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The Lamb theory of the optical maser is applied to circularly polarized atomic transitions, and used to
consider the beat frequencies and the coherence properties of such orthogonal fields when axial magnetic
fields are applied to the gaseous laser. The beat frequency approaches zero in near-zero magnetic fields and
synchronization can then occur between the right- and left-handed circularly polarized oscillations. For a
resonator with no undue polarization constraint, such a strong coupling gives rise to a linearly polarized out-
put, and to a rotation of the plane of polarization with increasing magnetic field. A self-consistent expression
is derived for this rotation under steady-state conditions, and a maximum rotation of ~4m with magnetic
field is indicated before the synchronization breaks down and circularly polarized beat phenomena appear.
The rotation with magnetic field depends on the laser intensity, on the anisotropy in the cavity losses, and
on the position of the cavity resonance within the Doppler linewidth. Also, the angle of rotation is indeter-
minate unless such anisotropy is present. Other regions of such coherence can occur at higher magnetic
fields, where the beat frequency again approaches zero. These depend on the detailed shape of the various
dispersion curves of the laser medium. The results derived from the theory used are in general agreement
with experimental observations on the 1.153-p He-Ne laser transition.

1. INTRODUCTION

~ ARLIER accounts of Zeetnan studies' ' on gaseous
-'-~ lasers have discussed the beat-frequency phe-
nomena due to independent laser oscillations in the
distinct polarizations, or eigenstates, of the photon. In
order to observe such low-frequency beats, as for
example between separate laser oscillations in right-
and left-handed circular polarizations, the axial mag-
netic field applied to the laser must be such that these
oscillations are relatively independent. Each oscillation
is then pulled towards the center of the respective line

by frequency-pulling, or first-order dispersion effects,
and also shifted in frequency by frequency-pushing, or
power-dependent dispersion effects. 3 These dispersion
effects lead to a frequency splitting of a given axial
resonance of the laser cavity, and hence, account for the
low-frequency beats.

These early investigations used long lasers, and the
results were complicated by simultaneous oscillations
in a number of axial modes. The results obtained on such
lasers indicated that the beat frequency increased with
magnetic field monotonically. More recent investiga-
tions on a short, single-mode laser, 4 have shown, how-

ever, that the beat frequency may reach a maximum
value, depending on the laser intensity and tuning posi-
tion within the Doppler linewidth and then decrease
towards zero again as the magnetic Geld increases
further. After passing through this additional region
of zero beat frequency, the beat frequency again in-
creases with magnetic field. Other regions of magnetic
held in which the beat frequency approaches zero may
also occur depending on conditions, and it is clear that
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at such values of magnetic held the Zeeman levels no
longer overlap. It is, of course, necessary in such in-
vestigations that the Doppler linewidths of the transi-
tions overlap, and that the laser be above threshold for
both orthogonal polarizations.

In the region of zero magnetic field, where the Zeeman
levels overlap, the beat frequency approaches zero and
the dispersive effects are such that a single-laser fre-
quency can act on both transitions, and make them
phase coherent, or synchronous. A change in the polar-
ization of the laser with increasing magnetic field may
then be expected in this region owing to variations in
the dispersive properties of the medium for the circular
polarizations. The effect is similar to the well-known
Hanle effect' in spontaneous emissive processes. How-
ever, similar changes may also occur around any other
value of axial magnetic field for which the beat fre-
quency again approaches zero. Here the dispersive
effects in the medium are again equal for both polariza-
tions and a single-laser frequency can operate on both
transitions simultaneously. Such considerations allowed
the prediction that a rotation of the plane of polariza-
tion of the output from a planar-type laser should occur
when small axial magnetic fields are applied, and this
was later confirmed experimentally on a short laser
operating in a single mode. 4 In this work a dependence
of the slope of the rotation versus magnetic field on the
laser intensity was observed, and the existence of other
regions of axial magnetic Geld giving zero beat frequency
and a similar rotation was established.

Subsequently, the phenomenon has been investigated
more precisely and additional experimental results on
the variation of beat frequencies and on the dependence
of the rotation of the polarization with axial magnetic
Geld on the laser intensity, laser tuning, etc. , have been
obtained. These are dealt with in the experimental part

5 W. Hanle, Z. Physik 30, 93 (1924).
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of the present account. ' Here we apply the detailed
theory of the optical maser, as given by Lamb, ' to cir-
cularly polarized laser transitions, and d.educe the ex-
pression for the beat frequency as a function of magnetic
6eld. The existence of these other regions of zero beat
frequency at specific values of magnetic 6eld is thus
shown, and examples are given. In these zero-beat
regions the oscillations are locked together, and hence
are combined coherently with appropriate phase dif-
ferences. A self-consistent expression for the rotation of
the polarization with magnetic field is thus derived. The
theory explains the dependence of the rotation with
magnetic Geld on the laser intensity, on the cavity
tuning within the Doppler linewidth, and on the
anisotropy in the cavity losses. The angle of rotation is
indeterminate unless the Q values in orthogonal direc-
tions differ slightly. A maximum rotation of ~47r is
predicted before the angle of rotation becomes inde-
terminate and circularly polarized beat phenomena
appear. The value of magnetic Geld at which this
occurs depends on the decay constants of the states
involved. , but is also dependent on the additional
parameters considered. here.

Such rotations of the plane of polarization at the
specific values of magnetic field, where the frequencies
of the orthogonal circularly polarized oscillations
become the same, are due to a mutual synchronization
of these otherwise relatively independent laser oscilla-
tions, and are very similar to the nonlinear effects en-
countered in the synchronization of other oscillatory
phenomena. Thus, the synchronization or locking of
the frequency of a self-oscillatory system to the fre-
quency of an injected signal is due to nonlinear effects
in the oscillatory system, and the width of the frequency
interval for which the oscillator has this same frequency
is called the lock-in band. Similar frequency-locking
effects have been observed between axial modes of the
laser as the cavity tuning approaches the line center;
these were initially observed by javan and by Fork,
and. have also been discussed theoretically. '' We are
concerned here with similar effects in the region of zero
beat frequency between the circularly polarized tran-
sitions. Here the nonlinearity is due to the response of
the ensemble of atoms to the electric field within the
laser cavity, and the coupling between the oscillations
is strong in such regions. On leaving the lock-in band,
the coupling becomes gradually weaker, until at a sufFi-
ciently higher value of magnetic field a single beat fre-
quency between the circularly polarized oscillations
appears. In the intermediate region, just outside any
lock-in band, more complicated beat phenomena occur,
presumably due to time-dependent phase relationships

in the nonlinear coupling of these oscillations. These
give rise to various numbers of harmonically related
beat frequencies, which gradually reduce in number as
the magnetic 6eld increases. Such time-dependent
coupling effects are complicated, and, we shall not con-
sider this intermediate region of magnetic 6eld any
further, although our results will give the width of the
loc¹in band.

FIG. 1. Energy-
level system and the
transitions Am= ~1
considered in the
analysis of the beat
frequencies and the
rotation of polariza-
tion with magnetic
Geld.
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2. CIRCULARLY POLARIZED TRANSITIONS

The j=—,'—& j=—,
' laser transition to be considered is

shown in I'ig. 1, in which certain values of magnetic
6eld would give rise to independent circularly polarized
oscillations and to a beat frequency varying with mag-
netic 6eld. Other values of magnetic field will give zero
beat frequency for some conditions of the laser and a
single frequency can then operate on both transitions
and couple them due to nonlinear effects in the medium.
The results to be derived are strictly correct for the
simple laser transition considered here, and any appli-
cation of them to the more complicated J=i —& J=2
transition of the 1.153-p He-Ne laser will require further
consideration, and comparison with the experimental
results. There are three 0:and three 0+ transitions in-
volved in this more complicated system, which for
unequal g values may lead to somewhat different results.
However, if we assume the g values are comparable, say
both around 1.3,' ' a normal Zeeman pattern would be
obtained, and, as in our simple level scheme, only two
atomic frequencies would be effective. In this event all
the right-handed (r.h. ) circularly polarized transitions
would be made coherent by the single-laser frequency,
which would also operate at the same position on the
Doppler linewidth for all such transitions. Similar
remarks apply for the left-handed (l.h. ) circular polar-
ized. transitions, and the single beat frequency obtained
would behave similarly to that for the simple four-level
scheme. Some differences also occur because some of the
5m= ~1 transitions start or end on the same level in
the He-Ne laser. However, provided no serious un-

' J. Kannelaud and W. Culshaw, following paper, Phys. Rev.
141, 237 (1966).' W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

N. Minorsky, Xoekneur Os' lluti ops (D. Van 5ostrand
Company, Inc. , New York, 1962), pp. 438-459.' C. L. Tang and H. Statz, Phys. Rev. 128, 1013 (1962).
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balance occurs in the intensities of the orthogonal cir-
cularly polarized. oscillations, which is a reasonable
assumption at small magnetic fields, and is strictly
correct when the cavity is initially tuned to the line
center before the 6eld. is applied, the results derived
with this much simpler level schexne should be applica-
ble, at least as far as the general features are concerned,
to this more complicated level scheme. A similar formu-
lation of the problem could be done for these other level
schemes, but is complicated by the multiplicity of tran-
sitions which are involved. In any event, phenomena
similar to those derived from the approach used here
are to be expected for all level schemes.

For laser oscillations in a single mode with r.h. circu-
lar polarization, the development of the electric field
inside the laser cavity may be written in the form~

E„(s,t)=-,E(t)L(i—ij)e """'+&&+c.c.g sinK„z, (1)

and the steady state of the laser oscillation is then de-
termined from the real and imaginary parts of the con-
ditional equation

tv~
—,'e —i 2v„E„+ E„~+E„(Q„'—v ') e '&""'+o"&+c.c.

p2

=——eP„(t)e 't""'+&"&+c.c., (2)
2 50

where c is the polarization of the laser transition,
E„=2rr/L, L is the cavity length, Q„ is an eigen-
frequency of the cavity without loss, and P (t) is the
macroscopic polarization, or source term, for laser
oscillation at the frequency u„. The electric-dipole per-
turbation between levels u and b due to the laser emis-
sion is given by

&&&3'.,= —eE,(s,t) r, (3)

and using Eq. (1), we require the quantum-mechanical
average value of the electric-dipole operator

Q= e((ot iy)+ (—so+iy) j, (4)

for the particular atomic state concerned. This may be
written as a linear superposition of states f, and Ps

4'(t) =a(t)4'.+b(t)A (5)

where the time dependence of the perturbation controls
the time development of the coefficients a(t) and b(t),
and hence the time development of the average value
of the operator in Eq. (4). This may then be written

(Q)= trLt Qg, (6)

where p is the density matrix of the two level scheme,
from which the microscopic polarization is then given
by

P (t) = tb, *a*b+Dab*,

where 5=eQq, is the matrix element of the operator 0
between states ib, and it s.

where Cs= sr'"
j 6 ~'/ttsy, yekg, and where

P„"=7,s(o&„v)Z(os, v)—, —

P; =1+7.'~(,—.),
(12)

(13)

with 7,s=q~(y, +ps), denote the real and imaginary
parts of the third-order dispersion function P". The
steady state of this oscillation is now determined from
Eqs. (2), (10), and (11),and the total frequency shift of
the oscillation due to both frequency pulling and push-
ing eGects is then given by

Z, (Q„—to„)
v "=Q„+-,'(v/Q) r&

Z, (0)

Z, (Q„—cu,.) )P,"-
rt
—1 i, (14)

Z, (0) jP,'
where Z„and Z; are the real and imaginary parts of
Z(v„—co„), and the frequency v„ in the dispersion func-
tions P„"and P;"is replaced by 0„,to a good approxima-

' B.D. Fried and S.D. Conte, The Plasma Dispersion Function
Hitbert Transform of the Gaussian (Academic Press Inc. , New
York, 1961).

The analysis now proceeds in the way developed by
Lamb, ' with the perturbation written as

&'V(t) = ——,'E.Ls+s(t —t,), t$e-'&"-t+&.&, (8)

whence the equations of time-dependent perturbation
theory become

sa =W,a+ V (t)b ,'iy—,a-,

ib= Web+ V*(t)a ,'iy—sb—,

where filV, and AS"~ represent the energies of states a
and b in angular frequency units. The expression for the
macroscopic polarization, or source term for the r.h.
circularly polarized oscillation may then to first order
in the perturbation t/' be written as

P„ro(&t)= —-,'Cge„E„(t)NZ(v„—co„)e
—'&""'+o &+c.c.,

(10)

where Cq=
~
6 ~'/&tkN, e, is equal to i—ij, and. represents

the vector nature of the photon involved in the tran-
sition. Z(v„—co,) is the complex dispersion function of
the assumed Maxwellian velocity distribution, ' "kN is
the Doppler width parameter, and co, is the atomic fre-
quency of the r.h. circularly polarized transition. X is
the mean value of the excitation density for a single
mode of oscillation. Substituting the value of P (t)
from Eq. (10) into Eq. (2), gives the equations which
determine the threshold for oscillation, and also the fre-
quency-pulling effects due to the dispersive properties
of the medium.

Similarly the third-order term in the macroscopic
polarization for a single mode is given by~

P„r&"(t) = ,'gcserE„'N(P—r"+iP ")e '&""'+o"&+c.c.
y (11)



COHERENCE EFFECTS IN GASEOUS LASERS. I 231

tion. p is the relative excitation given by 0.5

where
rt=N/Ng,

N g es/——Ctz; (0)Q

(15)

(16)

0.4

is the threshold excitation density when the laser is
tuned to the line center.

Analogous results may be written down for the l.h.
circularly polarized. transition c—+ d in Fig. 1.Thus, the
6rst- and third-order macroscopic polarization terms
are given by

P„'&'& (t) = ——,'Cte&E„(t)NZ(v„—et~)e
—'&" '+& &+c.c.,

1.4 0.2

1.2

1pI t 1 t 1 I 1 I I & I

0 20 40 60 80 100 120 140 160
(cu- vn )/2w' (MC/SEC)

—0
180 200

FIG. 3. Graphs of the real and imaginary parts P, and P; of the
third-order polarization term P(ca). The parameter y&b is equal to
4x)&107 and 10m X10~ sec ' for curves 1 and 2, respectively.

P„'&'l (t) = ~'~CsegE~'N(P„'+iPr')e '&""+S"&, (18)

respectively, where the frequency and phase angles may
of course be diferent from those of the r.h. circularly
polarization, and e&=i+ij. An equation for the fre-
quency v ' then follows by substituting co&, the fre-
quency of the l.h. circularly polarized transition, into
Eqs. (12), (13), and (14).The excitation parameter rt is
the same for both transitions.

3. BEAT FREQUENCIES

Using Eq. (14) for r.h. and its counterpart for l.h.
circularly polarized radiation, the beat frequency,
which will be observed on detecting these radiations
with an analyzer and photomultiplier, may be written as

1 v)
v, "—v„'=——

i
LZ„(Q„—&0„)—Z, . (Q„—(o&)j

2 Qi Z(0)
-Z, (Q„—(o„) P„"—

n
—1

z, (o)

Z, (Q„—&sg) -iP, '
-n —1

Z, (0) p.l
(19)

2.0 —XX

0.2

p.4

1.0 0.6

0.8

0

1.0
1 1 1 1------1- 1 1

100 200 300 400 500 600 700 800
(v„-tbt)/2w (MC/SEC)

FIG. 2. Graphs of the real and imaginary parts, Z, and Z; of the
inst-order dispersion function g(v„—~).

It is clear from Eq. (19) that both Grst-order dispersion
eGects (frequency-pulling), and third-order (frequency-
pushing) effects will be effective in determining the

beat frequency. This will thus depend on the detailed
shape of the erst- and third-order dispersions functions
involved, and also on the laser intensity, and on the Q
value of the laser cavity. The functions Z, (u&) and.
Z, (&u) are shown in Fig. 2 for a Doppler parameter kN

equivalent to 500 Mc/sec, and for values of y, b/kg
equal to zero and 0.1, respectively. Similarly, the third. -
order dispersion functions are shown in Fig. 3 for values
of y.b/2rr of 20 Mc/sec and 50 Mc/sec, respectively.
The operating point on these curves, and thus the beat-
frequency variation with magnetic Geld, is determined
by the deviation of the cavity frequency from the line
center, or by 0„—co, where co is the atomic frequency in
the absence of magnetic fields. There will thus be marked
variations in the beat frequency with cavity tuning,
and, while the beat frequency is zero inzero magnetic
field, it may also become zero again at a hig};er value of
magnetic held, particularly in the vicinity of the station-
ary points of the dispersion curves Z„(&s) and P,( )&.sThe
symmetry relations Z, (co) = —Z, (—&0), Z;(&e) =Z;(—&e),

P„(a&)=—P,(—&o) P;(M)=P;( co) should b—e noted,
and also that Z, (a&) is negative and P, (&e) is positive for
positive cv.

Assuming that v/Q= 10', and y, b/kg =0, Fig. 4 shows
plots of the beat frequency v„"—v„' against the Zeeman
shift (&e

—&e„) or (cog—co), for rt=2 and 1.2 and for
y, b/2s-=20 and 50 Mc/sec, respectively. The laser
cavity is initially tuned to the line center, or 0„—& is
zero, when Eq. (19) reduces to the form

v Z" f Z' )P"
v„'—v '=—

rl
—

~
rt —1 ~, (20)

Q 'z, (o) &z, (o) ip,' '

where the superscript r indicates that the functions refer
to a r.h. circularly polarized transition. Referring to
curve 1, for rt = 2 and. y, b/2s = 20 Mc/sec, we see that as
the magnetic 6eld increases from zero the beat fre-
quency is positive, showing that frequency-pushing
eBects are dominant for these parameters. This is due
to the more rapid increase in the function P„(~) of
Fig. 3, as compared. with the function Z, (&0) shown in
Fig. 2. The beat frequency, thus, attains a maximum
of some +240 lrc/sec at a magnetic Geld corresponding
to (&s &s,)/2'= t&,fII= 2—2 Mc/sec, when the frequency-
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for the values of Zeeman shifts 6f~ used here. The beat
frequency is thus negative and decreases steadily due
essentially to frequency-pulling effects. Curve 4 for
Af=500 Mc/sec corresponds to operation around the
stationary points of the dispersion function Z, (~), and
the effects of the frequency-pushing terms P,(oi) are
then very small. The beat frequencies are then also
small since Z„"(~)=Z, '(co), and for the case shown they
are positive because Z, (ro) )Z&(co). The beat frequency
would pass through zero at some higher value of hf~
and for a larger value of g, corresponding to some posi-
tion around the stationary point at which Z,"(co)
=Z, '(co)."It is apparent that these somewhat anomal-
ous results for the beat-frequency variation with mag-
netic field are associated with the third-order dispersion
functions P(cu) as defined by Eqs. (12) and (13), and in
particular with the resonance in the real part of this
function at Af~= y, s/2x.

I'xo. 4. Variation of beat frequency with co—co„, the Zeeman
shift. Cavity tuned to line center initially. Curve j., g=2,
y,s/2v=20. Curve 2, g=1.2, 7 q/2s =20. Curve 3, v=2,
y,s/2s 50 C=urv. e 4, &= 1.2, y &/2v= 50. All frequencies expressed
in Mc/sec.

pushing effects start to decrease again as shown in
Fig. 3. The beat frequency passes through zero at a
magnetic field corresponding to Af~ equal to some 60
Mc/sec, and then the beat frequency becomes negative
and decreases with increasing magnetic field due to the
function Z„(s&) in the normal way. Curve 2 exhibits the
same behavior modified only by the lower value of
g=1.2. Curves 3 and 4 apply for the large value of
y, s/2s. =50 Mc/sec; the second zero-beat region for
q=2, then occurs at the higher value of 80 Mc/sec,
while in Curve 4, for p= 1.2, a positive beat frequency
is never attained and no other region of zero beat fre-
quency occurs.

Figure 5 shows similar curves cleduced from Eq. (19)
for various values of (0 —co)/2s =6f, the tuning of the
laser cavity with respect to the line center. Here
y, s/2s-=20 Mc/sec, and ri=5 for all curves, which cor-
responds to operation well above threshold at the line
center. For curve 1, elf=50 Mc/sec and the beat fre-
quency is initially negative since both Z, (co) and P„(&)
are negative and (P„'(oi)() (P;(co) (. After the fre-
quency'thf& increases so that P, (co) passes through the
optimum value shown in Fig. 3, the beat frequency
starts to increase and passes through zero at Af~ 59——
Mc/sec. The beat frequency then becomes positive and
increases to a value of +200 kc/sec. Frequency-
pushing eBects then start to decrease, and. the beat
frequency passes through zero again at hf&= 85 Mc/sec
becoming negative due to the usual frequency-pulling
effects of the function Z, (co). Curve 2 for Af= 100Mc/sec
exhibits a similar behavior due to the resonance in the
P„(co) curve of Fig. 3, but never becomes positive, due
to the larger value of 6f, Curve 3 for Af=300 Mc/sec
corresponds to operation well down the curves of P„(oi)
and. P;(m) and the resonance position is never attained

4. COHERENT COMBINATIOÃ OF THE
CIRCULAR POLARIZATIONS

We see from Figs. 4 and 5 that the beat frequency
between the orthogonal circularly polarized modes is
zero for zero magnetic Geld, and also for other finite
values of magnetic Geld which depend on the particular
operating conditions. When the magnetic Q.eld is such
that a zero beat frequency occurs, the dispersive effects

I I I I I I I I I I I I I I
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I I I I I I I I I I I I I I
0 20 40 60 80 )00 120 t40
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pro. 5. Variation of beat frequency with ~ ~~=~i=~=—Afa»
the Zeernan shift and with cavity tuning position Af on the
Doppler linewidth. Curve 1, Af 50 Curve 2, Af Mp . Curve»
Af 3pp Curve 4 Qf=5pp. „=5,~,s—/2s'=20 for all curves. All
frequencies expressed in Mc/sec.

"Similar beat-frequency curves for Grst-order dispersion, or
frequency-pulling effects, have been given by A. Corney P(private
communication), and Phys. Letters (to be published)g.
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which gives the components of electric field

E (t)=E„(t)cosv„t cosQ,

E„(t)=E„(t) cosv„t sing.
(22)

Here the x direction may be tak.en as the direction of
polarization in zero magnetic Geld. The self-consistent
equations for the x direction may now be written as'

(v —Q„)E„co~= ,' (v/eo)C„—(y—,t),
LE-+l(/Q-)E. ] o e= ——;(/ )S.(e,t),

(23)

with similar equations involving sing for the y direction.
Here the macroscopic polarization has been expressed
in the form

P„(g,t) =iPC„(p,t) cosv„t+S (g, t) sinv„t]

+jPC„'(P,t) cosv„t+S„'(p,t) sinv„t] . (24)

Kith appropriate changes in the numerical constant,
Eqs. (10) and (17), are now added, because of the strong
coupling in the region under consideration, to obtain
the resultant Grst-order polarization along the x and y
directions, with the results

P, ' (t) = —~~CUE (t)NL(F' co+—X' sing) cosv„t

+ (X cosQ+ F sing) sin v„t], (25)

P o&(t) = ——,'C,E„(t)NL(X' co@]+I"sing) cosv t
—(F co~—X sing) sinv„t], (26)

of the laser medium are identical for both photon types,
and a single-laser frequency will tend to synchronize,
or couple both circularly polarized transitions Am= &1
together due to the nonlinear properties of the medium.
The range of magnetic GeM over which this coupling
or coherence persists will depend on the dispersive
properties of the medium for the respective polariza-
tions, and we may expect that, while a single laser fre-
quency acts on both transitions, there will, however, be
a varying phase relationship between the two oscilla-
tions which depends on the magnetic Geld. This will
enable us to explain the observed linear polarization in
zero magnetic Geld, and in other regions of zero beat
frequency, and also the rotation of the plane of polariza-
tion which is observed as the magnetic Geld is varied
around such regions. ' '

Accordingly, to obtain a laser oscillation with the
electric vector linearly polarized at some angle p to the
x axis as in Fig. 6, the corresponding circularly polarized
waves are written in the form

E„(s,t)=-„'E (t)fe,e *'""'—»+c.c.]U„(s),
(21)E (s,t)=-,'E„(t)pe,e—'~r '+»+c.c.]U (s),

I IG. 6. Coordinate
system used in the
analysis with an
axial magnetic field,
and the laser radia-
tion polarized at
some angle @ to the
x axis.

I

i

y I/Q

MAGNETIC
SHIELOING

I

~x
Qx

x=P;r+P
y=P"—P '

x Pg Pg

yr —P r+P l
(34)

These equations, together with Eqs. (23), (24), (25),
and (26), will determine the steady-state conditions in
the x and y directions. %e note that when the cavity
is tuned to the line center P„"=—P,' and P,"=P -' and
the terms involving cosv„t in Eqs. (32) and (33) become
zero and there are then no frequency pushing effects.

5. EQUATION OF CONSISTENCY FOR
THE ANGLE P

magnetic fieM is applied, we have Z;"=Z, and Z„"=—Z„',
and Eqs. (25) and (26) reduce to the form

P,o) (t) = —C~E„(t)N(Z,"co&+Z„"sing) sinv„t, (28)

Pv&') (t) = —CqE„(t)N (—Z„"cosp+ Z,' sing) sin v„t,
(29)

and all terms in cosv„t are zero, which by comparison
with Eqs. (23) and (24) shows that there are no fre-
quency-pulling effects in this case. The threshold rela-
tions for the x and y direstions, corresponding to / =0,
and g=-,'m, respectively, in Eqs. (28) and (29) for zero
magnetic field, are then given by

Q, '= CgN, 'Z;(0), Q„'=CiN„'Z;(0), (30)

where, for reasons which will appear later, we assume
that the values Q, and Q„differ slightly. The relative
excitation parameters may then be written as

g, =N/N, ',
gatv

=N/Nv'. (31)

Similarly, the third-order polarizations given by
Eqs. (11) and (18) are combined to give the results

P "'(t)=—,',C&E„'(t)P(y' co&—x' sing) cosv„t

+ (x co++y sing) sinv t], (32)

P„~~)(t) = ~~~C2E„'(t)L(x' co&+y' sing) cosv„t
—(y cosP —x sintt) sin v„t], (33)

where

where

1"=Z„'—Z, ' P=Z,"+Z,'.

We have considered in Sec. 3 a specific region of mag-
X=Z,"+Z, X'=Z;"—Z, netic Geld. in which the orthogonal circularly polarized

transitions are coupled together by a single-laser fre-
quency, and we have combined the macroscopic polar-

Q"hen the laser is tuned to the line center before the izations along the x and y directions. The angle of the
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assumed linearly polarized laser output is now deter-
mined from the equations which'govern the steady-state
oscillations in these directions, and by""determining the
ratio of these component field intensities as a function
of qk The relation

E '/E P= tan'y (35)

must then hold for consistency, and this leads to an
equation for tan&.

The steady-state components of the oscillation along
the x and y directions are determined by equations of
the form

g =a,E —PQ
E„=e;E„—P;E„',

(36)

from which we obtain for the steady state the relation

E„&/E,P =~,P,/a;P, = tan'y.

From Eqs. (23) through (33), we find that

~;= (p/2)L —Q,
—'+« 'CiN

&( (X co&+I' sing) (co&) ij, (38)

p;= ~'~ (i /«)C~(x cosp+y sing) (cosQ) ',

(37)

~~= (~/2)L —Q. '+« 'Ci&
)& (—F co++X sing) (sing) 'j, (39)

p&= pp (p/pp)CdV( —y co++s sing) (SHlp)

since E,=E„cosy, E„=E„sing. The substitution of
these results into Eq. (37) leads to the equation which
must be satisfied by P, and after some reduction we
obtain the result

where
tally= L

—b& (b' —4ac)"'g(2a) '

0,=Xy—gr Yx—rye

c=g„Xy Yx rye

b= Xx(1—g,)+Fy(g, —1),
r=2Z, (O),

(4o)

(41)

with the parameters p, and p„determined by Eq. (31),
and where we write

q,=g,/g„. (42)

Thus plus or minus sign in front of the radical in

Eq.f(40) refers to P= pin- and zero, respectively, in zero
magnetic Geld, and we take the minus sign. The angle @
mill thus be zero in zero magnetic field and will either
increase or decrease as this field increases from zero,
depending on the sign of the parameter a. Similar sects
and a rotation of the plane of polarization will occur
around any other position of zero beat frequency. Thus,
~pj will increase with magnetic field until 4ac)b' at
which 6eld tang becomes complex and the transition
region between the linearly polarized output and the
separate circularly polarized oscillations occurs. At this
point b=2a, and from Eq. (40) we see that rotations
around 4~sr are indicated. In the unlikely case that

Q =Q„we see that a=c and hence tang=+i, and is
thus indeterminate. Hence, in order to observe the
phenomena, the Q value of the laser cavity must be
anisotropic, and the actual rotation observed for a given
value of magnetic field will depend on the degree to
which this occurs. From the expression for b we deduce
that the slope of the rotation with magnetic Geld will
increase as g, —+ 1, or as Q, and. Q„approach equality.
It is apparent that such effects are due to a mutual
synchronization of the circular polarizations due to the
nonlinear properties of the ensemble of atoms within the
cavity and which will occur in any region of axial mag-
netic field for which the beat frequency tends to zero.
The region of magnetic field in the vicinity of the zero
beat in which the linear polarization and rotation occurs
may be related to the lock-in bandwidth for the various
operating conditions.

We also see from Eq. (40) that the slope of the rota-
tion with magnetic field will change sign each time a
passes through zero. The additional regions of co-
herence, or mutual synchronization, between such
oscillations are thus, also determined by the values of
magnetic field at which the parameter a, given by
Eq. (41), is zero, which leads to the expression

Z„" Z,' iP„"
~—1~ =0,

z, (o) z, (o) j~; (43)

F' ( X )y'-
~-=~l-+- —~ —

I
~ —2

I
—,(44)

4 Q z, (o) k z, (o)

E„'
~
6

~

' 32LX/Z;(0) —2g-'$
(45)

/

if the laser is tuned to the line center, and we put g,= 1,
and y„=g. Equation (43) is then identical with the
equation for zero beat frequency as deduced from
Eq. (20), and again shows the close connection between
the regions of the rotation of polarization and the region
of zero beat frequency. Similar comparisons between
the regions of magnetic field at which the beat frequency
Dv approaches zero, and those corresponding to a equal
to zero, may be made for various cavity tuning posi-
tions using Eqs. (19) and (41).Thus, referring to Fig. 5,
Curve 1 we see that hr is zero at Zeeman shifts

Aflak

of
55.25 and at 88.3 Mc/sec. From Eq. (41) we find that
a=0 for the same parameters, when Afire

——55.9 and
89 Mc/sec, if we take g„=1.0. For other values of g,
around unity these values will change, but the agree-
ment is reasonable, and serves as check on the formu-
lation since the value a=0 must lie within the lock-in
region.

Resolving the polarizations given by Eqs. (25), (26),
(32), and (33) along the direction of the resultant 6eld
E (/), and using similar equations derived from
Eq. (23), we find that the frequency shift and steady-
state intensity of the coupled oscillation are given by
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where the threshold excitation is again dined by
Eqs. (15) and (16).Thus, for an asymmetric tuning of
the cavity with respect to the Doppler linewidth, there
will be slight changes in the frequency and intensity as
the magnetic field varies within the lock-in regions.

Figure 7 shows some computed results for the rotation
of the polarization of the laser output as the axial mag-
netic Geld increases from zero. These have been deduced
from Eq. (40) for the laser tuned to the line center, or
5f=0, and with y, s/2s. = 20 Mc/sec. The values
g„=1.01, and 1.001 with y~= 1 and 2 were used as indi-
cated in the various curves. The following character-
istics of the rotation are apparent: (a) For a fixed level
of laser intensity, the slope of the rotation with mag-
netic field, is greater the closer iI„ is to unity; (b) the
slope of the rotation with magnetic Geld increases with
laser intensity; (c) for a fixed value of iI„the slope of the
curves should change sign as g„decreases towards

50

~qz *1.001

30

50

40

30

1.0

10

20

FIG. 8. Theoretical curves of the rotation of polarization versus
magnetic Geld for frequency deviations Df= (v —~)/2s. Mc/sec
of the cavity tuning from the Doppler line center. Full curves:
No. 1, Af=0; No. 2, hf 10; No. 3, Af=14.1; No. 4, hf =20;
No. 5, Af=50; No. 6, Df= 100. ri„=1.5 for all curves Dash. ed
curves: a, Af~0; 5, Df=10, c, elf=20; d, nf=50. v„=5.0.
qr =1.01, and y, f, =4~X10' sec ' for all curves.
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6. CONCLUSIONS

We have considered a relatively simple four-level
laser transition giving circularly polarized beat phe-
nomena when axial magnetic fields are applied. The
appearance of a single beat frequency in such cases
represents a steady state of the system in the limit of
very small coupling between the oscillations. However,
the frequency-pulling and -pushing e6ects at specilc
values of magnetic Geld may become identical for these
two modes of opposite circular polarization, and hence
the beat frequency may approach zero. In such regions,

FIG. 7. Theoretical curves of rotation of polarization versus axial
magnetic Geld for cavity resonance centered on the Doppler line-
width. Note the increased rate of rotation with laser intensity, and
also as the Q values tend to equality, or q„~ 1.
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threshold. ; and (d) axial magnetic fields of a few tenths
of a gauss should produce rotations around ~m.

Figures 8 and 9 show similar curves for various fre-
quency deviations 6f of the tuning from the line center.
Here the values y, s/2s ——20 and 50 Mc/sec were used
in the respective figures, together with the indicated
values of q„and g„. From these results it is apparent
that (a) the slope of the curves increases with laser in-
tensity; (b) the slope changes from negative to position
in the region that Af approaches y, s/2s", (c) the slope
of the curves is a maximum for all g„, g„when the laser
is tuned to the line center, at least for the values of
y, s/2s- considered here; and (d) the slope is smaller for
the larger value of y, s AZeeman . shift of 1.8 Mc/sec/G
was assumed in these computations, corresponding to
the approximate value for the 1.153-p, He-Ne laser
transition.
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Fzo. 9. Theoretical curves of the rotation of polarization versus
magnetic Geld for frequency deviations nf in Mc/sec from the
line center. p s=10s.X10' sec '. No. 1, nf~0; No. 2, iaaf 50;
No. 3, 6f= 100. ri„=5, ri„=1.01 for all curves.
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the two frequencies have a natural tendency to coalesce
due to the nonlinear effects in the interaction of the
atomic system with the electromagnetic field inside the
cavity. A coherence or mutual synchronization of the
circularly polarized oscillations then occurs, giving rise
to lock-in regions of the magnetic field in which only a
single frequency is present. The polarization then
becomes linear due to a strong coupling of the oscilla-
tions, and the plane of polarization rotates throughout
the lock-in region due to a changing phase relationship
between the two oscillations. A maximum rotation of
~~sr is indicated before the strong coupling breaks
down and circularly polarized modulation phenomena
appear. Such a maximum rotation corresponds to a
maximum phase difference of —,'x between the oscilla-
tions, and would correspond to the similar phase con-
dition which is applicable in the synchronization of an
oscillator by an external signal. "Such coupling effects
will occur in any region of magnetic field in which the
beat frequency tends to zero and can be used to study
the dispersive properties of the laser medium and the
atomic parameters and collisional effects which are in-
volved. The region of intermediate, or quasicoupling
between the oscillations is more complicated and has
not been considered in detail. Such a region will proba-
bly give rise to transient or modulation effects corre-
sponding to harmonically related beat frequencies,
which will give rise to a single beat frequency as the
magnetic increases beyond this region.

The general implications of the theory, although

~ A. A. Kharkevich, Nonlinear and I'urametric Phenomena in
Rodho Egggneersng (John F. Rider Publisher, Inc. , New York,
1962), pp. 128-156.

strictly valid only for the particular transition con-
sidered, are, however, in agreement with previous ob-
servations' on the rotation of polarization with mag-
netic field of the more complicated 1.153-p He-Ne laser
transition. They also agree with the more detailed ex-
perimental investigations on this transition which are
described in Part II.' Thus, the dependence of the rota-
tion on the laser intensity, on the cavity tuning within
the Doppler linewidth, and on the anisotropy of the
cavity losses are all correctly predicted. The occurrence
of additional regions of coherence at higher values of
magnetic field and different cavity tuning positions is
given by the Zeeman shifts at which the parameter a
passes through zero. The positions thus derived are in
good agreement with those deduced from considerations
of the regions in which the beat frequency approaches
zero. A change in sign of the slope of the rotation with
magnetic field in alternate coherence regions is also indi-
cated by the theory. As intimated in Sec. 2, similar phe-
nomenon may be expected for any other laser transition
in an axial magnetic field. Here we have been concerned
with the general features of the effect, and not with any
quantitative comparison with observations on a more
complicated laser transition. Complications would in
any event arise is a detailed comparison because of the
lack of knowledge of all the parameters involved. How-
ever, further precise experimental investigations may
well require that the actual transition involved must be
considered in a similar, but more complicated way. '3

"Note added &s proof Equations . describing the beat-frequency
variation and mode competition in a gaseous laser with an axial
magnetic Geld have recently been given by Pork. and Sargent, for
the J=1-+0 transition. L'See R. L. Fork and M. Sargent, III,
Phys. Rev. 139, A617 (1965).j


