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Properties of One-Dimensional Correlated Gaussian Wave Functions
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The properties of a certain class of unsymmetrized one-dimensional correlated Gaussian wave functions—
those which are ground-state eigenfunctions of some coupled harmonic-oscillator Hamiltonian —are investi-
gated in detail. It is shown that a properly symmetrized wave function constructed from these may be used
to calculate the expectation value E0 of the Hamiltonian appropriate to a system of interacting one-
dimensional atoms and that this energy is, to a high degree of accuracy, equal to the value obtained when
the unsymmetrized wave function is used. A method is given by which correction terms to Eo may be ob-
tained. In addition, it is found that even though the number of particles be very large, the necessary multi-
variable integrals may be performed quite simply.

with
C =P I'e(x„x.. . .x„),

e= exp) —n'(x —b)G(x—b)].
(2)

In the above, V is assumed to be a one-dimensional
atomic potential, P I' means the appropriately sym-
metrized sum over all permutations of the variables
xr, ,xtr, x= (xr,xs, ,xtr) and b= (b, 2b, ,1Kb).

Thus b is the interatomic spacing, if it is assumed that
G is such that 4 is a maximum at x= b.

Noting that (4~H~ C&(/4~ C=&(+~ I~IC&(/4~4 &we

wish to establish

(4)
(+I+& (+I+&

and to devise a procedure which obtains correction
terms to this equation. Equation (4) is the relationship
necessary to obtain Eq. (3) of I. In addition, a more
general procedure than was used in I for obtaining

lb(x;,x,)==

will be derived.

(X1yX2y ' ' yX$7) g dÃyy

22+'e, 7

' T. Koehler, Phys. Rev. 139, A1097 (1965).This paper will be
referred to as I.
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I. INTRODUCTION
' N a previous paper, ' a two-parameter, many-body,
-- correlated Gaussian wave function was used to
calculate the expectation value of a Hamiltonian for E
one-dimensional particles interacting through the one-
dimensional analog of an atomic potential. A detailed
discussion of the following two points was not given in
that paper: the proper treatment of terms involving
products of different permutations, and the mathemati-
cal details of integrating the wave function over all but
two coordinates. The first point was avoided by
restricting the size of the system, and the second, by a
trick. A fuller discussion of these issues will be given
in this paper.

The specific problems are those one encounters in
calculating the expectation value of a Hamiltonian

II=+;(p;2/2m)+P, (; U(~x;—x;i),
using a wave function

exp( —n'xMx) dx2 ——(2r/n') &~2t'&
~
M22

~

XexpL —n'xr(M» —M12(M22) M21)x' j (())

Notation which will be used throughout the paper has
been introduced for the breaking up of matrices and
vectors into components which are themselves matrices
and vectors:

(syn sy

)(M21 M22

with the components having dimensions N2 and E2. A
special notation which will be employed for denoting
components of inverse matrices and inverses of com-
ponent matrices is illustrated below:

(Msr M12 M '11 M '12 (I 0)

(M21 M22 M '21 M '22 (0 I)

Mrr(M») —'=I and M22(M22) '=I, where I is the unit
matrix of appropriate dimensions. If x2 contains the
variables x„,x;„,x;„, then dx~ —=dx;,dx;, dx;„.

If one substitutes the matrix identities'

M11 M12(M22) M21 (M 11) (7)

into Eq. (6), one obtains an expression which is more

2 S. F. Boys, Proc. Roy. Soc. (London) A253, 402 (1960).
~ K.. Singer, Proc. Roy. Soc. (I,ondon) A253, 412 (1960).' The type of matrix manipulation necessary to obtain Eq. (7)

is discussed in R. A. Frazer, Vf. J. Duncan, and A. R. Collar,
Elementary Matrices (The Macmillan Company, New York,
1947), p. 112.

281

II. MATHEMATICAL PRELIMINARIES

A. Integration Technig2j. es

Expressions for integrals involving correlated Gauss-
ian wave functions are well known"; in particular
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useful in this paper than Eq. (6):

~) (¹/2)
exp( —n'xcVx)dxp= —

f f
M [-')'

]
M '

CE

Xexp{—n'Lx, (cV-'„)-'x,&) . (9)

This form is convenient when X~ is small, 3, ~ is large,
and M ' can be found because it is then necessary only
to invert a small matrix to perform the integration.

B. Matrix Construction

If the matrix G of Eq. (3) be defined by

It is apparent that coo= 0 if 4 satis6es a translationally
invariant Schrodinger equation, since g G „=(pp, and
4' is translationally invariant if g G „=0. This in-
variance implies that/ (x;,x,) =P(x;—x,). Therefore, it is
convenient to define f(x;)=P(x—;,x)(z), and to eliminate
the dependence of C on x& by setting x~——0. This also
eliminates all permutations involving the index E from
C which is equivalent to eliminating all permutations in
which each coordinate is replaced by that of the particle
occupying the next lattice site. Such permutations do
not change the form of 0' because of the translational
invariance of %. Then

@=expL —n'(x —b)J (x—b)j,
G Q—ip ~~i (smn)

then, providing oroAO,

(10) where F is a (A' —1)&&(X—1) matrix given by

Ii„„=G, zl,zz= 1, .,1V—1. (16)

g —I g—I ~ —I~is(m —n)
mn = ~ s

where s=2zrl/1V, —', E(l~& 1p1V. The definition of s is
conventional; i.e.,

+—1 p ~s(m—n) s g 1V
—1 p ~im(s s')—

Problems which arise when coo=0 will be discussed later.
The wave function 4' of Eq. (3) with G as defined

in Eq. (10) is a generalization of the ground-state
eigenfunction of the one-dimensional, nearest-neighbor
coupled, harmonic-oscillator Hamiltonian; stated alter-
nately, it is the ground-state eigenfunction of soIne one-
dimensional, coupled harmonic-oscillator Hamiltonian.
With (p, =

~
sin( —', s) ~, it is readily found tha, t

where q=x —b. Then it can be found that

1 sin(zr/X)
G

E cosL2zr(zzz —zz}/1Vj—cos(zr/1V)

(14)

where (m —zz)' is the smaller of (m —zz)' or (zzz —zz+Ã)P.
The notation used here is slightly different from that
used in I; here G„„=2/zr rather than unity.

Since the ability to perform integrals over correlated
Gaussian wave functions depends upon inverting
matrices, the construction of G according to Eq. (10) is
particularly useful since, by considering the co, as varia-
tion parameters, one can generate matrices for which
an explicit expression for the elements of the inverse
matrix exists. However, in the general case the summa-
tions must be performed numerically.

The proof of Eq. (4) is considerably simplified if
compact expressions for the matrix elements of G exist,
so the wave function satisfying Eq. (12) will be used.
However, the insight into the problem gained from this
work enables one to check the validity of Eq. (4) for a
more general wave function.

The vectors x and b similarly do not contain x& and b&.
Vectors and matrices will henceforth be used in this
sense exclusively unless stated otherwise.

If one uses Eq. (7), the inverse matrix can then be
unambiguously obtained by

F ' = lim(G ' —G ' ))(G '~ /G '~~) (17)

where

=Sp+5 —S —5,

S„=N 'Q. ~p e™/pp,. (19)

2 m—I
5„=5()——P cot —(zzz+-', )g ~=o g

(20)

2 m'ps &—j
F ' = sin g csc ——(zzz —I—-,')

S ~=o g

with F ' =F ' and

Xcsc —(l+-',), m) zz (21)
.Ã

4 mm
J" 'mz= —sin

2V

7r
sin —(m+-,')

A
(22)

Note in particular that F ' q~ constant for large m
as this fact will be used extensively in Appendix S.

As an alternative procedure one can use Eq. (9) to
obtain the expression that results from integrating +'
over all coordinates except x and x~. This expression is
of the form exPL —A+(xm+x~)'g && exPP —A (xm —x))1)zg.

If one then takes limit coo ~ 0, it is found that A+ —+ 0
and A is Qnite. The approach which has been adopted
results in some notational simplification. An illustration
of the alternate method is contained in the derivation
given in Appendix C.

Explicit expressions for quantities which will be used
later are:
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where xrr=1Vb= 0ha—s been used. Since V(x) is con-
sidered to have the form of an atomic potential and is,
therefore, small for large x, and since 0 is only large
when x~~mb, the m=1 piece of the third term on the
right-hand side of Eq. (23) corresponds to the nearest-
neighbor interaction and should make the largest con-
tribution to that term. Because of this and for notational
convenience, the mathematical eBort will be applied to
the evaluation of the m=1 piece. However, it will be
clear that other terms could be treated similarly.

The standard notation' for the cycles into which a
permutation can be resolved will be used as a superscript
on symbols representing quantities pertaining to that
particular permutation. Using this notation, one can
write

g, (~r, ",~m)(g )= )Irp(~), ",~m)+ g dg,.
iwi

c(my, ', nm) expL" (r2~(el, '', nm)(gr &(ng, '', n )b)2m]

(24)
where

P% = expL —n'(xP —b)F(Px —b)] (25)

with I' being represented by the appropriate permuta-
tion matrix on the right-hand side of Eq. (25). The
constants c( ' "

~ &~ will be normalized such that the
constant c('&, which results when no variables are
permuted, is equal to unity.

The expression which we now wish to evaluate is

(+ I ~(xr)
I
C') (+ I

C) = l'(gr)e(xr) y(xr), (26)

where

Equation (27) is correct for bosons; the fermion case
will be discussed later. Consider a particular set of terms
which contribute to ()( (xr), namely, P(").It is shown in Ap-
pendjcesAand B that c('&~' "&)=J~(i &) +(~~& +'' '+(&

where J=e ' '"j;in order that the cores of neighboring
particles do not appreciably overlap, it is necessary that
J&&1. In the examples treated in I, J was of the order
10—".However, if a potential with a softer core had

s See, e.g., E. P. Wigner, GrouP Theory (Academic Press Inc. ,
New York, 1959), p. 124.

III. RESOLUTION OF PERMUTATION
PROBLEM

&y using Eq. (12) and certain symmetry properties
of N, one can obtain

(+l&lc')/(+I c)
= 'Z .—(1V '/2)(+I( —b)'IC)/(+IC)

N/2 —1

+1V(+I 2 I'(x-)IC)/(+IC), (23)

been used, the variational calculation would have
yielded a lower value for J, but one can still assume that
c"'+"«1. In fact, if this criterion is not satisfied, the
wave function of Eq. (2) is not a good choice for a wave
function.

Since c&' '+'~))c&i '+2&))c&i '+'&, one can immediately
make the approximation that g it (")=g f(' '+".There
are approximately 1V terms in Q P(''+') so that this
sum of functions will be small compared to P(') if 1VJ((1
and maybe neglected in Eq. (27) as was done in I. This
criterion is obviously not valid in the limit E~~ and
so further work is necessary before Eq. (26) can be
meaningfully applied to very large systems. In the
remainder of this section, it will be shown that the
quantity on the right-hand side of Eq. (26), is to a very
good approximation, independent of X, because, for an
overwhelming majority of terms P( )=c( )it(" so that
p=constantXQ(o), where the constant depends on 1V.

It is shown in Appendix B that there exists a number
2V,«E such that if I' involves the variables whose
indices are e~,e2, ,e„, if m&&E. and if S.&ni&~2(e &E—E„ then p' &=p'" and y' &=y(". One can
therefore write

N—Nc—1

Z4""(»)=( Z c""+")4")(»)
i Xc

Xc N—2

where C(1 ~+'~ is of order EJ.Other terms for which the
number of permuted variables is small compared to E„
but may be very large compared to unity, can be treated
similarly.

The contribution to p(xr) from permutations which
can be resolved into one cycle becomes negligible rather
quickly. For example, such permutations involving
the variables (i,i+1,i+2) and (i,i+1,i+2,i+3) give a
contribution of order 21VJ' and 21V(J'+J +J'), re-
spectively. The contribution from terms in which nz

different nearest-neighbor pairs of variables are per-
muted will be of order (1VJ) /m!. Other permutations
involving more than one cycle give smaller contribu-
tions. Thus it is clear that, while some of the C( & may
be considerably larger than unity, the series on the
right-hand side of Eq. (27) can be truncated to exclude
all permutations involving more than a certain number
of variables. Furthermore, the approximations given in
Appendices A and 8 are valid for all the terms which
need be retained.

One may then, after deriving an expression similar to
Eq. (28) for each of the retained terms, obtain

y(x )—(1+.g(r, I+))+.C(I,?+r), r~s)

+( (I,I+ )( Jr+ o)+.r. . )it, (o)( )x(r29)
=(1+1VJ+21VJ'+-,'(1VJ)'+ . .)P(')(xr)

=exp(+1VJg (') (bosons),
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where J((1has been used. Equation (4) follows directly
from Eqs. (23), (26), (27), and (29).

For a system of Fermi particles, a sign (—1)"must
be affixed to each C&~), whereupon Eq. (30) becomes

Q(xi) =exp( —EJ)P«) (fermions) .

It should be noted that the method used in deriving
Eqs. (30) and (31) is also applicable to the case where
P(xi x2 ' ' ' x~) —g' Ijk($' xo '), where xo, are the equi-
librium positions of particles on a one-dimensional
lattice. In this case, the derivation is simpler because
y(")=yp and p( ) =p"' for all permutations which do
not involve the variables 1 or ItI. While Eqs. (30) and
(31) are convenient approximations to Eq. (29), it is the
latter equation which is used to verify Eq. (4).

The leading correction term to Eqs. (30) and (31) is
that resulting from the permutation (1)V); an expression
for P"~) is obtained in Appendix C where it will be
found that P&'~)(x~,xi) is a maximum at x~——xi rather
than at x~=x~—b. The term

U(x~ —xi)P &' ~)(x~)xi)dx„dxi

corresponds to the nearest-neighbor exchange terms
which are encountered in working with determinantal
wave functions.

It is clear that a similar derivation to the above can
be used to determine, for example, p(x2), the term ap-
propriate for evaluation of the second-nearest-neighbor
contribution.

IV. DISCUSSION

The major purpose of this paper and of I has been the
development of a formalism by which one can use
certain types of correlated Gaussian wave functions—
those defined according to Eqs. (3) and (10)—as varia-
tional functions in many-body problems. Although, for.

convenience, the bulk of the detailed work was per-
formed using a specific wave function —the ground state
eigenfunction of the nearest-neighbor coupled harmonic-
oscillator Hamiltonian —the techniques introduced here
are applicable to a wider variety of wave functions.

The ability to write down an explicit expression for
P(x, ,x,) which can be evaluated simply results from
Eq. (7) and the fact that the G—',, are known. Thus an
integral over a large number of variables can be per-
formed without inverting a large matrix or integrating
one at a time over a large number of variables. ' lt is
still necessary to perform the sum in Eq. (11), but this
is a much simpler numerical problem.

The development of the appropriate expressions which
indicated that P&~)=constantXQ«) for certain permu-

It is in principle possible to do the integral in Eq. (24) over one
variable at a time. Here one would hope that, after integrating over
a few variables adjacent to 1 and Ã, one would find approximate
expressions for c( ), p( ), and y( ). In practice, the convergence is
unsatisfyingly slow.

tations primarily depended upon the fact that Ii ';,
tends towards a finite constant for large j. This result
probably obtains in any system in which co, ~0 as
s —+ 0; however, it can be checked numerically in indi-
vidual examples. In the example cooWO, one must use
6 ';;. Here 6 ',, would probably approach zero for
large j. These two cases can be visualized by replacing
the sum in Eqs. (19) and (11),respectively, by integrals.

We intend to extend the formalism developed in this
paper to three-dimensional systems. In such a system,
it will be necessary to perform the summations necessary
to obtain the inverse matrices numerically. It should be
pointed out that the resulting three-dimensional cor-
related Gaussian may prove to be the most complicated
trial wave function which can be treated exactly. We
also intend to explore the applicability of the viewpoint
which led to Eqs. (30) and (31) to the simpler example of
a Heitler-London —type wave function.
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APPENDIX A

The integral in Eq. (24) will be evaluated in this
Appendix, and matrix expressions for the constants
c( ', y' ), and p& ' will be derived. Approximations for
the matrix expressions will be obtained. The approxi-
mations are valid when only a small fraction of all the
variables is permuted and when this small fraction
includes only variables which are sufficiently far re-
moved from x~. Actual numerical estimates of the con-
stants will be given in Appendix B.

The expression to be evaluated is

2o2) (N 2)(2—
p& )(Y )=

[
[F['~'[F '

~i

X exp{—u'L(xP —b)F(Px —b)

+(x—b)F(x—b)j) g dx.

which, after the substitution g=x—b, becomes

2~2) (N—2) /2

~J

exp{ n'(q(F+PFP) q+qP—P'(P I)b—
+b(P I)FPq+b(P I)F(P—I)q])dq. , (—32)—

where q=(q q,)i, and the constant before the integral
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Rll Rlyi ( gl )
Xexp —n'(m b.') R„R„„iEt,'J

results, with

(34)

Rll 2prl Flg(I+P)(Fgg+PFggP) (I+P)pgl y (35)

R„r Rr„Fgr F——„,P(F——„+P—F„P) '(I+P)p, r, (36)

R„„=p„g Fg P(F +P—F .P) 'PF „. (37)

Several matrix identities which will be used in re-
ducing Eqs. (35)—(37) are

P(M+P VP) 'P-
M—1 M 1(M 1+PM 1P—) 1M—1(38—)——

(I+P) (M+PMP) (P+I)
=2M ' M'(P I)(M '—+PM 'P—) '

X(P I)M ' (39)—
P (M +PMP) '(I+P)—

=M i M rP(M ryPM—rP-) r(P -I)M r-(4O-)—-
M „(M„„) '= —(M—',)

—'M' —'... (41)

(42)

(M, )
—'Mg„= —M—',„(M '„„) '. (43)

Equation (38) is obtained from rearranging the
identity P(M+PMP) '(M+PMP)PM '=M ' and
Kqs. (39) and (40) can be derived similarly. Equations
(41)—(43) are similar to Kq. (7); it is understood that the
coordinates labeled x are further subdivided into r and p.

sign is such that

P&'&(qr) =exp[—2u'qr(p 'rr) 'qrj
= exp[—n-(nor/2)'j. (33)

This expression can be obtained if one sets P=I in
Kq. (32) and uses Eqs. (9) and (22). Thus y&"=or/4,
p( ) =0, and c( ) = 1.

The variables included in q will be further decom-
posed as f,=(j„f„) where rI„ includes all variables
affected by P. The components of P will not be written
and P will be assumed to have the appropriate dimen-
sions in a matrix product. Therefore, if the submatrices
denoted by x,y, do not contain any parts affected
by P, it should be noted that P„=I, P»= I,
P,„=O, P „=0, -, and P» ——P. Thus the only non-
zero component of (I—P) is the pp component. Then
by defining b'—= (b) (I—P) = (ob„'0), one can write the
expressions in the square brackets of Eq. (32) as

2prr Fr,(I+P) Fr rI„

(qr g b~') (I+P)F„(F„+PF,~) Pp,„q,
Fnr F.~ Fun.

' b'-
The integration indicated in Eq. (33) may be performed
and

f
p

i

1/2

4'("(qr) =
i (F+PFP)g„/2 (

"'

=R„(P—I)F—',r(F—'rr) —'

=0
(47)

(48)

Similarly, Eqs. (35), (39), (7), and (41) are used to
determine A~i.

Rrr=2prr —2prg(pgg) 'Fgr —Fr,(F„) '(P—I)
X [(F..)-'+P(p ..)-'P]-'(P—I)(p..)-'F.
2(P—r )

—1 (P—1 )
—1F—1 (P I)

XR (P I)F ' (F ' ) ' (49)—
—2(P—1 )

—r (5o)

In addition to the above, if

2M„„M,„(I+P)
M„+PM P=

(I+I')M„, M„„+PM„gP

one can write, using Eq. (7),

(M+PMP) 'g„
= [(M+PMP) g„(M+—PMP) „,[(%+PMP),„]

X(M+PMP)
=[M „+PM„„P (I+8—)M„,[2M„,j 'M,

X(I+P)j—'
=2[(I—P)M„~(I—P)+(I+P)(M ' ) '(I+P)) '

(44)

If one now substitutes Eq. (38) and then Eq. (44)
into Eq. (42),

R .=[(F**) '+P(p-) 'Pj '.
=2[(I—P)(p..)-'„,(I—P)

+(I+P)F„„(I+P)j ' (45)

is obtained. A convenient approximation to this ex-
pression may be obtained if one notes that

(I—P) (F„)-' (I P)—
=(I—P)[F—'„—F,(F—' ) 'F,j„„(I—P)
=(I P)p ' (I —P)—

The approximation obtains because F 'i ~ constant
for large m so that F 'r„(I—P) -+0 when p involves
variables suKciently far removed from x&. This approxi-
mation will be used in subsequent proofs. Finally, there
results

R„g=2[(I P)F 'g„(I —P)+(I+P)p—„g(I+P)j '. (46)

In this form, R» is expressed in terms of matrices of
the same rank as P and can be evaluated numerically
if the dimensions of P are small enough. A rough
approximation to Eq. (46) will be given in Appendix B.

Equations (40), (41), and (43) are used to reduce
Kq. (36) as follows:

R„,=p„r F„,(F„) 'F„+—F„,(F„) '

XP[(p-)-'+P(p )-'P j-'(P-I)(p )-'F
P[(F„) '+P(F—„) 'Pj '—„„(P I)F '„—

X(p 'rr) '
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APPENDIX 8
This Appendix will be primarily concerned with the

evaluation of Eq. (46) so that an approximate expression
for c(» can be obtained. We shall be exclusively con-
cerned with the case where P sects the m indices
S],S2, ' ' ' N with E,&e1&e2 &em&S —E„where
1«E'.«jV.

The following identities and approximations can be
derived from Eqs. (18) and (21):

mm ~ mn ~ mm —ny

P—1 —V—1
mm & m+n, m+n p e«m; 1&(m(&N, (52)

mn ~ mm Q~ m—np ~ m-np

n«m; I«~«E,

F '~~= —Q (2e—1) ', nz/E(&1.
7f n=1

Using Eqs. (52) and (53) one can obtain

((I—P)F ' .(I—P)7- -,
= ——;F-„, „,„, „,(1—b.,„,) . (ss)

The above is a good approximation. A crude but useful
approximation is obtained by replacing all the nonzero
elements given by Eq. (55) by a constant ——,'F where
F=F '»=8/1r. Then Eq. (55) may be rewritten

(I P)F ' ~(I P)=—',F(2I—P—5). — (56-)

Since the oB-diagonal matrix elements of F are small,
one may make a second crude approximation

Combining these results, one obtains

0' '(q)=
i (F +PF P)/2 I 'I-'

Xexp( —11'b,'R»b„')P('~(q1) . (51)

Note that the (P—I)F '„1=0was the only approxi-
mation used in obtaining Eqs. (46), (48), and (50) and
that before this approximation was employed, each
expression was reduced so as to contain only matrices
whose dimensions were those of E.

Although the approximations made in deriving Kq.
(59) were quite rough the approximate value of b„'R»b„'
comes out fairly close to the value —which we shall call
the true value —obtained when the only approximation
made is that given by Eq. (54) and the matrix work is
performed numerically. The reason for this is that the
(I—P) factor in b' cancels certain errors in estimating
JR/) po

When E'is a 2)&2 matrix, the true value of c( ) is easily
found tobe expL —2b'a'(e1 —n1)'/F '„, »,„, »g whereas
Eq. (59) would give c&1 =exp/ —2n'b'(n1 —e&)'/m 7.Note
that for the permutation P (n& "'~ n3 "' " )

and also that it would be expected that the constant in
front of the exponent in Eq. (59) would be of order
unity so that

C (ny, ng, ~ ~ .,n~) Jt (ng—ny) ~ ~ + (ny —n~) ~]
7

where I=exp(—2n'b'/1rj.

APPENDIX C

In the case where E=E"~) it is more convenient to
work with the G matrix. Evaluation of this permutation
violates our earlier statement that all permutations
involving x~ were to be omitted; however, because
Q„G „=0, it is readily shown that

jP (1N)+ jD (2,3, ~ ~ ~,iV'—1,1)+ ~

since the first notation is more transparent, we will use
it. By integrating over the variables x2 x& 1 and
denoting these by the subscript x, one can obtain an
expression analogous to Eq. (34):

R„R,g) q1
y&N 1~(q„)=exp r1~(q„b„')— l, (60)

Rg, Rppl b~'

with

Ra.=G»+PG»P (I+P)Gu. (2G**)—'G.n(I+P) (61)

R,g=Rg, =PG»(P I)—
—(I+P)G~,(2G.,) 'G, (P I), (62)—

(57)(F..)-'=(l )I.
By substituting Eqs. (56) and (57) into Eq. (46), one
now obtains

(58)R»=2 ',F(2I—P—P)+ (2I+P+—P)—
2 (64)G»- G1.(G..)-'G.1= (F-'1 )-',

Rt, t =G» G„(2G..) 'G „.— (63)

In the above b„'=(qN —q1)(1—1), and the term analo-
gous to IF»l'"lk(F»+PF. ~P)l '" «Eq (34) 1s

unity in Eq. (60).
Using Eqs. (7) and (16) and P G =0, we obtain

where F=~ has been used. The product b„'E»b„' now
becomes (1/1r)b'b' so that

c& &=(2(F»I/)F»+PF»P()'I' expL —n'b'b'/1rl. (59)

G1N Glz(G ) G N= (F 11)

Equations (60)—(65) can be combined to yield

(65)

P(N, l) —expL 2~2b2(F 1 ) lj
XexpL —u'(G11 G1N)(xN —~1)'$. (66)


