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Photocurrent Syectrum and Photoelectron Counts Produced by a Gas Laser*
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The anode-current spectrum of a photomultiplier illuminated by light of time-varying intensity is ob-
tained theoretically. The moments of the photoelectron counts under the same conditions are derived. The
expressions are evaluated for the case of light emitted from a laser oscillator by using a semiclassical theory
of the Van der Pol oscillator. The theoretical predictions are compared with experiments in which the
spectrum of the photomultiplier was observed in the range 0—17 Mc/sec and counts were recorded for
counting intervals in the range between 10 6 and 10 ' sec. The three lowest order factorial moments were
evaluated as functions of T and compared with theory. The spectral data are used to predict the counting
data and a comparison is made. The signal-to-noise ratio of the two types of experiments is evaluated and
found to be comparable.

I. INTRODUCTION

HEN a light source illuminates the photocathode
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of a photomultiplier, the current in the anode
carries information about the intensity Quctuations of
the light. This information can be extricated either by
measuring the spectrum of the anode current or by per-
forming counting experiments on the number of photo-
electrons emitted within preset time intervals. Measure-
ments of the intensity Quctuations of the light emitted
from an optical maser can be used to probe the nature of
the optical oscillations. In particular, it is possible to
check experimentally whether the intensity Quctuations
of an optical maser can be explained on the basis of the
Van der Pol oscillator model of the optical maser. '

This paper presents a brief summary of the proba-
bility distribution for a compound Poisson process. This
is the probability distribution of the electron count,
within a time interval T, of a photomultiplier illumi-
nated by light of time-varying intensity. From this dis-
tribution the factorial moments of the electron count are
obtained. The connection with a quantum-mechanical
analysis is established. Next, the expression for the spec-
trum of the photocurrent in the photomultiplier is de-
rived. It is shown that the second factorial moment of
the photoelectron counts within time intervals of se-
quentially varied duration 1 contains the same in-
formation as a measurement of the spectrum of the
photomultiplier current. Thus far, no assumptions are
made about the nature of the incident light. At this
point in the development, the theory is applied to the
case in which intensity Quctuations are those pre-
dicted by a semiclassical analysis of noise in the Van der
Pol oscillator. Theoretical expressions are developed
with only one parameter, the noise bandwidth, left to

*This work was supported in part by the Joint Services Elec-
tronics Program under Contract DA36-039-AMC-03200(E).

$ Operated with support from the U. S. Air Force.' W. K. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

be determined experimentally. All other parameters
can be evaluated from the known mirror reQectivity,
spacing, etc.

Armstrong and Smith, ' using the counting method,
have reported measurements of the intensity Quctua-
tions of a gallium arsenide laser. We now report meas-
urements of the intensity Quctuations of He-Ne lasers
at 6328 A operating both below and above threshold. s

These were made by using the spectral method, as well
as the second factorial moment determined from the
photoelectron count. The measurements are in good
quantitative agreement with theory. Measurements of
the third and fourth factorial moment of the photo-
electron count are also reported and compared with the
theory.

Finally, a summary of the signal-to-noise ratio of the
spectral measurement and the counting measurement
is presented; both measurements lead to comparable
signal-to-noise ratios. The experiments reported here
operated under very favorable conditions with regard to
the theoretical signal-to-noise ratio limitations.

II. THEORY OP THE SPECTRAL MEASURE-
MENT AND THE PHOTOELECTRON

COUNTING EXPERIMENT

%hen light of time-varying intensity impinges upon a
photocathode, the probability of emission of a photo-
electron varies with time. In the theory of photoemis-
sion, it is customary to assume that the probability
w(t)dt of emission of a photoelectron within the time in-

' J. A. Armstrong and A. W. Smith, Phys. Rev. Letters 14,
68 (1965); Proceedings of the 1965 Physics of Quantum Elec-
tronics Conference (to be published).' C. Freed and H. A. Haus, MlT Lincoln Laboratory, Solid State
Res. , Report No. 2, 1964 (unpublished)

& Appl. Phys. Letters 6, 85
{1965);Proceedings of the 1965 Physics of Quantum Electronics
Conference (to be published).
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crement dt is given4 by

m(»)d»= (p/ho)P(»)C».

Here, q is the quantum eKciency of the cathode, h is
Planck's constant, v is the frequency of the light, and
p(») is the (short) time average of the light power over
a few cycles of the optical frequency.

Starting with (1), and assuming that the probability
of emission of a photoelectron within the time incre-
ment d] is independent of the emission within any other
time increment, one finds4 for the probability W(n)
of exactly n photoelectrons emitted within the time
interval », »+T,

the 6eld, 7~&/2 . &tI„G(~& is Glauber's' correlation
function of kth order. If G'~& is a slowly varying func-
tion of the S; over the surface of the photocathode (as
was the case in our experiment) the spatial arguments
may be replaced by the coordinate of the center of the
photocathode and integration over the spatial coordi-
nates becomes multiplication by the area.

There is one special form of G(~' to which a more
direct correspondence with the semiclassical expression
(4) may be established"; this special form is obtained
if one assumes that the incident light can be represented
in Glauber's I' representation' in terms of the free-
space modes. Assuming for simplicity that the light is
linearly polarized we have

pn — t+T

W(tt) =—
nl

n

p(o«exp( —e p(c«) (2) G„...„"l(x,»t. x,»s) = d'nP(u) 8„t—&( {n),x,, »)

where

(tt(e 1) —(tt—4+1)&,„=P' p(»)C» . (3)

If the light itself is statistical in nature, an average
must be taken with respect to the statistics of the light.
Using a well-known identity for transforming the right-
hand side of (3) into a k-dimensional integral, one
obtains

(tt(n —1). . (I—t't+1)&. =p"k!

«(P(») P(» —)p(»)&. (4)

Thus far we have treated the problem of photoelectron
emission in a semiclassical way. Quantum analysis, as
carried out by Kelley and Kleiner, ' and Glauber, "leads
to an equation of the form (4), except that the correla-
tion function of the power is to be replaced by the
normal-ordered expression of the product of the field
operators E„() and E„(+):
Gts&=trljoE»t 1(St,»&)E„,t ~($2»2). E,„,'—'(as, 4)

XE»&+l(xs,»s) E„,t+'(xs, »s)Eo, t+&(Sg,»g)j, (5)

and integrations over the surface of the photocathode
have to be performed. Here p is the density matrix of

4 L. Mandel, Proc. Phys. Soc. {London) ?2, 1037 (1959).
s P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964)."R.J. Glauber, Quaututu E»ectrouics aud Optics (Les Houcttes

1Votes) (Gordon and Breach, Science Publishers, inc. , New York,
1965).

This is a compound Poisson distribution. As in the case
of the time-independent Poisson distribution, it is easy
to show that the factorial moment of kth order is
given by

X 8„+t&({n),S,, ») . .8„t—&({tr),Sg„»s)

X 8 ' '({ ) * » ) (6)

where h„(—& and 8„(+&are the eigenvalues of the eigen-
functions

l {n)& and ({cr)l.

E.'+'(*,») I {~)&= 8.({~),g,») l {~)& (»)

({ ) IE.' '(*,»)=8.({ ), ,»)*(Ml (g)

The integral in (6) is to be understood as a multiple in-
tegral over all n~ representing all modes k. If a corre-
sponding mode expansion is made in (4), the two ex-
pressions (4) and (6) are brought into correspondence;
the integrals over I'(n) represent the ensemble average
in (4), and the factors 8„'&({cr),g;,»;)8„t+'({tr),z;,»,)
are directly interpretable as the power (density) at the
different times»;. E(tr) plays the role of a probability
(except that it is not necessarily a positive quantity). '

Equation (4) is the basic formula needed to derive
the spectrum of the photomultiplier anode current. In
describing the photomultiplier, we assume that all
photoelectrons produce in the anode circuit a current
pulse of identical shape but Quctuating amplitude. The
height of the individual current pulses Quctuates by
virtue of the probabilistic nature of the secondary emis-
sion process. %e assume that the bandwidth of the
photomultiplier is much wider than the modulation
bandwidth of the incident light, a condition that is
satisfied in our experiments. If we denote the gain of
the photomultiplier 3, the electron charge e, the anode
current Io, then the spectrum of the anode current of
the photomultiplier becomesr (see Appendix l)

C(co)=A(eI /2sr)F+AeIeP(C„(co)/p)=S, +S.. (9)

R. J. Glauber, Phys. Rev. Letters 10, 84 (1963); Phys. Rev.
130, 2529 (1.963); 131, 2»I'66 (1963); Qgentlm E/ectronics (I'ro-
ceedings of the Third International Congress), edited by N. Bloem-
bergen and P. Grivet {Columbia University Press, New York,
1964), p. 111.

This is a generalization of a formula derived by C. T. J.
Alkemade, Physics 25, 1145 (1959).
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Here I' is the shot-noise enhancement factor that is due
to secondary emission; in general, it is less than 2, with
C „(co)the spectral density of the power P(t):

00

C.( )=— (P(t)P(t+ ))- - "'d' (1O)
2'

(n(n —1)), —n' 2n r
F(2)=

n T2 0

(T—) ( )d (16)

In the sequel we shall not plot the rn.ean-square
Quctuation, but rather the normalized second factorial
moment defined by

(n') —n =P'2 dt2 dti(p(ti)p(t2)), . (11)

Introducing the new variable 7-=3~—t~ and assuming
that the light statistics are stationary so that the cor-
relation function (p(ti)p(t2)), »=—R„(r)depends only on
v, one obtains

(n ), —n=P 2 (T r)R~(r)dr. —(12)

The first term in Eq. (9) is the enhanced shot noise of
the photomultiplier. This term is present regardless of
whether the light is modulated or not. The second term
conveys information about the spectral density of p(t),
the power of the incident light. We shall use the symbol
5, for the shot-noise "background" and the symbol 5,
for the "excess" noise produced by the time variation
of the light power. An experimental determination of
the second term, therefore, yields information about
the time dependence of the incident light power.

Next, we consider the theory of the photoelectron
counting experiment which provides another way of
obtaining information about the fluctuation of the light
power incident upon the photomultiplier. Denote the
number of photoelectrons received within a time in-
terval of duration T, by e. The mean-square deviation
of the photoelectron count, averaged with respect to
the compound Poisson distribution, and with respect to
the statistics of the incoming light, follows from Eq. (4):

Note that the quantity F(2) is zero if the power is time-
independent, such as would be the case in an "ideal"
laser with no amplitude fluctuations.

One may bring the equation for the spectral meas-
urement into close correspondence with the measure-
ment of F(2) by noting that

C' (M)dM (17)

The time-independent part of the correlation function
R„(r)contributes a delta function to C „(co).Defining by
C „'(co)that portion of C „(cu)which does not include the
delta function at the origin, we obtain from Eq. (14),

F(2) =2PT
1—cosMT 4&& (G&)

dc@.

Here we have taken into account that C „"(~)is a sym-
metric function of co. This equation establishes the con-
nection between the measurement of F(2) and the spec-
tral measurement.

The counting experiment allows one to evaluate
higher order factorial moments of the photoelectron
count. According to Eq. (4), these enable one to 6nd
information on higher order correlation functions of the
light power, an information that is not available from a
simple spectral measurement. In the sequel we shall re-
port measurements of normalized factorial moments of
third and fourth order, dined by the general expression,

R.(r) =S 'L1+p.(r)j, (13)

By introducing a normalized correlation function p~(r)
by (n(n —1) (n —k+1))„—n"

F(k) = (19)

Eq. (12) can be written in the form

2n2 r
(n'), —n2=n+ (T r)p„(r)dr. —

T2

We have introduced the relationship between the aver-
age power p and the average count n in a time interval T

n= ppT.

The first term in Eq. (14) represents the Poisson value
of the mean-square deviation of the photoelectron count
that wouM result if the photosurface were illuminated
by a light source of constant power (such as that pro-
duced by an ideal source of time-independent intensity).
The second term contains the correlation function of the
light power.

III. APPLICATION TO CAVITY LASER
AMPLIFIER AND OSCILLATOR

We apply the equations developed for the spectral
measurement and for the photoelectron counting to the
case of a laser operating below and above threshold. We
shall concentrate on a laser operating in a single mode of
one single polarization. Below threshold this assumption
is legitimate only if the laser is operated suKciently
near threshold. (See Sec. V.) In all of our experiments
carried out above threshold, the laser operated in a
single mode of one polarization.

A semiclassical analysis' of the laser oscillator driven
by spontaneous emission noise gives the following re-

8 H. A. Haus, J. Quantum Electron. 1, 179 (1965).
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suit for the quantity C~(ra)/p at orWO:

C„(o)) I n2/g~ ACOp

X
~ ("~/f~) (&ilsi) QoI Q I

&'+(&o/Q')'
(20)

G)p

Ke have used the spectral density as a function of
angular frequency, defined for both positive and nega-
tive frequencies. In (20) / is the loss of power between
the laser output and the photomultiplier cathode; n2

and e~ are the populations of the upper and lower levels,
respectively; g2 and g& are their degeneracies; cop is the
resonance frequency of the cavity; (»/Q ) is the
(usually negative) damping constant; due to the maser
material; Qo is the loaded Q of the "cold" cavity; that is,
oro/Qp is the damping constant of the empty cavity in
the absence of the maser material, or»0 ——»/Qo is the
bandwidth of the empty cavity; Q' is given by

1
)

Q' Q-' Qo
(21)

where Q„'is the Q of the maser material obtained
without the saturation caused by the optical 6eld.
Equation (20) is obtained directly from Eq. (11) of
Ref. 8, except that here we use a spectral density ex-
pressed in angular frequency, allowing for both positive
and negative frequencies, which is related to the spec-
trum W„(f)by a factor of 4~. Furthermore, the "hot"
Q of the laser Q', above threshold is related to the power

p emitted by the laser' by

»/Q'= (3v/2G)», (22)

where y is a parameter of the equivalent Van der Pol
circuit of the laser, ' G is the loading conductance of the
equivalent circuit of the laser, representing the loss of
power to the outside space, and loading caused by
internal losses (except for the loading or gain of the
laser material) have been disregarded. The "hot" Q of
the laser Q' is the quality factor that determines the
rate at which amplitude disturbances relax to the steady
state. This fact accounts for the appearance of Q' in the
spectral bandwidth of the noise. The farther above
threshold the laser operates, the stronger is the reaction
to any disturbance and the faster the return to the
steady state. From (22) and (20) we see that 1/Q', and
thus the bandwidth of the spectrum C„(~),is propor-
tional to the output power p of the laser.

The same expression is obtained for the laser below
threshold with one single mode and polarization except
that Q in the denominator of Eq. (20) is replaced by
Q ', and the bandwidth of the spectrum is determined
by a Q' given by

1 1
(23)

Q' Qo Q-'
9 J. A. Mullen, Proc. IRK 48, 1467 (1960); see Eqs. (12) and

(17).

Since Q„' Q near threshold, henceforth we shall make
no distinction between these two quantities. The power
emitted by the laser below threshold is LEq. (15) of
Ref. gj given by

112/g2 Mo Q
p = —Aco—

(~2/a~) —(~i/ai) QG I
Q-'I

(24)

where q=/q denotes the ratio of the rate of photo-
electrons emitted by the photosurface of the photo-
multiplier to the rate of photons emitted by the laser.
»=MD/Q' gives the width of the spectral curve, and
»O=MO/Qo —~0(IQ IQO)'I' is the bandwidth of the
unexcited cavity. Equation (25) is the fundamental
equation for the spectral measurement. It is valid near
threshold, both below and above it provided only one
mode contributes to the output. As threshold is ap-
proached from below, the 1/Q' of (23) decreases to zero,
the bandwidth» of the spectrum narrows and (25)
becomes larger and larger. As threshold is passed, the
bandwidth»= »/Q'increaseswithincreasing I1/Q 'I,
i.e., increasing output power, and (25) decreases. When
more than one mode contributes to the output, (25)
does not hold. One may develop a simple relation to re-
place (25) for the case below threshold when all but one
of the modes contributing to the output are broad-band.
If only one linearly polarized mode is near threshold (we
shall see that the Q for the observed narrow-band mode
differs by less than 1'Po from Qp) the others will be of
much broader bandwidth and contribute mainly to the
shot noise, but not to the excess noise term. For this
case, when only a fraction f of the total emitted power
is in the narrow-band mode, the ratio S,/S, decreases
by a factor f'
Sg 2Y/ 'B2/g2 ACOp 1

=f' — X—— . (26)
S, I' (e2/g2) —(ni/gi)» 1+a)'/»'

We see therefore that near threshold, where the varia-
tion in IQ 'I may be disregarded, the hot Q, Q', ispro-
portional to the power and thus the bandwidth of the
excess noise, S, of (9), is inversely proportional to the
power.

The laser material becomes passive, when e2/g2
=xi/gi Equa. tion (20) does not become singular in this
case, as a perfunctory glance might indicate. Indeed,

I Q I
becomes infinite at the same rate as e2/g2 —ei/gi

approaches zero and thus no singularity occurs. This is
obvious on physical grounds because the noise, caused
by spontaneous transitions from the upper level to the
lower level remains finite and the net Q of the cavity, at
this point equal to the cold Q of the cavity, is Rnite also.
When Eq. (20) is introduced into the spectral expression

(9), one obtains for the ratio of excess noise to shot-noise

5, 2g AGDp

x —, (25)
S, I' (n2/g2) —(ni/gi)» 1+M'/»'
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As a function of the counting interval 2', F(2) increases
linearly with T and then "saturates" at the value

333/gp f AQl prt

2n
(333/gp) —(33(/gi) k A(g )

Again one Gnds that in the case of one narrow-band
mode carrying a fraction f of the total power and all
remaining modes of much broader bandwidth, F(2) is
lowered by the factor f'.

np/gp A(dp)
F(2)= f32'

(&3/gp) —(33~/g~)

IV. THE HIGHER ORDER FACTORIAL
MOMENTS

Below threshold the output of the laser has a Gaussian
amplitude distribution of the electric Geld in each mode.
The higher order correlation functions of random time
functions with Gaussian amplitude distributions are all
related to the lowest order correlation functions. Thus,
for example, if x~, x~, x3, and x4 are Gaussian variables of
zero mean, then

+1~2~3+4 sv +1+2 av +3+4 av

+(+1+3)a»(+2+4)av+ (+3+4)sv(+2+3)sv r

where all distinct pairs of indices are included in the
summation, three in the present case.

The kth-order factorial moment of the photoelectron
count within the time interval T contains the (k —1)th-
order correlation function of the power. This in turn is
related to the (2k —1)th-order correlation function of
the amplitude. The third-order factorial moment con-
tains averages of products of six Gaussian time func-
tions, the fourth-order factorial moment contains aver-
ages of products of eight Gaussian variables. The former
contains 15, the latter 105 terms. The algebra escalates

Equation (20), obtained from the Van der Pol theory
of the laser, can also be applied to the counting experi-
ment. In the counting experiment one needs the correla-
tion function

P '(P(t)p(t+ )).
which is the Fourier transform of (20). Again, one
6nds that both below and above threshold the following
expression applies

333/g3
=29

(~3/gp) —(~i/C)

1
X! — 1— (1—e

—~"r) . (27)
r BQl — AppT

rather rapidly. When more than one mode of the laser
contributes to the output, the complications increase
further. Simpliications occur when one may assume
that all but one laser mode are broad-band. This situa-
tion is likely to be realized in the operation of a He-Ne
laser near threshold where one mode near the maximum
of the material linewidth predominates and, in general,
one polarization is favored. We assume, therefore, that a
fraction f of the total output of the laser is due to a
narrow-band mode of one single polarization, and that
the remaining power is attributable to modes of much
wider bandwidths. All modes are assumed uncorrelated.
With these assumptions, and under an assumed cor-
relation function for the amplitude of the narrow-
band "dominant" mode;

(u(t)a(t+r)). =apt;—~"'13 (29)

one obtains for the normalized second factorial moment

(N(33—1)),»—np

F(2) =

The above expression may be obtained directly from
(14) for f=1, and p~(r)=exp( Appr). N—ote that (30)
agrees with (28). The only difference is that in (28)
the Van der Pol theory has been used to obtain n,
whereas (30) applies to any Gaussian light.

The higher order factorial moments are obtained after
lengthy algebra. The normalized third-order factorial
moment is

(e(33—1)(33—2)), —n3
F(3)= =3F(2)

2

(31)

and the normalized fourth-order factorial moment is

(e(33—1)(33—2) (33—3)), —n4

F(4)= =4F(3)—6F(2)

+f" 3! 1+
ANT ACCT — DMT (ANT)

22r 26 ~ 2
+!4+ + ~~

3rrr+ ~ 36arr (32——)
AppT (A(oT)3l (Do)T)'

Thus far we have been concerned with the factorial
moments below threshold. The factorial moments above
threshold assume a much simpler form when the num-
ber e of photoelectrons emitted by the illuminated
photosurface within a time interval T differs only little

n 2 2
+j3 3 I (1+~ krrrT) (1 ~ harT)— —

her T AcoT AcoT



C. FREED AND H. A. HAUS

FEEDBACK
AMPLIFIER

POWER SUPPLY
WITH FEEDBACK

COUNTING
PHOTO MULT IPLIE R

SPECTRUM

I
PHOTO MULT IP L IER

SPECTRUM ANALYZER

SPECTRAI DENSITY ANALYZER

RECORDER

FEEDBACK
PHOTOMULTIPLIER

He-Ne lASER, 632SA

PRINTER

COUNTER WITH
ADJUSTABLE

COUNTING

INTERVAL
T

TAPE PUNCH

COMIPUTER
L
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and
(n'). =n'+ (Azz'),

(zz'), =n'+3n(hzz'), +(Azz'), .

(34)

(35)

Introducing (35) into the factorial moment and disre-
garding n, (Azz'), , and (Azz'), , compared with n(d, n'), ,
one has

(zz(zz —1)(zz —2)), —n'
F(3)=

3((~~z)..—n)
=3F(2). (36)

In a similar way we find for the normalized fourth-order
factorial moment

(zz(zz —1)(zz —2) (zz —3)), —n'
F(4)=—

n3

=6F(2)—2F(3) . (37)

Note that a certain similarity exists between (36), (37),
and (31), (32). For f~ 0, the two expressions become
identical. This is to be expected because the power
carried by a narrow-band mode with a large admixture
of broad-band modes is similar to steady power with a
small modulation.

Furthermore, note that it is difficult to detect proper-
ties other than those of the second-order moment
(Dzz'), from a measurement of the higher factorial mo-
ments ofeproduced bya laser above threshold. The terms
that were disregarded in the numerator of F(4) are of
the order of (Azz'), which, if hzz is near to a Gaussian,
would be of the order of n'. The terms retained are of
the order of n'. Thus, the error is 1/n, a very small

from the average value n. If this is so, all higher order
factorial moments of e can be expressed in terms of the
second-order factorial moment. As an example, con-
sider the third-order moment

(zz(n —1)(zz —2)), —n'= (zz') —3(zz') +2n —n'. (33)

Setting zz=n+hzz, with (Azz), =0, we have

quantity in our measurements. This quantity, in fact,
lies within the experimental fluctuations (see Sec. V).

V. EXPERIMENTS

The experimental arrangement is shown in Fig. 1.An
internal mirror laser of nearly hemispherical geometry
with a mirror spacing of 49.2 cm was used. The i.d. of
the quartz tube was 3.9 mm. The laser was dc excited
and operated at 6328 A. When appreciable gas discharge
Quctuations were noticed occasionally, they were sup-
pressed by optimizing the external circuitry and by
positioning a magnet near the discharge. The laser was
stabilized to less than 1'Po long-term drift in intensity by
a feedback circuit with a time constant of approxi-
mately 1/50 of a second. The feedback circuit sensed the
light emerging from the mirror of 50-cm radius with a
reflectivity of 99.9'Po. The light through the Qat mirror
with a reflectivity of 99/~ was fed partly to one photo-
multiplier connected to a counter and partly to a second
photomultiplier connected to spectrum analyzing equip-
ment. The counter measured the number of photoelec-
trons within a sequence of preset time intervals of ad-
justable duration T. In the experiments T was varied
from 10 ' to 10 ' sec. The counts were recorded on tape
which could be fed directly to a computer. The com-
puter evaluated the normalized factorial moments F(2),
F(3), and F(4) as defined by (19).

Simultaneously with the counting data, spectral data
were obtained. The spectrum was studied in the 0-17-
Mc/sec range. Different spectrum analyzers were used
for diferent ranges of the frequency spectrum. Scanning
velocities were varied from 0 to 4 cps/sec at the low-
frequency end, to 10 to 1000 cps/sec in the high-
frequency range of the spectrum. The corresponding
intermediate-frequency bandwidths ranged from a mini-
mum of 10 cps to a maximum of 10 000 cps. The spec-
trum analyzer output was fed into a spectral density
analyzer, with integration times of 1 or 5 sec, and then to
a chart recorder. The spectral data were always checked
against the response obtained from a broad-band
(tungsten filament) light source. The experimental re-
sults obtained from the spectrum measurement are
shown in Fig. 2. The curves are labeled by their cor-
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responding photoelectron emission rates n (in sec ') of
the photocathode. Above threshold, 7 of the 12 dynodes
of the photomultiplier were shorted to the anode.
Lorentzian curves could be 6tted with very good
accuracy onto all curves above threshoM and to the top
curves below threshold. At all power levels of Fig. 2,
the laser operated stably and reproducibly for several
months. The small modulation spike at approximately
170 kc/sec both above and below threshold is due to
residual discharge oscillations. The following quantita-
tive predictions can be made from the theoretical
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FIG. 3. Bandwidth versus laser power.
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with another plot shown by a dashed curve obtained
under the assumption that 2.5&&10s (sec—') photo-
electrons were due to other than the dominant narrow-
band mode. The observed approximately linear polariza-
tion of the n=1.64&(10' sec—' curve is an indication
that the contribution of the "background" power was
relatively weak at this power level. At lower powers the
polarization became more and more isotropic. The
"background" power, in fact, cannot be expected to stay
independent of the excitation in our experiment. The
"dashed" curve is shown only to indicate that the band-
width data are matched better by assuming that other
than the dominant mode contribute to the output
power.

(2) The ratio S,/S, near 0 frequency is inversely
proportional to the square of the bandwidth, and there-
fore directly proportional to the square of the laser
power below threshold and inversely proportional to
the square of the laser power above threshold. In Fig. 4
we show the observed S,/S, near zero frequency as a
function of power. The 1/ps dependence above thresh-
old and p' dependence below threshold are shown by
solid lines, while the dashed curve for below threshold
is obtained under the assumption that 2.5&(10' sec—'

I'IG. 2. Observed photomultiplier current spectra. (a) Below-
threshold operation; (b) above-threshold operation.

10

formulas (22), (24), and (25), and compared with
experiment:

(1) The bandwidth of the "excess noise" spectrum is
inversely proportional to the laser power p below thresh-
old, and proportional to p above the threshold. Devia-
tion from the 1/p dependence occurs only below thresh-
old when more than one linearly polarized mode con-
tributes to the output. In Fig. 3 we plot the experi-
mentally obtained bandwidths as a function of power.
The theoretical p dependence above threshoM is shown
by a solid line. The below threshold data may be com-
pared with a 1/p dependence shown by a solid line and

10

10
+

10 =
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FIG. 4. Ratio of excess noise to shot-noise versus laser power.
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photoelectrons are due to broad-band background. The
comments made in connection with Fig. 3 apply here too.

(3) The measured ratio S,/S, from the n= 3.68X10o
sec ' curve above threshold yields (ns/gs)/P(ns/gs)—(n&/g&))= 1.97, by using (25), the measured values of
tI=4.9X10 ', I'=1.3, and taking hcoo ——2vrX4. 7X10'
cps as computed from the transmittance of the mirrors.

(4) From (25) one finds that the ratio S,/S, above
and below threshold is the same for curves of equal
bandwidth if, below threshold, one linearly polarized
mode predominates, as is the case for the n=1.64&(10'
curve. The two top curves in Figs. 2(a) and 2(b) have
comparable bandwidths. If one predicts, using (25),
from the above threshold curves the ratio S,/S,
below threshold for the 1.64)&10' sec—' curve, taking
into account the difference in bandwidths, one finds
S,/S, =4600, which should be compared with the
measured value of 4400.

(5) From (24) one may predict the photon emission
rate from the laser, assuming the value (ns/gs)/P(ns/gs)—(nq/gt) j=1.97; using the bandwidth corresponding to
the curve n=1.64&(10~ sec—' one predicts for it a pho-
ton rate of 3.22&10' sec-'. The measured rate was
3.34&(10' sec—'. Note that the agreement of the pre-

dieted value of the photon rate with the experimentally
obtained value confirrns our assumption that the noise
is due to spontaneous emission.

Thus the measurements of S,/S„bandwidth, and
power are in reasonable agreement with the theoretically
predicted values. If one does not care about integrating
the spectral measurements over appreciable lengths of
time, one may observe quite vividly the change in
bandwidth as a function of laser power. Figure 5 shows
a set of spectra observed on the spectrum analyzer with
a 10-sec full sweep for the laser operating above thresh-
old. All curves were adjusted to a common maximum of
unity (full scale deflection).

Next, we turn to the counting experiments. Equa-
tions (30), (31), and (32) for the normalized factorial
moments for below threshold operation are compared
with an experimental run in Fig. 6. This run is suAi-

ciently below threshold so that the theory, in which a
Gaussian amplitude distribution of the light is assumed,
can be used. The theoretical curve for the second-order
factorial moment F(2) was matched to the experimental
points by adjusting f and Ate. Using the values f=0.44
and ro 1/hco=1.3X10——4, we plotted the theoretical
curves for E(3) and F(4). The agreement with the ex-
perimental points is seen to be good up to T=2&(10 '
sec. For longer counting intervals we Gnd that the ex-
perimental points fall below the theoretical curve. This
is due to the inQuence of the feedback network which had
a time constant of the order of 2&&10 ' sec.

Above threshold operation of the laser occurred in one
single mode. If one assumes that the field amplitude of
the laser is of the form

a(t) =Lao+at(t)g cos(MoT+ &p),

where

lax(&«o
and

( (t) (t+ )). /( '). =

one obtains for the normalized second-order factorial
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FIG. 7. Normalized factorial moments above threshold (photon
rate 8.15X10"sec ', photoelectron rate 11 09X10' sec ').

Equation (38) is very similar to the result for below-
threshold operation, except that the modulation co-
efficient, mls'= ( I at

I
') /as', aPPears as a multiPlier. If,

indeed, the Quctuation amplitude u. is small compared
with the steady-state amplitude, the higher order
factorial moments are dominated by the mean-square
fluctuation (n'), —ns, and all of the higher order mo-
ments can be related to F(2), as we indicated in Sec. IV.

A typical result of an experimental run above thresh-
old is shown in Fig. 7. Because of the small fluctuation
amplitude a~, we found that the feedback network had
greater inQuence than below threshold. The deviation
from the theoretical T dependence of (27) occurred al-
ready at counting intervals T of the order of 5)&10 '.
The solid curves for F(3) and P(4) were obtained by
multiplying the curve for P(2) by 3 and 6, respectively.
This was done in accordance with the theoretical pre-
dictions of Eqs. (36) and (37). It will be observed that
the agreement is quite good.

An interesting difference may be noted between Figs.
6 and 7. The spacings between the straight-line asymp-
totes in the two 6gures are distinctly different in agree-
ment with the prediction of the equations of Sec. IV.
This difference provides one possible way for distin-
guishing between below threshold and above threshold
operation.

As mentioned previously, a measurement of the spec-
trum contains the same information as a measurement
of F(2). Figure 8 shows a comparison of the two types
of experiments. An experimentally obtained current
spectrum obtained below threshold is shown. The func-
tion F(2) versus T is predicted from the spectrum by
using (9), (18), (26), and (27).The solid curve gives F(2)
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FIG. 8. Comparison of the spectrum measurement with
normalized second factorial moment.

predicted from the spectrum measurement and the ex-
perimentally obtained points are shown. The agreement
is seen to be reasonable.
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VI. CONCLUSIONS

The experiments presented here have shown that the
amplitude noise of an optical maser is mainly caused by
spontaneous emission when the laser is operated near
threshold (see point 5 of Sec. V). This 6nding should be
contrasted with experiments on the phase or frequency
noise of an optical maser reported by Jaseja et al. rs

Even in the best possible vibration-free surroundings, it
was found that the linewidth of the laser was con-
siderably wider than that predicted under the assump-
tion that spontaneous emission noise is solely responsible
for the frequency noise. Our experiments tend to show
that with suitable care, vibrations of the mirrors which
were mainly responsible for the frequency noise observed
by Jaseja et at. , did not affect appreciably the amplitude
noise. In other words, the frequency-to-amplitude con-
version was suKciently low so that the effect of the
spontaneous emission noise on the amplitude Quctua-
tions could be observed in spite of residual mirror vibra-
tions and other causes of frequency noise.

The experiments reported here bear some resemblance
to the Hanbury Brown and Twiss correlation experi-
ments" and coincidence counting experiments. "

An analysis" similar to the one made by Hanbury
Brown and Twiss shows that the signal-to-noise ratio of
the spectrum measurement for a Gaussian amplitude
distribution of the incident light of bandwidth Ace is

(signal/noise) I„„„=(2r/I'Ate)(BTs)'I', (39)

where r =Is/Ae is the photoelectron emission rate.
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In the spectral measurement signal is def'ined by S.
(near zero frequency), and the noise is defined as the
experimental uncertainty in the determination of the
shot-noise level by the equipment of finite band-
width 8 and finite integration time To. The experimen-
tal uncertainty, in turn, is computed as the rms devia-
tion of the experimental value of the shot-noise level
from the ideal value for a true Poisson process.

A very similar expression is obtained for the signal-
to-noise ratio for the experimental determination of
F(2) in the counting measurements. In this case signal
is defined as the ideal value of F(2) obtained from an
ensemble average over infinite number of samples. The
noise is defined in turn as the rms deviation of F(2)
for a Poisson process with the ensemble average re-
placed by an average over A samples. Again, under the
same assumptions about the incident light, we have

(signal/noise)
~
„„~= (V2r/d co)QE, (40)

where E is the number of samples taken. Both expres-
sions for the signal-to-noise ratio predict an accuracy
comparable to that obtainable in the Hanbury Brown
and Twiss correlation measurement and coincidence
counting experiment. In order to obtain information
about the spectral shape of the incident light power, it
is necessary in the Hanbury Brown and Twiss experi-
ment to introduce delays which are of the order of the
inverse bandwidth of the light to be detected. In the
present experiment this would call for delays of the
order of milliseconds, a delay that is diS.cult to achieve.
The spectral measurement and the counting experiment
reported here are convenient ways of measuring the

spectrum or correlation functions of narrow-band light.
To obtain an impression of the signal-to-noise ratio

achievable in the present experiment, consider Fig. 6,
with r=4.31X10', A&a=1/v'0=0. 77X104, and 1V=250.
One obtains from (40), signal/noise=1. 25X10'. The
deviation of points from the smooth curve in Fig. 6 is
larger than predicted by this expression. The scatter is
most likely due to the slight changes in the laser oper-
ating point during the measurement, since the feedback
signal was derived from a high-gain photomultiplier
under normal laboratory (instead of highly tempera-
ture-stabilized) environment.
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APPENDIX I: CORRELATION FUNCTION OF
PHOTOEMISSION CURRENT

We derive the correlation function of the current Qow-

jng in the anode of a photomultiplier irradiated by light

whose power leve1 depends upon time. The derivation
follows that of Davenport and Root", but deviates from
it insofar as the assumed probability of emission of a
photoelectron from the photocathode is a function of
time and that the current pulses in the anode are of
varying height. The time function of the anode current
can be written as

The respectively time-shifted functions i(t—ti) repre-
sent the current pulses induced in the anode circuit due
to a photoelectron from the photocathode. They are of
varying height and shape, because of the statistical
nature of the secondary emission process. The average
over the statistics of the secondary emission process
gives

(I2)

where e is the electron charge and A is the photomulti-
plier gain. The summation in (I1) is carried over all
current pulses occurring within a specified time interval.
We choose for the time interval, a period extending from

T/2 to t= 7/—2. (Because the incident light flux is
assumed to be time-dependent, the choice of the origin
for the time interval will affect the probability distribu-
tion of emission. Eventually the time interval will be
made to approach inanity; thus, the choice of the time
origin becomes unimportant. ) We define the function

(I3)

Equation (I3) indicates an ensemble average obtained
from an ensemble of wave forms of length T. One may
envisage the ensemble to be generated by the output
of many identical photomultipliers, all of which are
illuminated by light with the same power variations
with respect to time.

The ensemble average is obtained in four steps. First,
one singles out all the samples that have exactly E
current pulses emitted within the time T. LIn do-
ing so one disregards those samples in which i(t—t;)
lies partly inside and part1y outside the time interval—T/2 &~ t&~ T/2, an approximation that is legitimate as
long as T is suKciently long. jThe probability of finding
the ith current pulse within the time increment t,,
tg+Ag is

(I4)

' W. B. Davenport Jr., and %.L. Root, Random signals aug
Noise (McQraw-Hill Book Company, Inc., New York, 1958),
Sec. 7-4.
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treated as delta functions of varying area qA,

s(t—t&) =qA 5(t—t&), (I18)

where g is the charge content of the pulse referred to the
6rst dynode of the photomultiplier, so that g= e, and 2
is the gain, one obtains for (117)

C (oo) =p esAsey(oo)+r(ppe As/2sr).

where I'=(qs). /g'. Noting that the anode current is
given by

fo=~ePp, (I20)

one can rewrite Eq. (I19) as

C (to) =Is(de/2sr) LI'+2+PC o(co)/p j. (I21)
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Oytical Nonlinearities of a Plasma*
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Second-harmonic generation and stimulated Raman effects for a plasma are calculated by the same
methods that have been used for bound electrons. The nonlinear susceptibility describing the stimulated
Raman eGect in a gaseous or metallic plasma is 6 to 10 orders of magnitude smaller than the corresponding
eGect in liquids. This process in a plasma can also be described as the parametric interaction between a
damped plasma wave and two light, .waves. The second-harmonic generation, from a plasma boundary is
dominated by a surface term which. originates from the discontinuity in the normal component of the
electric field. It is shown that the observed second-harmonic generation from metaHic silver probably stems
from bound ion cores in the surface layer rather than from a plasma surface term.

I. INTRODUCTIOÃ

HE basic nonlinearity in the interaction between
a free electron and an electromagnetic wave is

caused by the Lorentz force. Additional nonlinearities

may result from convective density fiuctuations in the
plasma. The nonlinearities in gaseous plasmas have been
studied extensively in the microwave region of the
electromagnetic spectrum. ' ' Recently much attention
has been given to optical nonlinearities of a plasma,
although they are by their very nature rather small. '—"
In this paper hydrodynamic terms and convection will

be ignored.

*This research was supported by the U. S. Once of Naval
Research. An",'abbreviated version of this work was presented at
the Physics of Quantum/Electronics Conference, Puerto Rico,
1965 (unpublished) .
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The same basic formalism can be used to describe the
nonlinearities for bound and free electrons. This is par-
ticularly evident in the formulation of Cheng and Miller'
and of Pine, "who emphasized the self-consistent-field
description of the nonlinear susceptibilities. In Sec. II
of this paper, the second-harmonic volume polarization
for a plasma is rederived. The self-consistent-6eld cor-
rection on this longitudinal polarization is explicitly
exhibited in the same manner as has been done by
Ehrenreich and Cohen" for the longitudinal linear
dielectric constant. In Sec. III, it is shown that surface
terms are actually more important than the volume
effect for the second-harmonic generation (SHG) from
a metallic surface. Jha" has erst called attention to
these plasma surface terms. Our results are somewhat
different from Jha's and in better agreement with
recent experimental observations. We show furthermore
that the dominant contribution to the SHG may come
from bound electrons in the ion cores at the surface
rather than from the conduction electrons.

The next higher order nonlinearity describes the
Raman-type effects in a plasma. If, for example, a
laser beam at frequency cop, is incident on a plasma, the
plasma will present exponential gain for a light beam
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