near the forward direction.
At the plasma resonance es&F* is negative imaginary
and has a value i(M„2.) —', where the decay time for
the power is determined by the Landau damping rate
and the collision rate 2. '=rr.,„e,„'+z„ii '. One may
again replace the current density by an equivalent
polarization and the vector potentials by the corre-
sponding electric field amplitudes. In this manner the
Raman susceptibility for a plasma is introduced. For
resonant scattering in the forward direction one finds

p(M. , q.)=xa--lail'E. —
zzIIe4 (q2 —q,)'

jV2jV3jV~*

M1M2M2M4zzz (M2 Mi) 6SCF (M2 Ml) q2 qi)
(21)

For co~
——t'~3

——~~, co4 represents, of course, the anti-Stokes
frequency.

Consider a homogeneous interaction region in the
plasma of volume V=A/, where A is the cross-sectional
area of the three beams E~, E2, and E3 and. /is the length.
The 6eld strength E4 of the phase-matched wave at co4,

which is parametrically generated in the volume V,
is given by~6

E4=47I P (M4=M2+Mz —Mi)M4C l.

The total power radiated at co4 is

(23)

c 8zrzzII'e'lEil'lE2l'lE2 l2
I4= A[24

l

' = — — A P (23)
22r zzz'c'MpM2'Mz'l esoF l'

frequency is very small compared to the light frequency
in this example, the susceptibility can be considerably
enhanced by introducing a small angle between the
Stokes and the laser beam. In that case one should
return to the more general expression Eq. (19). The
optimum value of

Lescp (MI M qL q )? (qr 'q ) (Mr M )

can be made about a factor 104 larger in this example
than (M„r)c ' which it assumes in the forward direc-
tion. The nonlinear susceptibility for this optimum
direction, occurring at angle of about 10 ' radian be-
tween the two light beams, is still six orders of magni-
tude smaller than that in ordinary Raman liquids. It is
doubtful that the stimulated Raman effect in a plasma
will lead to observable effects.

Since Kroll and co-workers arrived at a more opti-
mistic conclusion, it is of interest to show that our
result can be reconciled numerically with their equation
for a scattering cross section per unit solid angle. They,
and other workers, considered a scattering process
involving four light quanta with frequencies or~, co2, era,

and co4, satisfying the energy and momentum conserva-
tion relationships co4—co3=~2—co~

——co„, and q4—qI3

= q2 —q~. Although the calculation for this cross section
is considerably more complicated in scattering theory
than the calculation of an inelastic Raman scattering
involving only the two quanta col, and co„ the calcula-
tion of the corresponding complex nonlinear suscepti-
bility is straightforward and essentially the same as
for the Raman process. The complex susceptibilities
automatically take account of all questions of phase
coherence and elastic and inelastic scattering processes.
In direct analogy to Eq. (20), one finds a polarization
at G04p

P (M4=M2+Mz —Mi)

'~ See Ref. 8. "See Ref. 17.
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A factor 2m rather than 8m is used in the denominator
of the Poynting vector because our amplitudes are
defined in Eq. (2) as twice the conventional ones. In
this form the result may be compared with the scatter-
ing cross section per electron for a four-photon collision,
io&+io2~ io&+oo&, given by Kroll, Ron, and Rostoker,

do- (e'/mc')'k4~ Er )'[E2)'
8(k—hk),

dQ 32 (2sr)'m'rspiopco22
( e sop (

s
(24)

where k'= io '/e'= 4rinee'/me' and 8 (k—Ak) = V, and
the amplitudes now have the conventional definition.
The total cross section for the volume V, integrated
over the solid angle dQ, which is determined by the
diffraction limit from an area A, dQ= (4sr2e2/caeno, )A '
is obtained by multiplying Eq. (24) by sspAldQ,

7rrie'e'At'[E ['~E2~'
&total =

1S C GOy 072 M4G03 6gcP
(25)

and the total scattered intensity at co4 is

I,= (~./~, )e I E, l '~.o.»/S~. (26)

When Eq. (25) is substituted into Eq. (26), a result is
obtained that is a factor 2 smaller than given by Eq.
(23). This difference may be ascribed to the difference
in de6nition of the field amplitudes. The amplitudes
defined by Eq. (2) and used in Eq. (23) are a factor
2 smaller than the conventional amplitudes used in
Eqs. (24—26).

Although there is formal agreement between the
two results, the rather more optimistic estimate of de-
tectability by Kroll and co-workers can be traced to
their use of the scattering cross section per unit solid
angle. For a diffraction limited beam the total available
solid angle is quite small, and the total scattered in-
tensity is probably more significant from an experi-
mental point of view. Saym and Hellwarth have inde-
pendently arrived at a similar conclusion. '~

In a metal plasma the electron density can be higher

by eight orders of magnitude than in the preceding
example, while the quality factor ~„~ of the plasma
resonance in silver can be taken as 10'. The nonlinear
susceptibiliby for two ultraviolet beams could thus be
substantially higher than a gaseous plasma. Unfor-
tunately the transparency of metals for frequencies
co&~„ is far from perfect due to excitation of core
electrons. The absorption from powerful ultraviolet
beams, if these were available, would probably be
prohibitive. The best possibility to detect the stimu-

"Paper by G. Saym and R. %. HeHwarth in Ref. 11.

The number of incident quanta in the beam at cate per
second is c(Es~'A/Ssrleios. The number of scattered
quanta at ~4 is

c(Za)' .otal /8 shrioq

lated Raman effect in a plasma would appear to be for
infrared beams in a semiconductor plasma. Spontaneous
inelastic or Raman scattering should be easier to detect
than the stimulated sects.

V. THE INTERACTION BETWEEN TW'0 LIGHT
WAVES AND A PLASMA WAVE

The Raman and Brillouin effect in liquids and solids
can be described as the parametric interaction between
two light waves and a vibrational wave. %hen the
optical or acoustical phonon wave is heavily damped,
this description is equivalent to one in terms of Raman
susceptibilities. "In this section the Raman efI'ect in a
plasma will be described in terms of a parametric inter-
action between two light waves and a plasma wave.
An equivalent discussion with detailed numerical ex-
amples has independent/y been given by Cosimar. "

Consider a small volume element at the point r. Let
the average deviation of the electrons from their equi-
librium position in this volume element be u(r).
Introduce normal coordinates Q~ as the Fourier trans-
form of this average deviation or local strain of the
electron gas,

Qp —— u(r)e—'"'d'r.

The canonical conjugate to this variable is Pt,. The
Hamiltonian density for the plasma waves then takes
the form 30

Xnt„„,———,
' Pg((l/1Vm)Pg P a+nb'Qg Q x

+4srÃ'e'Qx Q x). (27)

Here X is the average number of electrons per unit
volume and o. is the bulk modulus of the electron gas.
The fluctuation in the electron density from the average
due to the presence of plasma waves is

6p(r) =Xdivu=i~ ~~x k Qge'"'.

The change in the interaction of the two light waves
with the electrons in a unit volume due to the presence
of the plasma waves is consequently

X;„,= (e'/2mc') A'bp(r)

whel e
eiqr. r is Li+.A eiqs r——i~a&+c c

When all nonresonant perturbations are truncated, the
interaction Hamiltonian density between the two linear
paralle1 polarized light waves and the longitudinal
plasma waves (Q~~k) becomes,

K;„,= (slVe'/me') P, kAzA, *g,'e'«~-q -»'+C.C. (28)

~' See Ref. 15.
~' G. C. Cosimar (private communication). The authors are

indebted to Dr. Cosimar for receiving a copy of a forthcoming
paper.

eq See, for example, C. Kittel, Qiiaritum Theory of Solids (John
Wiley R Sons, Inc., New York, 1963) p. 35,
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The equations of motion for the plasma coordinate are

Pi, ——8—(BC i.. .+BC;„t,)/BQk,

Qp +——8 (Xpi„.+X;„g)/BI'i,

These equations of motion can be combined into a
wave equation for Qi, . Because of the presence of X;„,
a driving term proportional to the light amplitudes
AI.A,* is added to the plasma wave equation. Landau
damping and damping by collisions may be taken into
account by a phenomenological damping term,

Q~+0.~'Qi+~, 'Qi
= (ie' k/m' c) AzA, *+(2icog/v. ')Qi, . (29)

The exponential factor

exp(i(qr, —q,—k) r i (&ur—, ~, ~&)t)

can be dropped from the inhomogeneous driving
term, because the eGect of coupling between the light
waves and plasma wave will be small unless the condi-
tions of conservation of energy and momentum are
satisfied, cur, —a&, =~i, and gr, —g,= k The plasma wave
concept only has validity, if its wavelength is long
compared to the characteristic Debye length. For the
most important case of forward scattering with
parallel laser and stokes beams this condition will
usually be satis6ed. One may then write k=gL, —q,= ie,/c, because the dispersion in the plasma frequency
will then be negligible since (n/Nm) (qr, —q,)'((cu„'. The
characteristic time r' in Eq. (29) refers to the decay
time for the amplitude. The decay rate for the power is
related to the imaginary part of the longitudinal di-
electric constant by 2r' '= tsgF GDy.

The wave equations for the light amplitudesAL, andA,
are also augmented by a nonlinear term, because the
interaction Hamiltonian gives rise to a nonlinear cur-
rent density,

jNL(&o )= cBX;„t—/BAi, *= (+iNe'/mc)kAr, Qi,
~ (30)

and a similar expression for jNL(&vr). The wave equa-
tions for the two light waves become, consequently,

—A" r+c'q'= (4~iNe'/m)kA, Qi„(31)
A,+c'V—'= (4miNe'/m)kArQi, * (32).

The set of three coupled nonlinear wave equations is
familiar from the Brillouin and Raman eGect in other

media. If the laser amplitude can be taken as a constant
parameter, a set of two linear coupled equations (29)
and (32) for A, and Q results. An exact solution can
readily be written down, but the following approximate
solution will be adequate for our purposes. Since the
plasma wave is heavily damped its amplitude is essen-
tially the driven steady state value, when the right-
hand side of Eq. (29) is separately put equal to zero.
When the value of Q so obtained is substituted back
into Eq. (30), one obtains for forward scattering,

Ne4k'j" (a) )=
(

Ar('A
fl

SZCM&6St F

(33)
@PC 6SCF

This is identical to the result of Eq. (19) taken at
resonance, GscF =0. The equivalence of the two dif-
ferent ways to describe the interaction between photons
and plasmons is thus established. When the value of Q
is substituted into the wave equation (32), one obtains
the exponential gain at the Stokes frequency. Coupling
with anti-Stokes waves in the plasma, etc., can of
course be treated in the same manner.

VI. CONCLUSION

The optical nonlinearities of a plasma can be treated
by the same methods that have been used to describe
the nonlinear optical properties of other media. The
nonlinearities of the plasmas are generally smaller by
many orders of magnitude, because they would vanish
altogether for free electrons in the electric dipole
approximation.

Although spontaneous nonlinear scattering processes
in certain plasmas may be detectable, stimulated Raman
e6ects would hardly be accessible to experimental ob-
servation at optical frequencies. The situation is of
course much more favorable in the far infrared and
microwave region. Even the lower order nonlinear
process of second-harmonic generation from a plasma
has not been established experimentally at optical fre-
quencies. The second-harmonic radiation observed from
a silver surface is shown to have its origin in the non-
linearity of bound electrons in the ion cores of a mona-
tomic surface layer.


